請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88785
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭憶中 | zh_TW |
dc.contributor.advisor | I-Chung Cheng | en |
dc.contributor.author | 蔡文瀚 | zh_TW |
dc.contributor.author | Wen-Han Tsai | en |
dc.date.accessioned | 2023-08-15T17:46:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-02 | - |
dc.identifier.citation | [1] Carbon dioxide reduction, Jawaharlal Nehru Centre for Advanced Scientific Research. https://www.jncasr.ac.in/faculty/sebastiancp/research-area/carbon-dioxide-reduction.
[2] R.A. Tufa, D. Chanda, M. Ma, D. Aili, T.B. Demissie, J. Vaes, Q. Li, S. Liu, D. Pant, Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts, Applied Energy, 277 (2020) 115557. https://doi.org/10.1016/j.apenergy.2020.115557. [3] W. Paik, T. Andersen, H. Eyring, Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode, Electrochimica Acta, 14 (1969) 1217. https://doi.org/10.1016/0013-4686(69)87019-2. [4] A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, Electrochemical CO2 reduction: classifying Cu facets, Acs Catalysis, 9 (2019) 7894. https://doi.org/10.1021/acscatal.9b01899. [5] C. Liu, J. Gong, Z. Gao, L. Xiao, G. Wang, J. Lu, L. Zhuang, Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction, Science China Chemistry, (2021) 1. https://doi.org/10.1007/s11426-021-1120-3. [6] D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu Zn catalysts, Acs Catalysis, 6 (2016) 8239. https://doi.org/10.1021/acscatal.6b02162. [7] Y. Peng, T. Wu, L. Sun, J.M. Nsanzimana, A.C. Fisher, X. Wang, Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution, ACS Applied Materials & Interfaces, 9 (2017) 32782. https://doi.org/10.1021/acsami.7b10421. [8] C. Zhu, G. Shen, W. Chen, X. Dong, G. Li, Y. Song, W. Wei, Y. Sun, Copper hollow fiber electrode for efficient CO2 electroreduction, Journal of Power Sources, 495 (2021) 229814. https://doi.org/10.1016/j.jpowsour.2021.229814. [9] A.P. Ferreira, R.C. Oliveira, M.M. Mateus, D.M. Santos, A Review of the use of electrolytic cells for energy and environmental applications, Energies, 16 (2023) 1593. https://doi.org/10.3390/en16041593. [10] K. Liu, W.A. Smith, T. Burdyny, Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction, ACS Energy Letters, 4 (2019) 639. https://doi.org/10.1021/acsenergylett.9b00137. [11] D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C.P. Berlinguette, Electrolytic CO2 reduction in a flow cell, Accounts of Chemical Research, 51 (2018) 910. https://doi.org/10.1021/acs.accounts.8b00010. [12] L.-C. Weng, A.T. Bell, A.Z. Weber, Modeling gas-diffusion electrodes for CO2 reduction, Physical Chemistry Chemical Physics, 20 (2018) 16973. http://doi.10.1039/C8CP01319E. [13] Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S.A. Kulinich, X. Du, Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene, Langmuir, 34 (2018) 13544. https://doi.org/10.1021/acs.langmuir.8b02837. [14] Y. Song, J.R.C. Junqueira, N. Sikdar, D. Öhl, S. Dieckhöfer, T. Quast, S. Seisel, J. Masa, C. Andronescu, W. Schuhmann, B-Cu-Zn gas diffusion electrodes for CO2 electroreduction to C2+ products at high current densities, Angewandte Chemie International Edition, 60 (2021) 9135. https://doi.org/10.1002/anie.202016898. [15] X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, J. He, Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products, Applied Catalysis B: Environmental, 269 (2020) 118800. https://doi.org/10.1016/j.apcatb.2020.118800. [16] Q. Yang, X. Liu, W. Peng, Y. Zhao, Z. Liu, M. Peng, Y.-R. Lu, T.-S. Chan, X. Xu, Y. Tan, Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of CO2 to ethanol, Journal of Materials Chemistry A, 9 (2021) 3044. http://doi.10.1039/D0TA09522B. [17] Y.-R. Su, T.-H. Wu, I.