請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞益 | zh_TW |
| dc.contributor.advisor | Ray-I Chang | en |
| dc.contributor.author | 呂雅芳 | zh_TW |
| dc.contributor.author | Ya-Fang Lu | en |
| dc.date.accessioned | 2023-08-15T17:52:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 臺灣證交所–指數股票型基金( ETF )簡介。檢自https://www.twse.com.tw/zh/page/ETF/intro.html
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353. Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51(2), 245-271. Beasley, D., Martin, R. R., & Bull, D. R. (1993). An overview of genetic algorithms: Part 1. Fundamentals. University Computing, 15, 58-58. L. X. Wang and J. M. Mendel, "Generating fuzzy rules by learning from examples," IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1414-1427, 1992. J. S. R. Jang, "Self-learning fuzzy controller based on temporal backpropagation," IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 714-723, 1992. J. H. Holland. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press. Elman, J. L. (1990). Finding structure in time. Cognitive Science 14(2), 179-211. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. 張凱婷(2011),應用支撐向量迴歸及模糊規則於股價買賣點之預測,元智大學資訊管理學系碩士論文。 何公皓(2016),技術分析投資績效之實證分析—以台灣 50 ETF 為例,國立台灣大學管理學院國際企業學系暨碩士論文。 吳宜謙(2021),使用卷積-長短期記憶神經網路進行股票交易,國立清華大學計算與建模科學研究所碩士論文。 黃華山、邱一薰(2005),類神經網路預測臺灣 50 股價指數之研究,國立彰化師範大學資訊管理研究所碩士論文。 陳柏年(2001),應用遺傳演算法於財務指標選股策略之探討,國立中央大學資訊管理研究所碩士論文。 L.Cao, C. Luo, J. Ni, D. Luo, C. Zhang. (2006). Stock Data Mining through Fuzzy Genetic Algorithm. In Proceedings of the 2006 Joint Conference on Information Science (JCIS 2006), Kaohsiung, Taiwan: DBLP. PyGAD. Retrieved from https://pygad.readthedocs.io/en/latest/ 沈沛瑄(2020),以LSTM結合二次交易策略預測ETF 50股價趨勢,國立台灣大學工程科學及海洋工程所碩士論文。 Lee, K. J., & Lu, S. L. (2021). The Impact of COVID-19 on the Stock Price of Socially Responsible Enterprises: An Empirical Study in Taiwan Stock Market. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph18041398 Lane, G. (1950). The Stochastic Indicator. Technical Analysis of Stocks & Commodities Magazine. Appel, G. (1985). The moving average convergence-divergence trading method: advanced version. Scientific Investment Systems. Keras. Retrieved from https://keras.io/ Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley. William F.Sharpe, “A Theory of Market Equilibrium under Conditions of Risk”, The Journal of Finance, vol. 19, no. 3, Sep. 1964, pp. 425-442. 葉文宏(2022),模糊決策系統應用於台灣股市實證研究,國立宜蘭大學電機資訊學院碩士論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88810 | - |
| dc.description.abstract | 本研究以 LSTM 預測元大台灣50(ETF50)股價,為了提高模型預測的準確度,提出了「誤差校正法」,進行修正預測股價。我們計算每日預測股價與實際股價之誤差,並判斷誤差值是否超過閥值,若超過閥值則進行校正預測股價。同時,我們使用基因演算法(Genetic Algorithm, GA)來調整校正法中的參數,以達到準確預測股價的目的。
在股票交易中,決定股票買賣時間點是交易關鍵之一。過去許多股票研究會使用基本面、消息面或是技術面的技術性指標來判斷最佳買賣點。本研究提出了基因演化之模糊演算法來決定買賣時機,使用多種技術指標應用規則建立模糊系統(Fuzzy System),並結合 GA 來演化出最佳的隸屬函數之參數,以改善模糊系統。 本研究收集 2003 年到 2020 年間 ETF50 和 ETF50 中成分股佔比最大的股票作為資料集,去預測 ETF50 股價,其中前段 90% 作為訓練資料,後段 10% 作為測試資料。將訓練資料經過 12 項技術性指標計算以及前處理後,作為模型輸入變數。 模型預測值經過誤差校正法進行校正後,與未校正的股價進行比較,使用均方誤差(Mean Square Error, MSE)來評估預測準確性,結果顯示,未經校正股價的 MSE 為 11.5758,而經過校正後的股價 MSE降至 1.2687,大幅地降低模型預測的誤差。透過誤差校正法校正股價並以基因演算法決定買賣點,本研究最終實驗可獲得 32.0% 的報酬率。 | zh_TW |
| dc.description.abstract | This study employs LSTM to predict the stock prices of Yuanta/P-shares Taiwan Top 50 ETF. In order to improve the accuracy of the prediction model, we propose the " Deviation Calibration " method to adjust the predicted stock prices. We calculate the daily deviation between the predicted stock price and the actual stock price, and determine if the deviation value exceeds a threshold. If it exceeds the threshold, we proceed to correct the predicted stock price. Additionally, we utilize Genetic Algorithm (GA) to adjust the parameters of the deviation calibration method in order to achieve accurate stock price predictions.
