請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88788完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | zh_TW |
| dc.contributor.advisor | Chih-I Wu | en |
| dc.contributor.author | 朱家亨 | zh_TW |
| dc.contributor.author | Jia-Heng Zhu | en |
| dc.date.accessioned | 2023-08-15T17:47:24Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.
[2] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "More-than-Moore white paper," Version, vol. 2, p. 14, 2010. [3] M. Badaroglu, "More Moore," in 2021 IEEE International Roadmap for Devices and Systems Outbriefs, 2021: IEEE, pp. 01-38. [4] M. R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, "Advanced interconnects: materials, processing, and reliability," ECS Journal of Solid State Science and Technology, vol. 4, no. 1, pp. Y1-Y4, 2015. [5] L.Zhao. "All About Interconnects." (accessed. [6] "The International Technology Roadmap for Semiconductor," ITRS, 1999. [7] J. Lienig, "Electromigration and its impact on physical design in future technologies," in Proceedings of the 2013 ACM International symposium on Physical Design, 2013, pp. 33-40. [8] J. R. Black, "Electromigration—A brief survey and some recent results," IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, 1969. [9] P. S. Ho and T. Kwok, "Electromigration in metals," Reports on Progress in Physics, vol. 52, no. 3, p. 301, 1989. [10] M. K. Rahman, A. M. M. Musa, B. Neher, K. A. Patwary, M. A. Rahman, and M. S. Islam, "A review of the study on the electromigration and power electronics," Journal of Electronics Cooling and Thermal Control, vol. 6, no. 01, p. 19, 2016. [11] J. Lienig and M. Thiele, Fundamentals of electromigration-aware integrated circuit design. Springer, 2018. [12] P. Kapur, J. P. McVittie, and K. C. Saraswat, "Technology and reliability constrained future copper interconnects. I. Resistance modeling," IEEE Transactions on Electron Devices, vol. 49, no. 4, pp. 590-597, 2002. [13] R. L. Graham et al., "Resistivity dominated by surface scattering in sub-50 nm Cu wires," Applied Physics Letters, vol. 96, no. 4, p. 042116, 2010. [14] I. Ciofi et al., "Modeling of via resistance for advanced technology nodes," IEEE transactions on Electron Devices, vol. 64, no. 5, pp. 2306-2313, 2017. [15] K. Fuchs, "The conductivity of thin metallic films according to the electron theory of metals," in Mathematical Proceedings of the Cambridge Philosophical Society, 1938, vol. 34, no. 1: Cambridge University Press, pp. 100-108. [16] E. H. Sondheimer, "The mean free path of electrons in metals," Advances in physics, vol. 50, no. 6, pp. 499-537, 2001. [17] A. Mayadas and M. Shatzkes, "Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces," Physical review B, vol. 1, no. 4, p. 1382, 1970. [18] D. Gall, "The search for the most conductive metal for narrow interconnect lines," Journal of Applied Physics, vol. 127, no. 5, p. 050901, 2020. [19] I. Ciofi et al., "RC benefits of advanced metallization options," IEEE Transactions on Electron Devices, vol. 66, no. 5, pp. 2339-2345, 2019. [20] C. Adelmann et al., "Alternative metals for advanced interconnects," in IEEE International Interconnect Technology Conference, 2014: IEEE, pp. 173-176. [21] K. Croes, IEEE IEDM, 2019. [22] F. W. Mont et al., "Cobalt interconnect on same copper barrier process integration at the 7nm node," in 2017 IEEE international interconnect technology conference (IITC), 2017: IEEE, pp. 1-3. [23] M. H. van der Veen et al., "Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies," in 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), 2015: IEEE, pp. 25-28. [24] L. G. Wen et al., "Atomic layer deposition of ruthenium with TiN interface for sub-10 nm advanced interconnects beyond copper," ACS applied materials & interfaces, vol. 8, no. 39, pp. 26119-26125, 2016. [25] V. Vega-Gonzalez et al., "Three-layer BEOL process integration with supervia and self-aligned-block options for the 3 nm node," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019: IEEE, pp. 19.3. 