-C. Cheng, Synthesis and catalytical properties of hierarchical nanoporous copper from θ and η phases in CuAl alloys, Journal of Physics and Chemistry of Solids, 151 (2021) 109915. https://doi.org/10.1016/j.jpcs.2020.109915. [18] W.-B. Wan, T.-Y. Dai, H. Shi, S.-P. Zeng, Z. Wen, W. Zhang, X.-Y. Lang, Q. Jiang, Intermetallic Cu11In9 in situ formed on hierarchical nanoporous Cu for highly selective CO2 electroreduction, Journal of Materials Chemistry A, 10 (2022) 4333. http://doi.10.1039/D1TA10163C. [19] P.-O. Delzant, P. Chapelle, A. Jardy, J. Jourdan, Y. Millet, Investigation of arc dynamics during vacuum arc remelting of a Ti64 alloy using a photodiode based instrumentation, Journal of Materials Processing Technology, 266 (2019) 10. https://doi.org/10.1016/j.jmatprotec.2018.10.031. [20] Y. Tang, B. Tang, J. Qing, Q. Li, L. Lu, Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer, Applied Surface Science, 258 (2012) 8747. https://doi.org/10.1016/j.apsusc.2012.05.085. [21] C.M. Eastman, Q. Zhang, J.-C. Zhao, Diffusion coefficients and phase equilibria of the Cu-Zn binary system studied using diffusion couples, Journal of Phase Equilibria and Diffusion, 41 (2020) 642. https://doi.org/10.1007/s11669-020-00831-3. [22] A. Tiwari, Handbook of antimicrobial coatings, Elsevier, 2017. [23] Y.-Z. Lee, W.-Y. Zeng, I.-C. Cheng, Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying, Thin Solid Films, 699 (2020) 137913. https://doi.org/10.1016/j.tsf.2020.137913. [24] Y. An, Y. Tian, C. Wei, Y. Tao, B. Xi, S. Xiong, J. Feng, Y. Qian, Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage, Nano Today, 37 (2021) 101094. https://doi.org/10.1016/j.nantod.2021.101094. [25] P. Flowers, K. Theopold, R. Langley, W.R. Robinson, Chemistry (OpenStax), in, OpenStax, 2015. [26] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, 410 (2001) 450. https://doi.org/10.1038/35068529. [27] S. Kim, B. Aksak, M. Sitti, Enhanced friction of elastomer microfiber adhesives with spatulate tips, Applied Physics Letters, 91 (2007) 221913. https://doi.org/10.1063/1.2820755. [28] Y. Zhang, X. Sun, N. Nomura, T. Fujita, Hierarchical nanoporous copper architectures via 3D printing technique for highly efficient catalysts, Small, 15 (2019) 1805432. https://doi.org/10.1002/smll.201805432. [29] V. Celante, M. Freitas, Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques, Journal of Applied Electrochemistry, 40 (2010) 233. https://doi.org/10.1007/s10800-009-9996-x. [30] M. Fousova, V. Valesova, D. Vojtech, Corrosion of 3D-Printed AlSi9Cu3Fe Alloy, Manufacturing Technology, 19 (2019) 29. http://doi.10.21062/ujep/240.2019/a/1213-2489/MT/19/1/29. [31] L. Sun, C.-L. Chien, P.C. Searson, Fabrication of nanoporous nickel by electrochemical dealloying, Chemistry of Materials, 16 (2004) 3125. https://doi.org/10.1021/cm0497881. [32] J. Han, C. Li, Z. Lu, H. Wang, Z. Wang, K. Watanabe, M. Chen, Vapor phase dealloying: A versatile approach for fabricating 3D porous materials, Acta Materialia, 163 (2019) 161. https://doi.org/10.1016/j.actamat.2018.10.012. [33] Z. Lu, C. Li, J. Han, F. Zhang, P. Liu, H. Wang, Z. Wang, C. Cheng, L. Chen, A. Hirata, Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying, Nature communications, 9 (2018) 276. https://doi.org/10.1038/s41467-017-02167-y. [34] A.M. Hodge, J.R. Hayes, J.A. Caro, J. Biener, A.V. Hamza, Characterization and mechanical behavior of nanoporous gold, Advanced Engineering Materials, 8 (2006) 853. https://doi.org/10.1002/adem.200600079. [35] T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Ultralight metallic microlattices, Science, 334 (2011) 962. http://doi.10.1126/science.1211649. [36] T. Juarez, A. Schroer, R. Schwaiger, A.M. Hodge, Evaluating sputter deposited metal coatings on 3D printed polymer micro-truss structures, Materials & Design, 140 (2018) 442. https://doi.org/10.1016/j.matdes.2017.12.005. [37] Y. Fu, G. Xu, Z. Chen, D. Wang, C. Lao, Multiple