請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬開東 | zh_TW |
| dc.contributor.advisor | Kai-Tung Ma | en |
| dc.contributor.author | 張宏駿 | zh_TW |
| dc.contributor.author | Hung-Chun Chang | en |
| dc.date.accessioned | 2023-08-15T17:43:27Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 1. Kao, S.-M. and N.S. Pearre, Administrative arrangement for offshore wind power developments in Taiwan: Challenges and prospects. Energy Policy, 2017. 109: p. 463-472.
2. offshore, c. Global Offshore Wind Speeds Rankings. 04-08-23]; Available from: https://www.4coffshore.com/windfarms/windspeeds.aspx. 3. Global, G.G.W.E.C., Wind Report 2018. 2019, Global Wind Energy Council. 4. Katsouris, G. and A. Marina, Cost modelling of floating wind farms. 2016: ECN Petten, The Netherlands. 5. Medeiros, C. Low cost anchor system for flexible risers in deep waters. in Offshore technology conference. 2002. OnePetro. 6. Company, T.P., 離岸風力發電第二期計畫可行性研究. 2018. 7. Liu, J., et al., Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 2008. 256(1-4): p. 65-76. 8. Tanaka, S., Y. Okada, and Y. Ichikawa, Offshore drilling and production equipment. Civil Engineering, Encyclopedia of Life Support Systems (EOLSS). Oxford: Eolss Publishers. Recuperado de offshorecenter,2005., 2005. 9. Sørensen, A.J., A survey of dynamic positioning control systems. Annual reviews in control, 2011. 35(1): p. 123-136. 10. Ma, K.-t., et al. A historical review on integrity issues of permanent mooring systems. in Offshore technology conference. 2013. OnePetro. 11. Ma, K.-T., et al., Mooring system engineering for offshore structures. 2019: Gulf Professional Publishing. 12. Roddier, D., et al., WindFloat: A floating foundation for offshore wind turbines. Journal of renewable and sustainable energy, 2010. 2(3): p. 033104. 13. Vryhof, VRYHOF MANUAL–The Guide to Anchoring. 2015. 14. Holland, C. ANCHOR PILE INSTALLATION. 04-12-23]; Available from: https://capeholland.com/applications/anchor-pile-installation/. 15. Monfort, D.T., Design optimization of the mooring system for a floating offshore wind turbine foundation. Instituto Superior Técnico, 2017. 16. Senpere, D. and G.A. Auvergne. Suction anchor piles-a proven alternative to driving or drilling. in Offshore Technology Conference. 1982. OnePetro. 17. Neubecker, S. and M. Randolph, The performance of drag anchor and chain systems in cohesive soil. Marine georesources & geotechnology, 1996. 14(2): p. 77-96. 18. Han, C. and J. Liu, A review on the entire installation process of dynamically installed anchors. Ocean Engineering, 2020. 202: p. 107173. 19. Tong, Y., C. Han, and J. Liu, An innovative lightweight gravity installed plate anchor and its keying properties in clay. Applied Ocean Research, 2020. 94: p. 101974. 20. de Medeiros Jr, C.J., L.H. Hassui, and R.D. Machado, Pile for anchoring floating structures and process for installing the same. 2000, Google Patents. 21. Anchortec. Anchortec Torpedo Piles. 04-08-23]; Available from: https://anchortecsolutions.com/torpedo-piles/. 22. Fernandes, A.C., et al. Hydrodynamic aspects of the Torpedo anchor installation. in International Conference on Offshore Mechanics and Arctic Engineering. 2005. 23. Lieng, J.T., F. Hove, and T.I. Tjelta. Deep penetrating anchor: Subseabed deepwater anchor concept for floaters and other installations. in The Ninth International Offshore and Polar Engineering Conference. 1999. OnePetro. 24. O'Loughlin, C., M. Randolph, and M. Richardson. Experimental and theoretical studies of deep penetrating anchors. in Offshore technology conference. 2004. OnePetro. 25. Shelton, J.T. OMNI-Maxtrade anchor development and technology. in OCEANS 2007. 2007. IEEE. 26. Kim, Y. and M. Hossain, Dynamic installation, keying and diving of OMNI-Max anchors in clay. Géotechnique, 2017. 67(1): p. 78-85. 27. Brandão, F., et al. Albacora Leste field development-FPSO P-50 mooring system concept and installation. in Offshore technology conference. 2006. OnePetro. 28. Fernandes, A.C., et al., Torpedo anchor installation hydrodynamics. 