1-19.3. 4. [26] O. V. Pedreira et al., "Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects," in 2017 IEEE International Reliability Physics Symposium (IRPS), 2017: IEEE, pp. 6B-2.1-6B-2.8. [27] S. Kamel, M. El-Sakhawy, B. Anis, and H.-A. S. Tohamy, "Graphene’s Structure, Synthesis, and Characterization; a brief review," Egyptian Journal of Chemistry, vol. 62, no. Special Issue (Part 2) Innovation in Chemistry, pp. 593-608, 2019. [28] F. Koref, "Messungen der spezifischen Wärme bei tiefen Temperaturen mit dem Kupferkalorimeter," Annalen der Physik, vol. 341, no. 11, pp. 49-73, 1911. [29] R. R. Nair et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, no. 5881, pp. 1308-1308, 2008. [30] M. Orlita et al., "Approaching the Dirac point in high-mobility multilayer epitaxial graphene," Phys. Rev. Lett., vol. 101, no. 26, p. 267601, 2008. [31] A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene," Nano Lett., vol. 8, no. 3, pp. 902-907, 2008. [32] G. Shu et al., "Graphene-like conjugated π bond system in Pb1− x Sn x Se," Applied Physics Letters, vol. 106, no. 12, p. 122101, 2015. [33] G. Yang, L. Li, W. B. Lee, and M. C. Ng, "Structure of graphene and its disorders: a review," Science and technology of advanced materials, vol. 19, no. 1, pp. 613-648, 2018. [34] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., vol. 81, no. 1, p. 109, 2009. [35] M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11700-11715, 2015. [36] A. Van Bommel, J. Crombeen, and A. Van Tooren, "LEED and Auger electron observations of the SiC (0001) surface," Surface Science, vol. 48, no. 2, pp. 463-472, 1975. [37] G. R. Yazdi, T. Iakimov, and R. Yakimova, "Epitaxial graphene on SiC: a review of growth and characterization," Crystals, vol. 6, no. 5, p. 53, 2016. [38] M. Loos, Carbon nanotube reinforced composites: CNT Polymer Science and Technology. Elsevier, 2014. [39] K. Subrahmanyam, L. Panchakarla, A. Govindaraj, and C. Rao, "Simple method of preparing graphene flakes by an arc-discharge method," The Journal of Physical Chemistry C, vol. 113, no. 11, pp. 4257-4259, 2009. [40] S. J. Rowley-Neale, E. P. Randviir, A. S. A. Dena, and C. E. Banks, "An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms," Applied Materials Today, vol. 10, pp. 218-226, 2018. [41] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339-1339, 1958. [42] H. J. Shin et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, no. 12, pp. 1987-1992, 2009. [43] H. C. Schniepp et al., "Functionalized single graphene sheets derived from splitting graphite oxide," The journal of physical chemistry B, vol. 110, no. 17, pp. 8535-8539, 2006. [44] Y. Guo et al., "Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors," Adv. Mater., vol. 23, no. 40, pp. 4626-4630, 2011. [45] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, "Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties," Chemistry of Materials, vol. 21, no. 13, pp. 2950-2956, 2009. [46] M. Ani et al., "A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene," Journal of materials science, vol. 53, pp. 7095-7111, 2018. [47] A. Cabrero-Vilatela, R. S. Weatherup, P. Braeuninger-Weimer, S. Caneva, and S. Hofmann, "Towards a general growth model for graphene CVD on transition metal catalysts," Nanoscale, vol. 8, no. 4, pp. 2149-2158, 2016. [48] M. Son et al., "Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects," npj 2D Materials and Applications, vol. 5, no. 1, p. 41, 2021. [49] R. Mehta, S. Chugh, and Z. Chen, "Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires," Nano Lett., vol. 15, no. 3, pp. 2024-2030, 2015. [50] L. Li, Z. Zhu, T. Wang, J. A. Currivan-Incorvia, A. Yoon, and H.