metals doped polymer-derived SiOC ceramics for 3D printing, Ceramics International, 44 (2018) 11030. https://doi.org/10.1016/j.ceramint.2018.03.075. [38] M. Kaur, T.G. Yun, S.M. Han, E.L. Thomas, W.S. Kim, 3D printed stretching-dominated micro-trusses, Materials & Design, 134 (2017) 272. https://doi.org/10.1016/j.matdes.2017.08.061. [39] C. Ling, A. Cernicchi, M.D. Gilchrist, P. Cardiff, Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading, Materials & Design, 162 (2019) 106. https://doi.org/10.1016/j.matdes.2018.11.035. [40] R. Liontas, J.R. Greer, 3D nano-architected metallic glass: Size effect suppresses catastrophic failure, Acta Materialia, 133 (2017) 393. https://doi.org/10.1016/j.actamat.2017.05.019. [41] A.G. Evans, M. He, V.S. Deshpande, J.W. Hutchinson, A.J. Jacobsen, W.B. Carter, Concepts for enhanced energy absorption using hollow micro-lattices, International Journal of Impact Engineering, 37 (2010) 947. https://doi.org/10.1016/j.ijimpeng.2010.03.007. [42] D. Artymowicz, J. Erlebacher, R. Newman, Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold, Philosophical Magazine, 89 (2009) 1663. https://doi.org/10.1080/14786430903025708. [43] Y. Sun, K.P. Kucera, S.A. Burger, T.J. Balk, Microstructure, stability and thermomechanical behavior of crack-free thin films of nanoporous gold, Scripta Materialia, 58 (2008) 1018. https://doi.org/10.1016/j.scriptamat.2008.01.036. [44] C.A. Volkert, A.M. Minor, Focused ion beam microscopy and micromachining, MRS bulletin, 32 (2007) 389. https://doi.org/10.1557/mrs2007.62. [45] H.J. Jin, J. Weissmüller, D. Farkas, Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts, Mrs Bulletin, 43 (2018) 35. https://doi.org/10.1557/mrs.2017.302. [46] N. Huber, R. Viswanath, N. Mameka, J.r. Markmann, J. Weißmüller, Scaling laws of nanoporous metals under uniaxial compression, Acta Materialia, 67 (2014) 252. https://doi.org/10.1016/j.actamat.2013.12.003. [47] A. Hodge, J. Biener, J. Hayes, P. Bythrow, C. Volkert, A. Hamza, Scaling equation for yield strength of nanoporous open-cell foams, Acta Materialia, 55 (2007) 1343-1349. https://doi.org/10.1016/j.actamat.2006.09.038. [48] V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss lattice material, Journal of the Mechanics and Physics of Solids, 49 (2001) 1747. https://doi.org/10.1016/S0022-5096(01)00010-2. [49] G.V. Samsonov, The oxide handbook, Springer Science & Business Media, 2013. [50] S. Russell, S. Rafalski, R. Spreitzer, J. Li, M. Moinpour, F. Moghadam, T. Alford, Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions, Thin Solid Films, 262 (1995) 154. https://doi.org/10.1016/0040-6090(94)05812-1. [51] C. Zhu, Z. Qi, V.A. Beck, M. Luneau, J. Lattimer, W. Chen, M.A. Worsley, J. Ye, E.B. Duoss, C.M. Spadaccini, Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing, Science advances, 4 (2018) eaas9459. http://doi.10.1126/sciadv.aas9459. [52] B. Lu, D. Cao, P. Wang, G. Wang, Y. Gao, Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes, International Journal of Hydrogen Energy, 36 (2011) 72. https://doi.org/10.1016/j.ijhydene.2010.09.056. [53] Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts, Acs Catalysis, 4 (2014) 3742. https://doi.org/10.1021/cs5012298. [54] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two‐component incompressible fluid, The Journal of Chemical Physics, 31 (1959) 688. https://doi.org/10.1063/1.1730447. [55] J. Erlebacher, Mechanism of coarsening and bubble formation in high-genus nanoporous metals, Physical Review Letters, 106 (2011) 225504. https://doi.org/10.1103/PhysRevLett.106.225504. [56] Y.