2006. 29. Soh, B., W. Pao, and X. Chen, Numerical analyses for improved terminal velocity of deep water torpedo anchor. International Journal of Numerical Methods for Heat & Fluid Flow, 2017. 27(2): p. 428-443. 30. (ABS), A.B.o.S., Guidance note on design of dynamically installed anchor in clay. 2015. 31. Triantafyllou, M.S. and F.S. Hover, Maneuvering and control of marine vehicles. 2003: Massachusetts of Institute of Technologyq. 32. de Carvalho e Silva, D.F. CFD hydrodynamic analysis of a torpedo anchor directional stability. in International Conference on Offshore Mechanics and Arctic Engineering. 2010. 33. Hasanloo, D., H. Pang, and G. Yu, On the estimation of the falling velocity and drag coefficient of torpedo anchor during acceleration. Ocean Engineering, 2012. 42: p. 135-146. 34. Raaj, S.K., N. Saha, and R. Sundaravadivelu, Freefall hydrodynamics of torpedo anchors through experimental and numerical analysis. Ocean Engineering, 2022. 243: p. 110213. 35. Zhang, N. and T.M. Evans, Discrete numerical simulations of torpedo anchor installation in granular soils. Computers and Geotechnics, 2019. 108: p. 40-52. 36. Kim, Y., et al., Numerical investigation of dynamic installation of torpedo anchors in clay. Ocean Engineering, 2015. 108: p. 820-832. 37. Li, G., et al., Dynamic Penetration Process of Torpedo Anchors into Sand Foundation. Journal of Marine Science and Engineering, 2022. 10(8): p. 1097. 38. O’Loughlin, C.D., M.D. Richardson, and M.F. Randolph. Centrifuge tests on dynamically installed anchors. in International conference on offshore mechanics and arctic engineering. 2009. 39. Hossain, M., C. O'LOUGHLIN, and Y. Kim, Dynamic installation and monotonic pullout of a torpedo anchor in calcareous silt. Géotechnique, 2015. 65(2): p. 77-90. 40. Richardson, M., et al., Setup following installation of dynamic anchors in normally consolidated clay. Journal of Geotechnical and Geoenvironmental Engineering, 2009. 135(4): p. 487-496. 41. True, D.G., Undrained vertical penetration into ocean bottom soils. 1976: University of California, Berkeley. 42. O'LOUGHLIN, C., et al., Penetration of dynamically installed anchors in clay. Géotechnique, 2013. 63(11): p. 909-919. 43. Richardson, M., C. O’Loughlin, and M. Randolph. The geotechnical performance of deep penetrating anchors in calcareous sand. in Proceedings of the International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Perth. 2005. 44. API., API 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design. 2000: American Petroleum Institute. 45. O’Beirne, C., C. O’Loughlin, and C. Gaudin, A release-to-rest model for dynamically installed anchors. Journal of Geotechnical and Geoenvironmental Engineering, 2017. 143(9): p. 04017052. 46. Liu, J., et al., Experimental investigation on hydrodynamic characteristics of gravity installed anchors with a booster. Ocean Engineering, 2018. 158: p. 38-53. 47. Blake, A. and C. O’Loughlin, Installation of dynamically embedded plate anchors as assessed through field tests. Canadian Geotechnical Journal, 2015. 52(9): p. 1270-1282. 48. Launder, B.E. and D.B. Spalding, The numerical computation of turbulent flows, in Numerical prediction of flow, heat transfer, turbulence and combustion. 1983, Elsevier. p. 96-116. 49. Schlichting, H. and K. Gersten, Boundary-layer theory. 2016: springer. 50. Schlichting, H. and J. Kestin, Boundary layer theory. Vol. 121. 1961: Springer. 51. de Araujo, J.B., R.r.D. Machado, and C.J. de Medeiros Junior. High holding power torpedo pile: results for the first long term application. in International conference on offshore mechanics and Arctic engineering. 2004. 52. Institute, A.P., Recommended Practice for Design and Analysis of Stationkeeping Systems for Floating Structures: Exploration and Production Department. API Recommended Practice 2SK (RP 2SK): Effective Date: March 1, 1997. 1996: American Petroleum Institute. 53. Øye, I., Simulation of trajectories for a deep penetrating anchor. CFD Norway Report, 2000. 250: p. 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88772 | - |
