請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡博文(Bor-Wen Tsai) | |
dc.contributor.author | Yu Sha | en |
dc.contributor.author | 沙昱 | zh_TW |
dc.date.accessioned | 2021-05-11T05:15:07Z | - |
dc.date.available | 2019-01-15 | |
dc.date.available | 2021-05-11T05:15:07Z | - |
dc.date.copyright | 2019-01-15 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-01-08 | |
dc.identifier.citation | 鄭雨桐(2016)。建成環境對公共自行車使用之影響,國立台灣大學地理環境資源研究所碩士論文。
Cervero, R. and Kockelman, K. (1997). Travel demand and the 3Ds: density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199-219. Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F. and Neiman, A. (2009). Influences of built environments on walking and cycling: lessons from Bogotá. International Journal of Sustainable Transportation, 3(4), 203-226. Cetinkaya, c. (2017). Bike sharing station site selection for gaziantep. Sigma Journal Of Engineering And Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi, 35(3), 535-543. Chen, Q., Liu, M. and Liu, X. (2018). Bike Fleet Allocation Models for Repositioning in Bike-Sharing Systems. IEEE Intelligent Transportation Systems Magazine, 10(1), 19-29. Chen, P., Shen, Q. and Childress, S. (2018). A GPS data-based analysis of built environment influences on bicyclist route preferences. International Journal of Sustainable Transportation, 12(3), 218-231. Daddio, D. W. and Mcdonald, N. (2012). Maximizing bicycle sharing: an empirical analysis of capital bikeshare usage. University of North Carolina at Chapel Hill. Elwood, S. (2008). Volunteered geographic information: future research directions motivated by critical, participatory, and feminist GIS. GeoJournal, 72(3-4), 173-183. Faghih-Imani, A. and Eluru, N. (2015). Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system. Journal of Transport Geography, 44, 53-64. Faghih-Imani, A. and Eluru, N. (2016). Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system. Journal of Transport Geography, 54, 218-227. Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M. and Haq, U. (2014). How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41, 306-314. Fishman, E. (2016). Bikeshare: A review of recent literature. Transport Reviews, 36(1), 92-113. Fishman, E. (2016). Cycling as transport. Transport Reviews, 36(1), 1-8. Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M. and Haq, U. (2014). How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal.Journal of Transport Geography, 41, 306-314. Fonte, C.C., Minghini, M., Patriarca, J., Antoniou, V., See, L., and Skopeliti, A. Generating up-to-date and detailed land use and land cover maps using OpenStreetMap and GlobeLand30. ISPRS Int. J. Geo-Inf. 2017, 6, 125. Gonzalez, M. C., Hidalgo, C. A. and Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779. Han, X. P., Hao, Q., Wang, B. H. and Zhou, T. (2011). Origin of the scaling law in human mobility: Hierarchy of traffic systems.Physical Review E,83(3), 036117. Havlik, D., Soriano, J., Granell, C., Middleton, S. E., van der Schaaf, H., Berre, A., and Pielorz, J. (2013). Future Internet enablers for VGI applications. EnviroInfo 2013, Germany.02 - 04 Sep 2013. Heikinheimo, V., Minin, E.D., Tenkanen, H.; Hausmann, A., Erkkonen, J., and Toivonen, T. (2017) User-generated geographic information for visitor monitoring in a national park: A comparison of social media data and visitor survey. ISPRS Int. J. Geo-Inf. 2017, 6, 85. Kaplan, S., Manca, F., Nielsen, T. A. S. and Prato, C. G. (2015). Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior.Tourism Management,47, 34-46. Kim, K. (2018). Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations. Journal of Transport Geography, 66, 309-320. Klonner, C., Marx, S., Usón, T., Porto de Albuquerque, J., and Höfle, B. (2016). Volunteered Geographic Information in natural hazard analysis: A systematic literature review of current approaches with a focus on preparedness and mitigation. ISPRS Int. J. Geo-Inf. 2016, 5, 103 Luchetti, G., Mancini, A., Sturari, M., Frontoni, E., Zingaretti, P. (2017). Whistland: An augmented reality crowd-mapping system for civil protection and emergency management. ISPRS Int. J. Geo-Inf. 2017,6, 41. Mattson, J. and Godavarthy, R. (2017). Bike share in Fargo, North Dakota: Keys to success and factors affecting ridership. Sustainable cities and society, 34, 174-182. Muarer, L. (2011). Suitability Study for a Bicycle Sharing Program in Sacramento, California. University of North Carolina at Chapel Hill, Department of City and Regional Planning. Munizaga, M. A. and Palma, C. (2012). Estimation of a disaggregate multimodal public transport Origin–Destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies, 24, 9-18. Nikitas, A., Wallgren, P. and Rexfelt, O. (2016). The paradox of public acceptance of bike sharing in Gothenburg. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability. ICE Publishing, Vol. 169, No. 3, pp. 101-113. Palmer, J. R., Espenshade, T. J., Bartumeus, F., Chung, C. Y., Ozgencil, N. E. and Li, K. (2013). New approaches to human mobility: Using mobile phones for demographic research. Demography, 50(3), 1105-1128. Pucker, J. (2001). Cycling safety on bikeways vs. roads. Transportation Quarterly,55(4), 9-11. Rixey, R. (2013). Station-level forecasting of bikesharing ridership: Station Network Effects in Three US Systems.Transportation Research Record: Journal of the Transportation Research Board, (2387), 46-55. Rojas-Rueda, D., De Nazelle, A., Teixidó, O. and Nieuwenhuijsen, M. J. (2012). Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environment international,49, 100-109. Romanillos, G., Zaltz Austwick, M., Ettema, D. and De Kruijf, J. (2016). Big data and cycling. Transport Reviews, 36(1), 114-133. Saberi, M., Ghamami, M., Gu, Y., Shojaei, M. H. S. and Fishman, E. (2018). Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London. Journal of Transport Geography, 66, 154-166. Sarkar, A., Lathia, N. and Mascolo, C. (2015). Comparing cities’ cycling patterns using online shared bicycle maps.Transportation, 42(4), 541-559. Song, C., Qu, Z., Blumm, N. and Barabási, A. L. (2010). Limits of predictability in human mobility. Science, 327(5968), 1018-1021. Sosko, S.; Dalyot, S. (2017). Crowdsourcing user-generated mobile sensor weather data for densifying static geosensor networks. ISPRS Int. J. Geo-Inf. 2017, 6, 61. Turner, A. (2006). Introduction to neogeography. O'Reilly Media, Inc. Wang, X., Lindsey, G., Schoner, J. E. and Harrison, A. (2015). Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations. Journal of Urban Planning and Development, 142(1), 04015001. Wang, Y.; Jiang, W.; Liu, S.; Ye, X.; Wang, T. (2016). Evaluating trade areas using social media data with a calibrated Huff model. ISPRS Int. J. Geo-Inf. 2016, 5, 112 Zhao, J., Deng, W. and Song, Y. (2014). Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China. Transport Policy, 35, 253-264. Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST),6(3), 29. Zhou, X. (2015). Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago.PloS one,’0(10), e0137922 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/887 | - |
dc.description.abstract | 公共自行車作為城市公共綠色交通工具,因為其短期租賃、健康、便捷的特性,滿足了許多民眾短距離活動的需求,也減輕了一部分環境污染並緩解了城市中其他交通運具的交通負擔。但在提供給大眾便利的同時也帶來了資源分配不均、過度使用或過少使用這類的現實問題,所以關於公共自行車使用量的影響因素的研究可以幫助我們更好地瞭解在不同的環境下公共自行車的使用量,進而更好地規劃和分配停車樁和車輛的數目。過往對於公共自行車的研究,比較多集中在基本歷史發展、選址方案和時空分佈等課題,但對於使用者、自然條件和交通條件等影響因數,以及對應的資料時間跨度不夠全面的問題,過往的研究相對較少。