-c.K. Chen-Wiegart, S. Wang, Y.S. Chu, W. Liu, I. McNulty, P.W. Voorhees, D.C. Dunand, Structural evolution of nanoporous gold during thermal coarsening, Acta Materialia, 60 (2012) 4972. https://doi.org/10.1016/j.actamat.2012.05.012. [57] G. Jauncey, The scattering of x-rays and Bragg's law, Proceedings of the National Academy of Sciences, 10 (1924) 57. https://doi.org/10.1073/pnas.10.2.57. [58] H. Hong, Q. Wang, C. Dong, P.K. Liaw, Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys, Scientific Reports, 4 (2014) 7065. https://doi.org/10.1038/srep07065. [59] S. Van Petegem, S. Brandstetter, R. Maass, A.M. Hodge, B.S. El-Dasher, J. Biener, B. Schmitt, C. Borca, H. Van Swygenhoven, On the microstructure of nanoporous gold: An X-ray diffraction study, Nano Letters, 9 (2009) 1158. https://doi.org/10.1021/nl803799q. [60] Z. Qi, Z. Zhang, H. Jia, Y. Qu, G. Liu, X. Bian, Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying, Journal of Alloys and Compounds, 472 (2009) 71. https://doi.org/10.1016/j.jallcom.2008.04.017. [61] R. Balluffi, B. Alexander, Development of porosity during diffusion in substitutional solid solutions, Journal of Applied Physics, 23 (1952) 1237. https://doi.org/10.1063/1.1702040. [62] Q. Chen, K. Sieradzki, Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems, Nature Materials, 12 (2013) 1102. https://doi.org/10.1038/nmat3741. [63] L. Qian, M. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation, Applied Physics Letters, 91 (2007). https://doi.org/10.1063/1.2773757. [64] F. Liu, F. Sommer, E. Mittemeijer, An analytical model for isothermal and isochronal transformation kinetics, Journal of Materials Science, 39 (2004) 1621. https://doi.org/10.1023/B:JMSC.0000016161.79365.69. [65] A. Kempen, F. Sommer, E. Mittemeijer, Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth, Journal of Materials Science, 37 (2002) 1321. https://doi.org/10.1023/A:1014556109351. [66] Y. Liu, D. Wang, F. Sommer, E.J. Mittemeijer, Isothermal austenite–ferrite transformation of Fe–0.04 at.% C alloy: Dilatometric measurement and kinetic analysis, Acta Materialia, 56 (2008) 3833. https://doi.org/10.1016/j.actamat.2008.04.015. [67] F. Liu, F. Sommer, C. Bos, E. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes, International Materials Reviews, 52 (2007) 193. https://doi.org/10.1179/174328007X160308. [68] T. Ozawa, Kinetic analysis of derivative curves in thermal analysis, Journal of Thermal Analysis, 2 (1970) 301. https://doi.org/10.1007/BF01911411. [69] J. Burke, Some factors affecting the rate of grain growth in metals, Aime Trans, 180 (1949) 73. [70] J.G. Santanach, A. Weibel, C. Estournès, Q. Yang, C. Laurent, A. Peigney, Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth, Acta Materialia, 59 (2011) 1400. https://doi.org/10.1016/j.actamat.2010.11.002. [71] H.-J. Ernst, F.o. Fabre, J. Lapujoulade, Nucleation and diffusion of Cu adatoms on Cu (100): A helium-atom-beam scattering study, Physical Review B, 46 (1992) 1929. https://doi.org/10.1103/PhysRevB.46.1929. [72] M. Karimi, T. Tomkowski, G. Vidali, O. Biham, Diffusion of Cu on Cu surfaces, Physical Review B, 52 (1995) 5364. https://doi.org/10.1103/PhysRevB.52.5364. [73] J. Zhao, L. Sun, S. Canepa, H. Sun, M.N. Yesibolati, M. Sherburne, R. Xu, T. Sritharan, J.S. Loo, J.W. Ager III, Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction, Journal of Materials Chemistry A, 5 (2017) 11905. http://doi.10.1039/C7TA01871A. [74] R. Dobrovetsky, D.W. Stephan, Catalytic reduction of CO2 to CO by using zinc(ii) and in situ generated carbodiphosphoranes, Angewandte Chemie International Edition, 52 (2013) 2516. https://doi.org/10.1002/anie.201208817. [75] Y. Zhang, Y. Zhao, C. Wang, Z. Wei, J. Yang, J. Ma, Zn-Doped Cu(100) facet with efficient catalytic ability for the CO2 electroreduction to ethylene, Physical Chemistry Chemical Physics, 21 (2019) 21341. http://doi.10.1039/C9CP03692J. [76] G.G. Chan, C.M. Koch, L.H. Connors, Blood proteomic profiling in inherited (ATTRm) and acquired (ATTRwt) forms of transthyretin-associated cardiac amyloidosis, Journal of Proteome Research, 16 (2017) 1659. https://doi.org/10.1021/acs.jproteome.6b00998. [77] H. Hu, Y. Tang, Q. Hu, P. Wan, L. Dai, X.J. Yang, In-situ grown nanoporous Zn-Cu catalysts on brass foils for enhanced electrochemical reduction of carbon dioxide, Applied Surface Science, 445 (2018) 281. https://doi.org/10.1016/j.apsusc.2018.03.146. [78] G. Yin, H. Abe, R. Kodiyath, S. Ueda, N. Srinivasan, A. Yamaguchi, M. Miyauchi, Selective electro-or photo-reduction of carbon dioxide to formic acid using a Cu-Zn alloy catalyst, Journal of Materials Chemistry A, 5 (2017) 12113. https://doi.org/10.1039/C7TA00353F. [79] E. Andrews, M. Ren, F. Wang, Z. Zhang, P. Sprunger, R. Kurtz, J. Flake, Electrochemical reduction of CO2 at Cu nanocluster/(100) ZnO electrodes, Journal of the Electrochemical Society, 160 (2013) H841. https://doi.org/10.1149/2.105311jes. [80] L. Wang, H. Peng, S. Lamaison, Z. Qi, D.M. Koshy, M.B. Stevens, D. Wakerley, J.A.Z. Zeledón, L.A. King, L. Zhou, Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO, Chem Catalysis, 1 (2021) 663. https://doi.org/10.1016/j.checat.2021.05.006. [81] J.L. Murray, The aluminium-copper system, International Metals Reviews, 30 (1985) 211. https://doi.org/10.1179/imtr.1985.30.1.211. [82] W. Yang, W. Ma, Z. Zhang, C. Zhao, Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO2 reduction, Faraday Discussions, 210 (2018) 289. https://doi.org/10.1039/C8FD00056E. [83] J.-J. Lv, M. Jouny, W. Luc, W. Zhu, J.-J. Zhu, F. Jiao, A highly porous copper electrocatalyst for carbon dioxide reduction, Adv. Mater., 30 (2018) 1803111. https://doi.org/10.1002/adma.201803111. [84] S. Ma, Y. Lan, G.M. Perez, S. Moniri, P.J. Kenis, Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction, ChemSusChem, 7 (2014) 866. https://doi.org/10.1002/cssc.201300934. [85] C.E. Tornow, M.R. Thorson, S. Ma, A.A. Gewirth, P.J. Kenis, Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO, Journal of the American Chemical Society, 134 (2012) 19520. https://doi.org/10.1021/ja308217w. [86] S. Das, S. Ghosh, T. Kuila, N.C. Murmu, A. Kundu, Biomass-derived advanced carbon-based electrocatalysts for oxygen reduction reaction, Biomass, 2 (2022) 155. https://doi.org/10.3390/biomass2030010. [87] G. Hyun, J.T. Song, C. Ahn, Y. Ham, D. Cho, J. Oh, S. Jeon, Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction, Proceedings of the National Academy of Sciences, 117 (2020) 5680. https://doi.org/10.1073/pnas.1918837117. [88] T.-T. Zhuang, Y. Pang, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li, C.T. Dinh, P. De Luna, P.-L. Hsieh, Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide, Nature Catalysis, 1 (2018) 946. https://doi.org/10.1038/s41929-018-0168-4. [89] W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper, Nature Catalysis, 3 (2020) 478. https://doi.org/10.1038/s41929-020-0450-0. [90] S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P.J. Kenis, One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer, Journal of Power Sources, 301 (2016) 219. https://doi.org/10.1016/j.jpowsour.2015.09.124. [91] P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev, P. Todorović, T. Regier, S.O. Kelley, P. Yang, E.H. Sargent, Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction, Nataure Catalysis, 1 (2018) 103. https://doi.org/10.1038/s41929-017-0018-9. [92] Y.C. Tan, K.B. Lee, H. Song, J. Oh, Modulating local CO2 concentration as a general strategy for enhancing C−C coupling in CO2 electroreduction, Joule, 4 (2020) 1104. https://doi.org/10.1016/j.joule.2020.03.013. [93] M. Jouny, W. Luc, F. Jiao, High-rate electroreduction of carbon monoxide to multi-carbon products, Nature Catalysis, 1 (2018) 748. https://doi.org/10.1038/s41929-018-0133-2. [94] T.T. Hoang, S. Ma, J.I. Gold, P.J. Kenis, A.A. Gewirth, Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis, ACS Catalysis, 7 (2017) 3313. https://doi.org/10.1021/acscatal.6b03613. [95] X. Chen, J. Chen, N.M. Alghoraibi, D.A. Henckel, R. Zhang, U.O. Nwabara, K.E. Madsen, P.J. Kenis, S.C. Zimmerman, A.A. Gewirth, Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes, Nature Catalysis, 4 (2021) 20. https://doi.org/10.1038/s41929-020-00547-0. [96] F. Li, A. Thevenon, R.