請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88847
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝正義 | zh_TW |
dc.contributor.advisor | Cheng-I Hsieh | en |
dc.contributor.author | 李冠緯 | zh_TW |
dc.contributor.author | Kuan-Wei Lee | en |
dc.date.accessioned | 2023-08-15T18:02:04Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-04 | - |
dc.identifier.citation | Abdulkareem, S., Olumayode, O., Aweda, J. O., Abdulrahim, A. T., Ajiboye, T. K., Ahmed, I., & Adebisi, J. (2016). Investigation of Thermal Insulation Properties of Biomass Composites. International Journal of Technology, 7, 989. https://doi.org/10.14716/ijtech.v7i6.3317
Berardi, U. (2016). The outdoor microclimate benefits and energy saving resulting from green roofs retrofits [Article]. Energy and Buildings, 121, 217-229. https://doi.org/10.1016/j.enbuild.2016.03.021 Campell, G. S., & Norman, J. M. (1998). An Introduction to Environmental Biophysics (Second Edition). Springer-Verlag, Inc., New York. Cook, L. M., & Larsen, T. A. (2021). Towards a performance-based approach for multifunctional green roofs: An interdisciplinary review. Building and Environment, 188, 107489. https://doi.org/10.1016/j.buildenv.2020.107489 D’Orazio, M., Di Perna, C., & Di Giuseppe, E. (2012). Green roof yearly performance: A case study in a highly insulated building under temperate climate. Energy and Buildings, 55, 439-451. https://doi.org/10.1016/j.enbuild.2012.09.009 Gao, Z., Russell, E. S., Missik, J. E. C., Huang, M., Chen, X., Strickland, C. E., Clayton, R., Arntzen, E., Ma, Y., & Liu, H. (2017). A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods. Journal of Geophysical Research: Atmospheres, 122(13), 6934-6949. https://doi.org/10.1002/2017JD027160 Getter, K. L., Rowe, D. B., Andresen, J. A., & Wichman, I. S. (2011). Seasonal heat flux properties of an extensive green roof in a Midwestern US climate [Article]. Energy and Buildings, 43(12), 3548-3557. https://doi.org/10.1016/j.enbuild.2011.09.018 Gnatowski, T., Ostrowska-Ligęza, E., Kechavarzi, C., Kurzawski, G., & Szatyłowicz, J. (2022). Heat Capacity of Drained Peat Soils. Applied Sciences, 12(3). Gomes, M. G., Silva, C. M., Valadas, A. S., & Silva, M. (2019). Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate. Water, 11(10), Article 2016. https://doi.org/10.3390/w11102016 Hakimdavar, R., Culligan, P. J., Finazzi, M., Barontini, S., & Ranzi, R. (2014). Scale dynamics of extensive green roofs: Quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance. Ecological Engineering, 73, 494-508. https://doi.org/10.1016/j.ecoleng.2014.09.080 He, Y., Yu, H., Dong, N., & Ye, H. (2016). Thermal and energy performance assessment of extensive green roof in summer: A case study of a lightweight building in Shanghai. Energy and Buildings, 127, 762-773. https://doi.org/10.1016/j.enbuild.2016.06.016 Hsieh, C. I., Huang, C. W., & Kiely, G. (2009). Long-term estimation of soil heat flux by single layer soil temperature. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 53(1), 113-123. https://doi.org/10.1007/s00484-008-0198-8 IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 36 pages. (in press) Jim, C. Y. (2014). Passive warming of indoor space induced by tropical green roof in winter. Energy, 68, 272-282. https://doi.org/10.1016/j.energy.2014.02.105 Karachaliou, P., Santamouris, M., & Pangalou, H. (2016). Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens. Energy and Buildings, 114, 256-264. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.04.055 Karthika, R. B., Vidyapriya, V., Nandhini Sri, K. V., Merlin Grace Beaula, K., Harini, R., & Sriram, M. (2021). Experimental study on lightweight concrete using pumice aggregate. Materials Today: Proceedings, 43, 1606-1613. https://doi.org/10.1016/j.matpr.2020.09.762 Liang, h.-h., & Huang, K.-T. (2011). Study on rooftop outdoor thermal environment and slab insulation performance of grass planted roof. International Journal of Physical Sciences, 6. Liebethal, C., Huwe, B., & Foken, T. (2005). Sensitivity analysis for two ground heat flux calculation approaches. Agricultural and Forest Meteorology, 132(3), 253-262. https://doi.org/10.1016/j.agrformet.2005.08.001 Lin, Y.-J., & Lin, H.