請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88792| 標題: | 二維材料改質與異質界面光電子能譜分析 Analysis of Two-dimensional Materials Modification and Hetero-interface Photoelectron Spectroscopy |
| 作者: | 賴舒妤 Shu-Yu Lai |
| 指導教授: | 吳志毅 Chih-I Wu |
| 關鍵字: | 二維材料,二硫化鉬,光電子能譜儀,X射線光電子能譜,紫外光電子能譜, Two-dimensional materials,Molybdenum disulfide,PES,X-ray Photoelectron spectroscopy,Ultraviolet photoelectron spectroscopy, |
| 出版年 : | 2023 |
| 學位: | 碩士 |
| 摘要: | 本研究中,我們對半金屬錫、銻和鉍與二硫化鉬之間的界面特性進行了光電子能譜測量及詳細分析。結果顯示,這三種半金屬並未與二硫化鉬形成化學鍵結,但它們對電荷轉移表現出不同趨勢,錫表現出明顯的N型摻雜效應;銻對二硫化鉬的電子狀態沒有明顯影響;而鉍則表現出微量的P型摻雜效應。此外,我們對半金屬與二硫化鉬的界面進行了高溫熱穩定性測試,結果顯示在300°C高溫下,純二硫化鉬呈現半高寬變寬的趨勢,表明材料結構受到破壞。我們也注意到隨著金屬的氧化程度不同導致P型摻雜效應產生,但高溫加熱並未在半金屬與二硫化鉬界面產生化學鍵結。
除了半金屬研究,我們還探討了二硫化鉬與不同材料的界面反應,進行了ALD生長介電層應用於二硫化鉬上的實驗,結果發現兩種介電層呈現P型摻雜趨勢,但程度不同,使用Al2O3作為介電層時,觀察到約0.15 eV的P型摻雜效應,而使用HfO2作為介電層時,則觀察到約0.3 eV的P型摻雜效應。接著,我們也研究了不同摻雜劑對二硫化鉬的影響,發現BiI3和KCl具有P型摻雜效應,而NaI和KI則具有N型摻雜效應,LiCl和KBr對二硫化鉬沒有明顯的摻雜效應,且這些摻雜劑與二硫化鉬之間也沒有化學鍵結。最後,我們疊加了另一種二維材料二硒化鎢到二硫化鉬上,並觀察到了P型摻雜的趨勢,進一步驗證了二硒化鎢對二硫化鉬導電性質的影響。這些實驗結果提供了對二硫化鉬的界面關係有深入理解,並為進一步的研究和材料設計提供了有價值的參考。 In this study, we investigated the interface characteristics between semimetals (Tin, Antimony, and Bismuth) and MoS2 using photoelectron spectroscopy. Results revealed no chemical bonding between these semimetals and MoS2, but they displayed distinct charge transfer trends. Tin exhibited significant N-type doping effects, antimony showed no noticeable impact, and bismuth exhibited slight P-type doping effects. Additionally, we conducted high-temperature thermal stability tests on the semimetal/MoS2 interface, indicating structural damage to pure MoS2 at 300°C. Different metal oxidation states contributed to the generation of P-type doping effects, but no chemical bonding occurred at the interface under high-temperature heating. Beyond the semimetal studies, we explored the interface reactions of MoS2 with different materials. We performed experiments applying dielectric layers (Al2O3 and HfO2) on MoS2, inducing P-type doping effects. Al2O3 led to ~0.15 eV P-type doping, while HfO2 resulted in ~0.3 eV P-type doping. Furthermore, we studied the impact of various dopants on MoS2, finding that BiI3 and KCl acted as P-type dopants, while NaI and KI acted as N-type dopants. Conversely, LiCl and KBr showed no significant doping effects on MoS2, and no chemical bonds formed between these dopants and MoS2. Lastly, we stacked another 2D material, WSe2, on MoS2 and observed P-type doping effects, further confirming the influence of WSe2 on MoS2. These experimental findings provide in-depth insights into the MoS2 interface relationships and offer valuable references for future research and material design. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88792 |
| DOI: | 10.6342/NTU202302556 |
| 全文授權: | 同意授權(限校園內公開) |
| 顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