-H. Alonso, Z. Wang, Y. Li, C.M. Gabardo, A. Ozden, C.T. Dinh, J. Li, Y. Wang, Molecular tuning of CO2-to-ethylene conversion, Nature, 577 (2020) 509. https://doi.org/10.1038/s41586-019-1782-2. [97] M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.-T. Dinh, P. De Luna, Z. Yu, A.S. Rasouli, P. Brodersen, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature, 581 (2020) 178. https://doi.org/10.1038/s41586-020-2242-8. [98] M. Tim, T.N. Thanh, X. Wang, W. Ju, Z. Jovanov, P. Strasser, The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2, Energy & Environmental Science, 14 (2021) 5995. https://doi.org/10.1039/D1EE01696B. [99] Y. Wang, H. Shen, K.J. Livi, D. Raciti, H. Zong, J. Gregg, M. Onadeko, Y. Wan, A. Watson, C. Wang, Copper nanocubes for CO2 reduction in gas diffusion electrodes, Nano Letter, 19 (2019) 8461. https://doi.org/10.1021/acs.nanolett.9b02748. [100] F. Rocha, R. Delmelle, C. Georgiadis, J. Proost, Electrochemical performance enhancement of 3D printed electrodes tailored for enhanced gas evacuation during alkaline water electrolysis, Advanced Energy Materials, 13 (2023) 2203087. https://doi.org/10.1002/aenm.202203087. [101] B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Designing MOF nanoarchitectures for electrochemical water splitting, Advanced Materials, 33 (2021) 2006042. https://doi.org/10.1002/adma.202006042. [102] C. Kim, F. Dionigi, V. Beermann, X. Wang, T. Möller, P. Strasser, Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR), Advanced Materials, 31 (2019) 1805617. https://doi.org/10.1002/adma.201805617. [103] D. Zhao, H. Liu, X. Wu, Bi-interface induced multi-active MCo2O4@ MCo2S4@ PPy (M= Ni, Zn) sandwich structure for energy storage and electrocatalysis, Nano Energy, 57 (2019) 363. https://doi.org/10.1016/j.nanoen.2018.12.066. [104] A. Verdaguer-Casadevall, C.W. Li, T.P. Johansson, S.B. Scott, J.T. McKeown, M. Kumar, I.E. Stephens, M.W. Kanan, I. Chorkendorff, Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts, Journal of the American Chemical Society, 137 (2015) 9808. https://doi.org/10.1021/jacs.5b06227. [105] T. Mأ٦ller, T.N. Thanh, X. Wang, W. Ju, Z. Jovanov, P. Strasser, The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2, Energy & Environmental Science, 14 (2021) 5995. https://doi.org/10.1039/D1EE01696B. [106] P.-P. Yang, X.-L. Zhang, F.-Y. Gao, Y.-R. Zheng, Z.-Z. Niu, X. Yu, R. Liu, Z.-Z. Wu, S. Qin, L.-P. Chi, Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels, Journal of the American Chemical Society, 142 (2020) 6400. https://doi.org/10.1021/jacs.0c01699. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88785 | - |
dc.description.abstract | 多層次奈微米多孔銅(Hierarchically micro-nanoporous copper, HM-NPC)因具備高反應表面積與良好的質傳擴散性,使其具有極大的潛力應用於電化學二氧化碳還原(electrochemical CO2 reduction reaction, eCO2RR)。其中,以去合金法(dealloying method)製備HM-NPC不僅製程快速,同時也使材料具備豐富缺陷(defect)以利於eCO2RR。