本論文的研究目的是瞭解建成環境對於公共自行車使用量的影響,以美國紐約市的花旗公共自行車作為研究案例,使用2017年1月至12月完整一年內之每一筆租借資料進行分析,找到各個建成環境因數對於使用量影響的強弱關係。首先透過文獻回顧,探討以往的建成環境對於公共自行車使用的影響因數,而後取得民眾使用公共自行車騎行的時空資料,並借助政府的開放資料取得建成環境所需之資料;接著整理和總結文獻回顧中所提出之影響因數提出假說,並經由地理資訊系統的空間分析的方法構建建成環境模型並將資料賦予各個公共自行車站點,以多元回歸的方式對不同建成環境下的自行車使用量進行分析,發現對於公共自行車的使用,建成環境變數中,商業區面積、主要道路長度、自行車道路長度、附近地標建築數量、距離學校距離、興趣點個數、1200公尺內公共自行車站個數和停車場個數會帶來大幅度的正向影響,居住密度、附近高中個數、自行車道路長度和距離公交車站距離則是小幅度的正向影響,而附近的長椅的分佈會帶來負向影響作用。另外,在天氣控制變數中的氣溫會對使用量產生正向影響,降雪和風速大小則會帶來負向影響作用。 | zh_TW |
dc.description.abstract | Public bicycles, as urban public green transport, have met the needs of many people for short-distance activities because of their “short-term lease”, health, and convenience characteristics, and also reduced the problem of some environmental pollution and the traffic burden of other transport vehicles in the city. In the previous studies of public bicycles, most of them were focused on basic historical development, site selection plans, and spatial and temporal distribution. The impact factors were concentrated on users, natural conditions, and traffic conditions. There were factors for consideration and selection. The time span of the user profile is not comprehensive enough.
The purpose of this research study is to understand the impact of built environment on the use of public bicycles, using the Citi Public Bicycle in New York City as a research case, and using each rental data from January to December 2017 to analyze, find The impact of each built environmental factor on the impact of usage. First, through a literature review, the impact of the built environment on the use of public bicycles was investigated. Then, spontaneous geo-information was used to obtain the space-time data of citizens using public bicycles to ride and use the government's open data to obtain the information needed for the built environment. Then, after collating and summarizing the impact factors proposed in the literature review, we put forward a theoretical hypothesis and built a built environment model through spatial analysis of geographic information systems and assigned the data to various public bicycle sites in a multiple regression approaches to different built-up environments. The amount of bicycle use was analyzed and its important impact factors were found. Finally, the theoretical hypothesis was verified and the impact of the built environment on the use of public bicycles was explored. | en |
dc.description.provenance | Made available in DSpace on 2021-05-11T05:15:07Z (GMT). No. of bitstreams: 1 ntu-108-R05228022-1.pdf: 4247565 bytes, checksum: 4a6c63b4619e44cdbbe708d848afb8b6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 論文口試委員審定書 I
謝誌 II 中文摘要 III ABSTRACT IV 第一章 緒論 1 第一节 研究動機與背景 1 第二节 研究目的 4 第二章 文獻回顧 5 第一节 自發式地理資訊 5 第二節 建成環境與公共自行車之間的關係 11 第三章 研究方法 23 第一節 研究架構 25 第二節 資料的採集和整理 28 第三節 研究假設 46 第四節 分析方法 49 第五節 研究限制 52 第四章 研究成果及討論 53 第一節 探索性分析 53 第二節 建成環境對公共自行車使用量的影響 56 第三節 控制變數分析 64 第五章 結論與後續建議 72 第一節 結論 72 第二節 後續研究 75 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | 城市公共自行車使用量與建成環境的關係分析 | zh_TW |
dc.title | The Relation between Urban Built Environment and Public Bicycle Usage | en |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇明道(Ming-Daw Su),洪榮宏(Jung-Hong Hong) | |
dc.subject.keyword | 建成環境,自發式地理資訊,公共自行車,多元回歸, | zh_TW |
dc.subject.keyword | built environment,spontaneous geographic information,public bicycle,multiple regression, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201900046 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-01-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 4.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。