-T. (2011). Thermal performance of different planting substrates and irrigation frequencies in extensive tropical rooftop greeneries. Building and Environment, 46(2), 345-355. https://doi.org/10.1016/j.buildenv.2010.07.027 Liu, K. K. Y., & Minor, J. (2005). Performance evaluation of an extensive green roof. Greening Rooftops for Sustainable Communities Maia Pederneiras, C., Veiga, R., & de Brito, J. (2021). Physical and Mechanical Performance of Coir Fiber-Reinforced Rendering Mortars. Materials, 14(4). Parizotto, S., & Lamberts, R. (2011). Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy and Buildings, 43(7), 1712-1722. https://doi.org/10.1016/j.enbuild.2011.03.014 Peng, L. L. H., Yang, X., He, Y., Hu, Z., Xu, T., Jiang, Z., & Yao, L. (2019). Thermal and energy performance of two distinct green roofs: Temporal pattern and underlying factors in a subtropical climate. Energy and Buildings, 185, 247-258. https://doi.org/10.1016/j.enbuild.2018.12.040 Properties of Pumice. (2015-2023). In Compare Rocks. Retrieved from https://rocks.comparenature.com/en/properties-of-pumice/model-127-6 Quezada-García, S., Espinosa-Paredes, G., Polo-Labarrios, M. A., Espinosa-Martínez, E. G., & Escobedo-Izquierdo, M. A. (2020). Green roof heat and mass transfer mathematical models: A review. Building and Environment, 170, 106634. https://doi.org/10.1016/j.buildenv.2019.106634 Rumšys, D., Bačinskas, D., Spudulis, E., & Meškėnas, A. (2017). Comparison of Material Properties of Lightweight Concrete with Recycled Polyethylene and Expanded Clay Aggregates. Procedia Engineering, 172, 937-944. https://doi.org/https://doi.org/10.1016/j.proeng.2017.02.105 Samah, H. A., Tiwari, G. N., & Nougblega, Y. (2020). Cool and Green Roofs as Techniques to Overcome Heating in Building and its Surroundings under Warm Climate. International Energy Journal, 20(3), 359-372. Sauer, Thomas J. and Horton, Robert, "Soil Heat Flux" (2005). Publications from USDA-ARS / UNL Faculty.1402. https://digitalcommons.unl.edu/usdaarsfacpub/1402 Scharf, B., & Zluwa, I. (2017). Case study investigation of the building physical properties of seven different green roof systems. Energy and Buildings, 151, 564-573. https://doi.org/10.1016/j.enbuild.2017.06.050 Schiavoni, S., D׳Alessandro, F., Bianchi, F., & Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988-1011. https://doi.org/https://doi.org/10.1016/j.rser.2016.05.045 Scolaro, T. P., & Ghisi, E. (2022). Life cycle assessment of green roofs: A literature review of layers materials and purposes. Science of The Total Environment, 829, 154650. https://doi.org/10.1016/j.scitotenv.2022.154650 Smalls-Mantey, L., DiGiovanni, K., Olson, M., & Montalto, F. A. (2013). Validation of two soil heat flux estimation techniques against observations made in an engineered urban green space. Urban Climate, 3, 56-66. https://doi.org/10.1016/j.uclim.2012.11.001 Squier, M., & Davidson, C. I. (2016). Heat flux and seasonal thermal performance of an extensive green roof. Building and Environment, 107, 235-244. https://doi.org/10.1016/j.buildenv.2016.07.025 Tang, M., & Zheng, X. (2019). Experimental study of the thermal performance of an extensive green roof on sunny summer days. Applied Energy, 242, 1010-1021. https://doi.org/10.1016/j.apenergy.2019.03.153 Teemusk, A., & Mander, U. (2010). Temperature regime of planted roofs compared with conventional roofing systems. Ecological Engineering, 36(1), 91-95. https://doi.org/10.1016/j.ecoleng.2009.09.009 Theodosiou, T. G. (2003). Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and Buildings, 35(9), 909-917. https://doi.org/10.1016/S0378-7788(03)00023-9 Vaiciene, M., Malaiskiene, J., & Kizinievic, O. (2019). Possibilities of Plastic Waste Application in Expanded Clay Concrete. IOP Conference Series: Materials Science and Engineering, 471(3), 032009. https://doi.org/10.1088/1757-899X/471/3/032009 Vera, S., Pinto, C., Tabares-Velasco, P. C., Bustamante, W., Victorero, F., Gironas, J., & Bonilla, C. A. (2017). Influence of vegetation, substrate, and thermal insulation of an extensive vegetated roof on the thermal performance of retail stores in semiarid and marine climates. Energy and Buildings, 146, 312-321. https://doi.org/10.1016/j.enbuild.2017.04.037 Vermiculite Data. (2023). In The Vermiculite Association: Resources. Retrieved from https://www.vermiculite.org/ Wang, J., & Bras, R. L. (1999). Ground heat flux estimated from surface soil temperature. JOURNAL OF HYDROLOGY, 216(3-4), 214-226. https://doi.org/10.1016/S0022-1694(99)00008-6 Zhou, L. W., Wang, Q., Li, Y., Liu, M., & Wang, R. Z. (2018). Green roof simulation with a seasonally variable leaf area index. Energy and Buildings, 174, 156-167. https://doi.org/10.1016/j.enbuild.2018.06.020 內政部建築研究所. (2015). 屋頂綠化技術手冊. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88847 | - |