本研究結合三種不同合金製程方式搭配對應三種不同去合金法製備HM-NPC材料,並探討不同製程對於eCO2RR與電化學表現之影響。第一部分研究方式為透過3D列印之模板法設計出支架尺寸120 μm之週期性八角桁架晶格結構(periodical octet-truss lattice),再利用磁控共濺鍍 Cu-Al 合金薄膜(~1 μm) 與隨後之去合金法合成支架尺寸為16至28 nm之奈米多孔銅薄膜。此結構與製程不僅能增強其機械性質表現,同時也增加其電化學反應表現。此製程製備之八角桁架晶格披覆奈米多孔銅(octet-truss lattice with nanoporous copper, L-NPC)之降伏強度3倍高於Gibson-Ashby公式預測低密度銅。同時,L-NPC之電雙層電容值為純銅批覆之八隅體結構的10倍大。除了奈米支架效應外,L-NPC的微米列印支架還提供了高捲曲的表面,使NPC薄膜附著在桁架上,這可能是造成不同力學和電化學行為的原因。 在了解HM-NPC之結構能增強電化學表面積與機械性質後,第二部分研究進一步利用銅管高捲曲表面特性,以熱浸鍍鋅法(hot-dip galvanization)擴散鋅使銅管產生多層成分之銅鋅合金層,再利用氣相去合金法(vapor phase dealloying, VPD)合成多層次多孔銅(hierarchical porous copper, HPC)。在調整VPD時間0.5 ~ 30分鐘後、溫度區間為723 ~ 973 K,可以合成支架尺寸為0.61 ~ 1.97µm且殘餘鋅含量為29 ~ 2 at%的HPC。其粗化指數(coarsening exponent)為4.099,代表支架的形成和粗化是由表面擴散引起的。同時,在此氣相合金體系中,0.29 eV的活化能(activation energy)進一步證實了銅支架的粗化是由銅原子的表面擴散所主導。在電化學反應中,HPC的雙層電容量是電拋光銅管的34倍。此外,HPC的eCO2RR的電流密度是電拋光銅管的2倍。通過銅–鋅的相互作用,eCO2RR的產物由甲酸(HCOOH)轉化為一氧化碳(CO)和乙醇(C2H5OH)。 為了進一步發揮多層次結構之效益,第三部分研究將反應系統更換為flow cell此外,材料選用共晶相Cu18Al82與單相Cu33Al67前驅物系統,經過-0.7 VAg/AgCl定電位化學脫合金(electrochemical dealloying),分別開發了多層次奈米多孔銅(hierarchically nanoporous copper, Hi-NPC)和均質奈米多孔銅(homogeneously nanoporous copper, Ho-NPC)。在相似的過電位下,Hi-NPC在eCO2RR中的 C2+電流密度為 510 mA/cm2,顯著高於 Ho-NPC的72 mA/cm2 C2+電流密度。在標準化電化學活性表面積的產物部分電流後,Hi-NPC和Ho-NPC的CO 電流密度呈現出相似的電化學行為趨勢。然而,兩者在C2H4和C2H5OH 的電流密度趨勢卻有顯著差異。這可能是由於多層次結構的擴散性促進了C-C偶合進而合成出C2產物。在Tafel斜率顯示三個電極具有相同的eCO2RR動力學,但eCO2RR 實驗的線性掃描伏安法顯示Hi-NPC中電流變化的斜率具有最大的梯度。這一結果說明 Hi-NPC的擴散率提供了最好的質傳效應,這使得Hi-NPC的電流上升最快。此外,利用不同O2/N2流速的氧還原反應進一步證實了在電化學系統中,多層次奈米多孔結構可以增強擴散率。 | zh_TW |
dc.description.abstract | Hierarchically micro-nanoporous copper (HM-NPC) has excellent potential applied to the electrochemical CO2 reduction reaction (eCO2RR) because of its high reaction surface area and good mass transfer and diffusivity. Among all synthesized procedures, the preparation of HM-NPC by dealloying method is not only facile but also makes the material have abundant defects for the benefit of eCO2RR.
In this study combined three different alloying processes with three different dealloying methods to prepare HM-NPC electrodes and investigated the effects of different processes on eCO2RR and electrochemical properties. In the first part, a periodical octet-truss lattice with a 120 μm truss size was designed using 3D printing. Subsequently, the nanoporous copper films with ligament sizes ranging from 16 nm to 28 nm were synthesized by chemically dealloyed Cu-Al (~1 μm) films coated by the magnetron co-sputtering method. This structure and process can enhance the mechanical properties and increase the electrochemical performance. The yielding strength of octet-truss lattice with nanoporous copper (L-NPC) is three times higher than that of low relative density copper predicted by the Gibson-Ashby equation. At the same time, the electrochemical double layer capacitance (Cdl) of L-NPC is ten times larger than that of a lattice coated with pure copper film. In addition to the nano-scale ligament effect, L-NPC's micro-printed truss provides a high curvature that allows NPC films to adhere to the truss, which may enhance the mechanical and electrochemical properties. After understanding HM-NPC can enhance the Cdl and mechanical properties. In the second part of the study, we further utilized the hot-dip galvanization method to diffuse Zn on the high curvature Cu tube to synthesize a multi-layer Cu-Zn alloy tube and subsequently synthesized the hierarchically porous copper (HPC) by vapor phase dealloying (VPD) method. After turning the VPD time for 0.5 to 30 min and the temperature ranging from 723-973 K, HPC with a ligament size of 0.61 to 1.97 µm and residual Zn content of 29 to 2 at% could be synthesized. The coarsening exponent is 4.099, indicating that the formation and coarsening of the ligament are caused by surface diffusion. In addition, the activation energy of 0.29 eV in this vapor system further confirmed that the coarsening of the copper ligament is dominated by the Cu atoms diffused on the Cu surface. In the electrochemical behavior, the Cdl of HPC is 34 times that of an electropolished Cu tube. In addition, the current density of HPC's eCO2RR is twice that of electropolished Cu tubes. Through Cu-Zn interaction, the products of eCO2RR are converted from formic acid (HCOOH) to carbon monoxide (CO) and ethanol (C2H5OH). In order to further perform the benefit of hierarchically micro-nanoporous structure, the third part of the study alters the system to a flow cell configuration. The eutectic-phase Cu18Al82 and single-phase Cu33Al67 were selected as precursors. After -0.7 VAg/AgCl electrochemically dealloying, the hierarchically nanoporous copper (Hi-NPC) and homogeneously nanoporous copper (Ho-NPC) were synthesized, respectively. With a similar overpotential, the C2+ partial current density of Hi-NPC in eCO2RR was 510 mA/cm2, significantly higher than that of Ho-NPC, which was 72 mA/cm2. After normalizing the partial current of productions by electrochemical active surface area, the CO current density of Hi-NPC and Ho-NPC showed similar electrochemical behavior trends. However, there are significant differences in current density trends between C2H4 and C2H5OH. It might be explained that the diffusivity of the hierarchical structure promotes the C-C coupling to synthesize C2 products. The Tafel slope showed that three electrodes had the same CO2RR kinetics, but the linear sweep voltammetry of the eCO2RR experiment showed that the slope of the current variation of Hi-NPC has the most significant slope. This result showed that the diffusivity of Hi-NPC provides the best mass transfer effect, which makes the current density of Hi-NPC rise the fastest. In addition, oxygen reduction reactions using different O2/N2 flow rates further demonstrated that hierarchical nanoporous structures can enhance diffusivity in electrochemical systems. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:46:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:46:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 摘要 ii Abstract iv 第1章、緒論 1 1.1研究背景 2 1.2 研究動機 11 第2章、文獻回顧 13 2.1 奈微米多孔銅之前驅合金製程 13 2.1.1 真空電弧熔煉法 (Vacuum Arc Remelting, VAR) 13 2.1.2 熱浸鍍法 (Hot-dip galvanization) 14 2.1.3 直流共濺鍍法 (DC Co-sputtering) 18 2.2 奈米多孔結構之去合金製程 19 2.2.1 化學去合金法 (Chemical dealloying) 20 2.2.2 電化學去合金法 (Electrochemical dealloying) 25 2.2.3 氣相去合金法 (Vapor phase dealloying, VPD) 27 第3章、實驗步驟 31 3.1實驗流程 31 3.2 3D列印之八隅體晶格結構與披覆之奈米多孔銅薄膜 32 3.2.1 3D八隅體晶格結構之製備 32 3.2.2材料特徵分析 34 3.2.3機械性質分析 37 3.2.4 電化學分析 38 3.3 多層次奈微米多孔銅管 39 3.3.1 多層次奈微米多孔銅管製備 39 3.3.2 多層次奈微米多孔銅管之特徵分析 41 3.3.3 多層次奈微米多孔銅管之電化學分析 41 3.4 多層次奈米多孔銅 44 3.4.1 多層次奈米多孔銅電極製備 44 3.4.2 多層次奈米多孔銅特徵分析 47 3.4.3 多層次奈米多孔銅之電化學分析與eCO2RR應用 48 3.4.4 多層次奈米多孔銅之氧氣還原分析 49 第4章、結果與討論 50 4.1 週期性微米級八隅體晶格結構披覆奈米多孔銅薄膜 50 4.1.1奈米多孔銅薄膜之合成 50 4.1.2 機械性質 59 4.1.3 降伏強度之實務與理論預測模型比較 62 4.1.4 催化性質分析 65 4.1.5 小結 69 4.2 透過氣相去合金法製備多層次多孔銅 70 4.2.1 前驅銅–鋅合金層與多層次多孔銅管 70 4.2.2 VPD之時間效應 74 4.2.3 VPD之溫度效應與支架粗化之動力學分析 85 4.2.4 電化學應用分析:電催化二氧化碳還原 93 4.2.5小結 98 4.3 透過電化學去合金法製備多層次奈米多孔銅 99 4.3.1 多層次奈米多孔銅與均質奈米多孔銅之合成與特徵分析 99 4.3.2 多層次奈米多孔銅應用於eCO2RR之結構效應 106 4.3.3 多層次奈米多孔結構之eCO2RR催化效應 116 第5章、總結 123 第6章、附錄 125 第7章、參考文獻 142 | - |
dc.language.iso | zh_TW | - |
dc.title | 以化學與氣相去合金法製備多層次奈微米多孔銅 應用於電催化二氧化碳還原與機械性質分析 | zh_TW |
dc.title | Electrochemical Carbon Dioxide Reduction and Mechanical Behavior Analysis of Hierarchically Micro-Nanoporous Copper Synthesized by Chemical and Vapor Phase Dealloying Methods | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 陳志軒;李岳聯;洪維松;周子勤 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Hsuan Chen;Yueh-Lien Lee;Wei-Song Hung;Tsu-Chin Chou | en |
dc.subject.keyword | 多層次奈微米多孔銅,化學去合金,氣相去合金,電化學二氧化碳還原,壓應力測試,二氧化碳還原動力學,氣體擴散電極,擴散力, | zh_TW |
dc.subject.keyword | Hierarchical micro-nanoporous copper,Chemical dealloying,Vapor phase dealloying,Electrochemical CO¬2 reduction reaction,Compressive testing,CO2 reduction reaction kinetics,Gas diffusion electrode,Diffusivity, | en |
dc.relation.page | 151 | - |
dc.identifier.doi | 10.6342/NTU202302488 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 15.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。