In stock trading, determining the timing of buying and selling stocks is one of the key aspects of trading. In the past, many stock studies have used fundamental, news-based, or technical indicators to identify optimal buying and selling points. This study proposes a genetic fuzzy algorithm to determine the timing of trades by utilizing multiple technical indicators to establish a fuzzy system. Additionally, it combines GA to evolve the optimal parameter values for the membership functions in order to improve the fuzzy system. This study collected the stock data of the ETF50 and the constituents with the highest weighting in the ETF50 as the dataset, which is from 2003 to 2020, to predict the ETF50 stock price. The dataset was split into two parts, with the first 90% used as training data and the last 10% as testing data. The training data underwent calculations of 12 technical indicators and preprocessing, which were then used as input variables for the model. After applying the deviation calibration method to the predicted values of the model, a comparison was made with the uncorrected stock prices. The mean square error (MSE) was used to evaluate the prediction accuracy. The results showed that the MSE of the uncorrected stock prices was 11.5758, whereas the MSE of the corrected stock prices decreased to 1.2687, and the stock prediction error is reduced significantly. By correcting the stock prices using the deviation calibration method and determining the buying and selling points through genetic algorithm, this study ultimately achieved a return rate of 32.0% in the experiments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:52:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:52:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 論文結構 2 第二章 相關文獻 3 2.1 指數股票型基金(ETF) 3 2.2 技術面指標 3 2.3 模糊系統 8 2.3.1 模糊理論 8 2.3.2 模糊控制 8 2.4 基因演算法 10 2.4.1 初始族群 11 2.4.2 適應函數(Fitness Function) 11 2.4.3 選擇(Selection Scheme) 11 2.4.4 交配(Crossover) 12 2.4.5 突變(Mutation) 13 2.5 類神經網路 13 2.5.1 循環神經網路(Recurrent Neural Networks,RNN) 13 2.5.2 長短期記憶模型(Long Short-Term Memory,LSTM) 14 2.6 國內外相關研究 16 第三章 研究方法及架構 18 3.1 資料集 18 3.2 研究流程與架構 18 3.3 資料前處理 19 3.3.1 計算技術指標 19 3.3.2 資料正規化 Normalization 19 3.3.3 調整成分股權重 20 3.3.4 切割資料 20 3.4 LSTM 類神經網路模型與校正策略 21 3.4.1 LSTM 類神經網路架構 21 3.4.2 模型訓練參數 21 3.4.3 模型評估方式 22 3.4.4 誤差校正法 22 3.4.5 基因演化之誤差校正法 23 3.5 交易策略 24 3.5.1 買賣規則 24 3.5.2 投資報酬率 25 3.6 基因演化之模糊演算法 25 3.6.1 技術指標之應用規則 25 3.6.2 隸屬函數 (Membership Function) 26 3.6.3 隸屬函數初始值 27 3.6.4 基因演算法輸入變數 27 3.6.5 適應函數 28 3.6.6 基因演化之模糊演算法訓練參數 28 第四章 實驗結果 29 4.1 模型預測 29 4.1.1 模型預測校正比較 29 4.1.2 誤差校正法與基因演算法 30 4.1.3 當日最高價與最低價 30 4.2 基因演化之模糊演算法 30 4.3 交易策略比較 32 4.3.1 股價校正後分析 33 4.3.2 不同的總資金比較 34 4.3.3 基因演化之模糊演算法報酬率比較 34 第五章 結論與未來展望 36 5.1 結論 36 5.2 未來展望 36 參考文獻 37 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 技術性指標 | zh_TW |
| dc.subject | 交易策略 | zh_TW |
| dc.subject | ETF50 | zh_TW |
| dc.subject | 校正策略 | zh_TW |
| dc.subject | LSTM | zh_TW |
| dc.subject | 模糊系統 | zh_TW |
| dc.subject | Fuzzy System | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | Technical Indicators | en |
| dc.subject | Trading strategy | en |
| dc.subject | Calibration Strategy | en |
| dc.subject | ETF50 | en |
| dc.subject | LSTM | en |
| dc.title | 結合 LSTM 股價預測與基因模糊交易策略—以台灣50 為例 | zh_TW |
| dc.title | Combining LSTM to predict stock price and fuzzy genetic algorithm to determine trading strategy in the case of Taiwan ETF50 Stock | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張恆華;張信宏;王家輝 | zh_TW |
| dc.contributor.oralexamcommittee | Herng-Hua Chang;Shin-Hung Chang;Chia-Hui Wang | en |
| dc.subject.keyword | 基因演算法,模糊系統,LSTM,校正策略,ETF50,交易策略,技術性指標, | zh_TW |
| dc.subject.keyword | Genetic Algorithm,Fuzzy System,LSTM,Calibration Strategy,ETF50,Trading strategy,Technical Indicators, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202303208 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 1.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