-S. P. Wong, "BEOL compatible graphene/Cu with improved electromigration lifetime for future interconnects," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 9.5. 1-9.5. 4. [51] A. Dahal and M. Batzill, "Graphene–nickel interfaces: a review," Nanoscale, vol. 6, no. 5, pp. 2548-2562, 2014. [52] C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, "First-principles study of metal–graphene interfaces," Journal of Applied Physics, vol. 108, no. 12, p. 123711, 2010. [53] C.-M. Sung and M.-F. Tai, "Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure," International Journal of Refractory Metals and Hard Materials, vol. 15, no. 4, pp. 237-256, 1997. [54] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied physics letters, vol. 93, no. 11, p. 113103, 2008. [55] R. Hawaldar et al., "Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition," Scientific reports, vol. 2, no. 1, pp. 1-9, 2012. [56] S. GmbH. "Four Point Probe Measurement Method." (accessed. [57] X. Huang, P. Jiang, and T. Tanaka, "A review of dielectric polymer composites with high thermal conductivity," IEEE Electrical Insulation Magazine, vol. 27, no. 4, pp. 8-16, 2011. [58] T. Iwasaki, H. J. Park, M. Konuma, D. S. Lee, J. H. Smet, and U. Starke, "Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO (111)," Nano Lett., vol. 11, no. 1, pp. 79-84, 2011. [59] K. Kanzaki, H. Hibino, and T. Makimoto, "Graphene layer formation on polycrystalline nickel grown by chemical vapor deposition," Japanese Journal of Applied Physics, vol. 52, no. 3R, p. 035103, 2013. [60] S. Reichardt and L. Wirtz, "Raman spectroscopy of graphene," in Optical Properties of Graphene: World Scientific, 2017, pp. 85-132. [61] J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, and P.-H. Tan, "Raman spectroscopy of graphene-based materials and its applications in related devices," Chem. Soc. Rev., vol. 47, no. 5, pp. 1822-1873, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88788 | - |
| dc.description.abstract | 隨著半導體製程演進,後端製程互連的寬度及間距逐漸微縮,互連的電阻率及互連之間的電容隨尺寸微縮而上升,兩相下交互之下電路產生更嚴重的RC延遲,有可能會讓整體訊號的傳遞逐漸被導線延遲主宰而限制了晶片原始的效能。銅金屬因為具有較高的電子平均自由徑,導致其在小尺度的電子散射更加嚴重,電阻率比某些金屬更高,除此之外銅金屬需要搭配阻擋層的製程才能防止銅原子擴散至介電層,為了解決銅互連遇到的瓶頸以及電致遷移導致的負面影響,本研究以自製的熱燈絲化學氣相沉積在銅互連的替代材料鈷互連表面生長全包覆石墨烯,藉此提升整體線路的效能及可靠度。
本研究的石墨烯製程溫度為380 ℃,溫度低於後端製程的熱預算400 ℃,並且是直接在鈷互連表面生長材料無須經過轉移的步驟,是一項與後段製程相融的石墨烯製程技術,由拉曼頻譜可以初步證實鈷薄膜除了表面之外在底部也有石墨烯的生成,另外由鈷導線的小線寬拉曼頻譜可以證實此方法可以應用在微米尺度以下的互連製程。由導線截面的TEM圖和EDS素像圖可以直接觀察到,鈷金屬的上方、底部及側面皆有石墨烯的層狀結構以及碳元素的訊號點,證實我們製作出全包覆石墨烯的互連結構。 全包覆石墨烯鈷互連的電阻率比退火鈷互連下降約26.6%,石墨烯包覆可以提供鈷互連額外的電子通道,這樣可以達到並聯的效果,另外石墨烯可以改善互連表面的電子散射,所以可以降低互連的有效電阻率;全包覆石墨烯鈷互連的崩潰電流密度比退火鈷互連提升10.3%,石墨烯包覆除了可以降低導線電阻率,其優良的導熱特性可以抑制焦耳加熱引起的導線升溫,提高導線的耐受能力;本研究以30 MA/cm2 的電流密度,在200°C環境溫度量測互連的失效時間,全包覆石墨烯鈷互連的失效時間中位數為退火鈷互連的35.8倍。總結來說,鈷-石墨烯異質結構有更低的電阻值、更高的崩潰電流密度及更長的導線平均失效時間。 | zh_TW |
| dc.description.abstract | With the evolution of the semiconductor process, the width of interconnects and spacing between interconnects are gradually shrinking. The resistivity of the interconnect and the capacitance between the interconnects increase with the shrinkage of the interconnect size and the electronic circuits suffer from serious RC delay. It is possible that the overall signal transmission will be dominated by circuit delays and limit the original performance of the chip. Copper has higher electron mean free path, which leads to more serious electron scattering and higher resistivity in small scales. In addition, copper needs to be processed with a barrier layer to prevent copper atoms diffusing into dielectric layer. In order to solve the bottleneck of copper interconnect and suppress electromigration, this study used hot wire chemical vapor deposition (HWCVD) to fabricate graphene-all-around in cobalt interconnect improving the performance and reliability of the overall circuit.