| dc.description.abstract | 近年來,風電開發商將重心轉向深海域發展離岸風電,為考量其成本及發電效率,考慮採用浮動式風機。浮動式風機主要以繫泊系統中之錨碇固定於海上,相關可行之錨碇技術眾多,其中重力式安裝錨中魚雷錨最為常見,除了經濟及安裝快速,還有易導入本土化產業鏈的優勢。如今魚雷錨的應用案例皆於超過100公尺水深及海床為黏土之環境條件下安裝,而在臺灣海峽70公尺水深及海床為粉土質砂土之環境條件下是否達到其安裝仍需進行討論。
本研究先行透過計算流體力學軟體STAR-CCM+,基於有限體積法之數值模擬,針對大型魚雷錨進行水動力分析,除此之外將錨鍊及傾斜情形納入考量,探討魚雷錨在自由落體時的距離與速度之變化。在海床貫入行為的分析中,藉由模型錨試驗以輔助文獻整合之結果,推估出經驗公式,試驗將模型錨的直徑及長度固定,以四種不同幾何形狀(圓錐、子彈、拋物線、橢圓)之頭部分別進行投放試驗,比較模型錨於砂層中的貫入行為。 結果得到在長徑比於15-17範圍中,魚雷錨的其餘設計參數差異對其在50公尺落距中,能達到的速度並不會有過大差異,其中,錨鍊及傾斜行為造成相當程度之影響,不可忽略;而模型錨之室內貫入試驗顯示,當頭部形狀為30度圓錐時具有相當優良的貫入行為。綜合以上分析結果,魚雷錨具有價格經濟、安裝迅速等優勢,在臺灣海峽以砂或粉土質砂為主的環境條件下,魚雷錨能夠達到足夠的動能完全貫入海床,故初步評估魚雷錨能夠應用於臺灣海峽,但對於鰭片在貫入深度的影響,以及其在砂質或粉土質砂海床中的錨碇力估計方法,應進一步投入研究建立。 | zh_TW |
| dc.description.abstract | In recent years, offshore wind power developers have been exploring the use of floating offshore wind turbines (FOWT). These turbines are anchored to the seabed using various technologies. One common type of gravity installed anchor is the torpedo anchor, which is cost-effective, easy to install, and can be integrated into the local industry. However, previous applications of torpedo anchors have been limited to water depths of over 100 meters with the seabed is silty sand. It is necessary to study whether these anchors can be used in the Taiwan Strait where the water depth is 70 meters and the seabed consists of sandy soil. This study conducted hydrodynamic analysis using computational fluid mechanics software to investigate large torpedo anchors. The analytical method is based on the calculation of the finite volume method. The velocity and distance of the anchor during free fall were also considered. Empirical formulas were derived from actual tests and existing literature. The results showed that the design parameters of a typical torpedo anchor did not significantly affect the achieved velocity, but did affect the behavior of the anchor chain and tilting. The model anchor tests revealed excellent penetration behavior when the head shape was conical at a 30-degree angle. Torpedo anchors offer advantages in terms of cost-effectiveness and quick installation. Furthermore, considering the environmental conditions in the Taiwan Strait, torpedo anchors can attain sufficient kinetic energy to fully penetrate the seabed. Therefore, torpedo anchors can be applied to the Taiwan Strait. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:43:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:43:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、緒論 1 1-1研究背景與動機 1 1-2研究目的 4 1-3論文架構 6 第二章、文獻回顧 8 2-1發展歷史 8 2-2繫泊系統簡介 8 2-3錨碇簡介 10 2-4 重力式安裝錨之種類 15 2-5 魚雷錨之研究與探討 17 2-5-1水動力分析 18 2-5-2海床貫入分析 19 2-5-3錨碇能力分析 20 第三章、研究方法 22 3-1方法架構 22 3-2水動力之理論計算 22 3-2-1阻力係數 23 3-2-2穩定性 25 3-3 水動力之數值計算 28 3-3-1邊界條件 30 3-3-2網格配置 32 3-4 室內模型錨實驗規劃 41 第四章、研究結果與分析 46 4-1模型錨試驗結果 46 4-2設計與安裝考量因子 52 4-2-1阻力分析 53 4-2-2穩定性分析 63 4-3製造考量因子 71 4-3貫入深度評估 74 第五章、結論與建議 78 5-1 結論 78 5-2 建議 79 參考文獻 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水動力分析 | zh_TW |
| dc.subject | 浮動式風機 | zh_TW |
| dc.subject | 重力式安裝錨 | zh_TW |
| dc.subject | 魚雷錨 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 有限體積法 | zh_TW |
| dc.subject | Computational Fluid Dynamics | en |
| dc.subject | FOWT | en |
| dc.subject | Hydrodynamic analysis | en |
| dc.subject | Finite volume method | en |
| dc.subject | Gravity installed anchor | en |
| dc.subject | Torpedo anchor | en |
| dc.title | 重力式安裝錨於臺灣海峽之可行性評估 | zh_TW |
| dc.title | Feasibility Assessment of Gravity-Installed Anchors application in Taiwan Strait | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳哲芳;林俊宏;趙修武 | zh_TW |
| dc.contributor.oralexamcommittee | Jer-Fang Wu;Chun-Hung Lin;Shiu-Wu Chau | en |
| dc.subject.keyword | 浮動式風機,重力式安裝錨,魚雷錨,計算流體力學,有限體積法,水動力分析, | zh_TW |
| dc.subject.keyword | FOWT,Gravity installed anchor,Torpedo anchor,Computational Fluid Dynamics,Finite volume method,Hydrodynamic analysis, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202303190 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