dc.description.abstract | 隨著氣候變遷與都市熱島效應日益嚴重,建築能源消耗量也逐漸上升。為了能夠有效減緩此現象以達到永續環境的目標,綠屋頂阻隔熱能的效果也備受重視。
本研究之主要目標為了解在台北的氣候下綠屋頂的隔熱效果,因此於研究中選取三個不同維護管理程度(零維護、低維護、高維護)以及植被的綠屋頂進行溫度及熱通量的實測。此外也使用解析解以及半階微分法(half-order time derivative method)與土壤熱通量實測值進行比較,評估模式的準確度。 在模擬部分,半階微分法與實測值近似,其推估的熱通量可有效作為綠屋頂的實測熱通量,但是解析解則無法有效模擬且維護程度越高其模擬結果越差。 在監測部分,研究結果顯示葉面積指數(leaf area index)越大的綠屋頂,其土壤表面溫度相對於水泥表面溫度可降低最多。此外,在綠屋頂底部土壤熱通量方面,除了零維護綠屋頂在白天仍有熱通量進入室內,其餘綠屋頂的熱通量皆為整日離開室內。 研究的最後進行成本效益評估,將綠屋頂的初始成本與維護成本納入計算,加入各綠屋頂所帶來的節電效益進行比較。在利用實驗資料及成本資料進行計算後,最後的結果發現在三個綠屋頂中,零維護綠屋頂有最低成本。 | zh_TW |
dc.description.abstract | With the increasing severity of the urban heat island effect and climate change, the energy consumption of buildings is also gradually increasing. To effectively mitigate this phenomenon and achieve sustainable environmental goals, the thermal insulation effect of green roofs is highly valued.
The main objective of this study is to investigate the thermal performance of green roofs in the climate of Taipei. For this purpose, three green roofs with different maintenance levels (zero maintenance, low maintenance, high maintenance) and vegetation were selected for temperature and heat flux measurements. Additionally, analytical solutions and half-order time derivative method were employed and compared with measured soil heat flux values to evaluate the accuracy of the models. In the simulation part, half-order time derivative method approximates well with the measured values, and its estimated heat flux can effectively serve as the measured heat flux for green roofs. However, the analytical solution cannot simulate effectively, and the higher the maintenance level, the poorer the simulation results. In the monitoring part, the research results show that green roofs with a higher leaf area index can significantly reduce soil surface temperature compared to cement surface temperature. Furthermore, about soil heat flux at the bottom of the green roofs, except for zero-maintenance green roof which still has heat flux entering indoors during the daytime, the heat flux for the other green roofs is predominantly leaving the indoors throughout the day. Lastly, a cost-benefit evaluation was conducted, considering the initial cost and maintenance cost of green roofs, along with the energy-saving benefits provided by each green roof. After performing calculations using experimental data and cost data, the results revealed that zero-maintenance green roof had the lowest cost of three green roofs. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T18:02:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T18:02:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機與流程 5 第二章 綠屋頂實驗場 7 2.1 綠屋頂實驗區域與特性 7 2.2 綠屋頂結構 14 2.3 儀器配置 16 第三章 研究方法 19 3.1 模型概述 19 3.2 一維熱傳導公式(實測值) 19 3.3 解析解 20 3.4 半階微分法 21 第四章 模擬結果與討論 23 第五章 實測結果與討論 29 5.1 溫度 29 5.1.1 零維護土壤溫度比較 29 5.1.2 低維護土壤溫度比較 32 5.1.3 高維護土壤溫度比較 35 5.1.4 綠屋頂底部溫度比較 38 5.2 熱通量 39 5.2.1 土壤熱通量G1比較 39 5.2.2 土壤熱通量G2比較 44 5.2.3 土壤熱通量G1與G2比較 48 5.2.4 底部熱通量G3比較 51 5.3 對照組熱通量比較 56 第六章 綠屋頂成本效益 59 第七章 結論 62 References 64 Appendix A: 儀器圖片 70 Appendix B: 阻尼深度D與熱傳導度K計算值 71 Appendix C: 低維護、高維護綠屋頂的預測熱通量 73 Appendix D: 太陽輻射 76 Appendix E: 土壤含水量 78 | - |
dc.language.iso | zh_TW | - |
dc.title | 綠屋頂土壤熱通量之監測與模擬 | zh_TW |
dc.title | Monitoring and Simulation of Soil Heat Flux from Green Roofs | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林寶秀;詹瀅潔 | zh_TW |
dc.contributor.oralexamcommittee | Bau-Show Lin;Ying-Chieh Chan | en |
dc.subject.keyword | 綠屋頂,半階微分法,土壤溫度,土壤熱通量,屋頂成本效益分析, | zh_TW |
dc.subject.keyword | Green roofs,Half-order time derivative method,Soil temperature,Soil heat flux,Cost-benefit evaluation of green roofs, | en |
dc.relation.page | 79 | - |
dc.identifier.doi | 10.6342/NTU202302891 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物環境系統工程學系 | - |
dc.date.embargo-lift | 2025-09-01 | - |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2025-09-01 | 11.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。