The graphene fabrication method is a back-end-of-line (BEOL) compatible process. The deposition temperature of the graphene process is 380 °C, which is lower than the thermal budget of the BEOL of 400 °C. Graphene was directly grown on the surface of the cobalt interconnect without transfer. Raman spectrum can preliminarily confirm that the cobalt thin film also has graphene on the bottom. In addition, the Raman spectrum of cobalt wire can confirm that this method can be applied below micron scale. It can be directly observed from the TEM images and EDS mapping of the cross-section of the cobalt wire that there are graphene layers on the top, bottom, and side of the wire, which proves that we have produced a graphene-all-around interconnect. The resistivity of graphene-all-around in cobalt interconnect is 26.6% lower than that of annealed cobalt interconnect. Graphene acts as additional electron pathway in cobalt interconnect and has the effect of parallel connection. Graphene can also suppress electron surface scattering in cobalt wire and the effective resistivity of the interconnect can be reduced. The breakdown current density of graphene-all-around in cobalt interconnect is 10.3% higher than that of the annealed cobalt interconnect. The characteristics of graphene can suppress the temperature increase in cobalt produced by Joule heating and improve the reliability of the interconnect. The time-to-failure of the interconnect was measured at 200 ℃ under a continuous DC stress of 30 MA/cm2. The graphene-all-around in cobalt interconnect has the median-time-to-failure(MTTF) of 35.8 times that of annealed cobalt interconnect. In summary, the cobalt-graphene heterostructure has lower resistivity, higher breakdown current density and longer median time to failure of interconnects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:47:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:47:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii ABSTRACT iv 目錄 vi 表目錄 ix 圖目錄 x 第1章 緒論 1 1.1 半導體發展趨勢 1 1.1.1 摩爾定律(Moore's law) 1 1.1.2 製程演進 1 1.1.3 後端製程的重要性 2 1.2 金屬互連(Interconnect) 3 1.2.1 金屬互連結構 3 1.2.2 金屬互連瓶頸 4 1.2.3 電致遷移效應 5 1.2.4 其他遷移效應 7 1.2.5 電致遷移定量 7 1.2.6 銅互連的挑戰 8 1.2.7 銅互連的替代方案 9 1.3 石墨烯簡介 12 1.3.1 石墨烯研究發展 12 1.3.2 石墨烯的基本結構 13 1.3.3 石墨烯的能帶結構 16 1.3.4 石墨烯的製備方法 17 1.3.5 石墨烯於積體電路互連的應用 22 1.4 研究動機 25 第2章 實驗原理、儀器與方法 29 2.1製程儀器介紹 29 2.1.1 光罩對準機(曝光機 Mask Aligner) 29 2.1.2 步進式曝光機 (Stepper) 29 2.1.3 反應離子蝕刻(Reactive-Ion Etching, RIE) 29 2.1.4 熱燈絲化學氣相沉積(HWCVD) 30 2.1.5 電子槍蒸鍍系統(E-gun Evaporation) 31 2.1.6 電漿輔助式化學氣相沉積 32 2.2 量測儀器介紹 32 2.2.1 X光繞射儀(X-ray Diffraction, XRD) 32 2.2.2 拉曼光譜儀(Raman spectrometer) 33 2.2.3 原子力顯微鏡(Atomic Force Microscope, AFM) 34 2.2.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 35 2.2.5 穿透式電子顯微鏡(Transmission Electron Microscope) 36 2.2.6 能量散射X射線光譜儀(energy-dispersive spectrometer) 37 2.2.7 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 37 2.2.8 電性量測設備(Keysight B2912A , KEITHLEY 2420) 37 2.3 實驗原理與方法 38 2.3.1 石墨烯生長機制 38 2.3.2 四點量測 39 2.4 實驗步驟 40 2.4.1 鈷金屬互連的製備 41 2.4.2 石墨烯的生長 42 2.4.3 封裝層的製備 43 2.4.4 量測方法 45 第3章 結果與討論 47 3.1 鈷金屬互連製程分析 47 3.1.1 蝕刻方式分析 47 3.1.2 鈷金屬結晶性分析 49 3.2 石墨烯製程與品質分析 50 3.2.1 鈷金屬薄膜生長石墨烯 52 3.2.2 全包覆石墨烯鈷金屬互連 57 3.3 全包覆石墨烯鈷金屬互連可靠度 60 3.3.1 互連電阻率 60 3.3.2 互連崩潰電流密度 61 3.3.3 電致遷移量測 65 第4章 結論 68 4.1 總結 68 4.2 未來展望 70 參考資料 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電致遷移 | zh_TW |
| dc.subject | 崩潰電流密度 | zh_TW |
| dc.subject | 鈷互連 | zh_TW |
| dc.subject | 熱燈絲化學氣相沉積 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 後端製程 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | back-end-of-line | en |
| dc.subject | breakdown current density | en |
| dc.subject | cobalt interconnect | en |
| dc.subject | hot wire chemical vapor deposition | en |
| dc.subject | electromigration | en |
| dc.title | 低熱預算石墨烯全包覆鈷內導線 | zh_TW |
| dc.title | BEOL Compatible Graphene all around in Cobalt Interconnect | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳肇欣;陳美杏;張子璿;廖洺漢 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Hsin Wu;Mei-Hsin Chen;Tzu-Hsuan Chang;Ming Han Liao | en |
| dc.subject.keyword | 熱燈絲化學氣相沉積,石墨烯,鈷互連,後端製程,崩潰電流密度,電致遷移, | zh_TW |
| dc.subject.keyword | hot wire chemical vapor deposition,graphene,cobalt interconnect,back-end-of-line,breakdown current density,electromigration, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202302821 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
