請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪傳揚 | zh_TW |
| dc.contributor.advisor | Chwan-Yang Hong | en |
| dc.contributor.author | 陳映璇 | zh_TW |
| dc.contributor.author | Ying-Hsuan Chen | en |
| dc.date.accessioned | 2023-08-15T17:40:04Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 李建融.(2021).轉錄組分析之整合性生物資訊研究.國立中興大學醫學生物科技博士學位學程博士論文,1-104.
陳桂芳,楊佳怡,高運華,任歌.(2022).染色質免疫共沉澱測序技術研究進展.生物技術通報,40-50. 黃士誠.(2021).水稻轉錄因子OsERF106交互作用蛋白的分離及鑑定.台灣大學農藝學研究所學位論文,1-67. 簡梓丞.(2018).水稻轉錄因子OsERF106負向調控水稻鹽逆境耐受性.台灣大學農藝學研究所學位論文,1-78. Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., & Suzuki, M. (1998). A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 17(18), 5484-5496. Amoutzias, G. D., Robertson, D. L., Van de Peer, Y., & Oliver, S. G. (2008). Choose your partners: dimerization in eukaryotic transcription factors. Trends in Biochemical Sciences, 33(5), 220-229. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55, 373-399. Bailey, T., Krajewski, P., Ladunga, I., Lefebvre, C., Li, Q., Liu, T., Madrigal, P., Taslim, C., & Zhang, J. (2013). Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Computational Biology, 9(11), e1003326. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Chen, H.-C., Chien, T.-C., Chen, T.-Y., Chiang, M.-H., Lai, M.-H., & Chang, M.-C. (2021). Overexpression of a novel ERF-X-type transcription factor, OsERF106MZ, reduces shoot growth and tolerance to salinity stress in rice. Rice, 14, 1-18. Chen, M., Wang, Q.-Y., Cheng, X.-G., Xu, Z.-S., Li, L.-C., Ye, X.-G., Xia, L.-Q., & Ma, Y.-Z. (2007). GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 353(2), 299-305. Chen, Y., Dan, Z., Gao, F., Chen, P., Fan, F., & Li, S. (2020). Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and indole-3-acetic acid metabolism. Plant Physiology, 184(1), 393-406. Chen, Y., Fan, X., Song, W., Zhang, Y., & Xu, G. (2012). Over‐expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 10(2), 139-149. Chen, Z., Pottosin, I. I., Cuin, T. A., Fuglsang, A. T., Tester, M., Jha, D., Zepeda-Jazo, I., Zhou, M., Palmgren, M. G., & Newman, I. A. (2007). Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology, 145(4), 1714-1725. Cheng, M.-C., Liao, P.-M., Kuo, W.-W., & Lin, T.-P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 162(3), 1566-1582. Chung, Y. S., Kim, K.-S., Hamayun, M., & Kim, Y. (2020). Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10, 1725. Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature, 407(6802), 321-326. Debbarma, J., Sarki, Y. N., Saikia, B., Boruah, H. P. D., Singha, D. L., & Chikkaputtaiah, C. (2019). Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Molecular Biotechnology, 61(2), 153-172. Du, H., Liu, H., & Xiong, L. (2013). Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science, 4, 397. Dubois, M., Skirycz, A., Claeys, H., Maleux, K., Dhondt, S., De Bodt, S., Vanden Bossche, R., De Milde, L., Yoshizumi, T., & Matsui, M. (2013). ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiology, 162(1), 319-332. Esmon, C. A., Tinsley, A. G., Ljung, K., Sandberg, G., Hearne, L. B., & Liscum, E. (2006). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences, 103(1), 236-241. Feng, J.-X., Liu, D., Pan, Y., Gong, W., Ma, L.-G., Luo, J.-C., Deng, X. W., & Zhu, Y.-X. (2005). An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Molecular Biology, 59, 853-868. Ferreira, L. J., Ravasco, S., Figueiredo, D. D., Peterhänsel, C., Saibo, N. J., Santos, A. P., & Oliveira, M. M. (2017). Deciphering histone modifications in rice by chromatin immunoprecipitation (ChIP): Applications to study the impact of stress imposition. In Advances in International Rice Research. IntechOpen. Fischer, U., & Dröge-Laser, W. (2004). Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant-Microbe Interactions, 17(10), 1162-1171. Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., & Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111(6), 2367-2372. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436-442. Fukao, T., & Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences, 105(43), 16814-16819. Gall, H. L., Philippe, F., Domon, J.-M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4(1), 112-166. Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 28(11), 1091-1101. Gendrel, A.-V., Lippman, Z., Martienssen, R., & Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods, 2(3), 213-218. Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5), 453-460. Guo, J., Li, W., Shang, L., Wang, Y., Yan, P., Bai, Y., Da, X., Wang, K., Guo, Q., & Jiang, R. (2021). OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytologist, 230(5), 1953-1966. Guo, W., Zhao, J., Li, X., Qin, L., Yan, X., & Liao, H. (2011). A soybean β‐expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. The Plant Journal, 66(3), 541-552. Hager, A., Menzel, H., & Krauss, A. (1971). Versuche und hypothese zur primärwirkung des auxins beim streckungswachstum. Planta, 47-75. Hardtke, C. S., & Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. The EMBO Journal, 17(5), 1405-1411. Hattori, Y., Nagai, K., Furukawa, S., Song, X.-J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., & Kitano, H. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460(7258), 1026-1030. Hmidi, D., Abdelly, C., Athar, H.-u.-R., Ashraf, M., & Messedi, D. (2018). Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiology and Molecular Biology of Plants, 24, 1017-1033. Hou, M., Luo, F., Wu, D., Zhang, X., Lou, M., Shen, D., Yan, M., Mao, C., Fan, X., & Xu, G. (2021). OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist, 229(2), 935-949. Hu, Z., Lu, S.-J., Wang, M.-J., He, H., Sun, L., Wang, H., Liu, X.-H., Jiang, L., Sun, J.-L., & Xin, X. (2018). A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Molecular Plant, 11(5), 736-749. Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800. Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, 80. Jadamba, C., Kang, K., Paek, N.-C., Lee, S. I., & Yoo, S.-C. (2020). Overexpression of rice expansin7 (Osexpa7) confers enhanced tolerance to salt stress in rice. International Journal of Molecular Sciences, 21(2), 454. Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin‐responsive genes during reproductive development and abiotic stress in rice. The FEBS Journal, 276(11), 3148-3162. Jiang, M., Liu, Y., Li, R., Li, S., Tan, Y., Huang, J., & Shu, Q. (2020). An inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase 1 mutant with a 33-nt deletion showed enhanced tolerance to salt and drought stress in rice. Plants, 10(1), 23. Jin, T., Sun, Y., Zhao, R., Shan, Z., Gai, J., & Li, Y. (2019). Overexpression of peroxidase gene GsPRX9 confers salt tolerance in soybean. International Journal of Molecular Sciences, 20(15), 3745. Kazan, K. (2006). Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends in Plant Science, 11(3), 109-112. Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K., & Kyozuka, J. (2003). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 130(16), 3841-3850. Kärkönen, A., & Kuchitsu, K. (2015). Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry, 112, 22-32. Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A., & Perata, P. (2007). Transcript profiling of the anoxic rice coleoptile. Plant Physiology, 144(1), 218-231. Lasserre, E., Jobet, E., Llauro, C., & Delseny, M. (2008). AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization. Plant Physiology and Biochemistry, 46(12), 1051-1061. Lee, D.-K., Yoon, S., Kim, Y. S., & Kim, J.-K. (2017). Rice OsERF71-mediated root modification affects shoot drought tolerance. Plant Signaling & Behavior, 12(1), e1268311. Li, X., Chang, Y., Ma, S., Shen, J., Hu, H., & Xiong, L. (2019). Genome-wide identification of SNAC1-targeted genes involved in drought response in rice. Frontiers in Plant Science, 10, 982. Li, Y., Han, S., & Qi, Y. (2023). Advances in structure and function of auxin response factor in plants. Journal of Integrative Plant Biology, 65(3), 617-632. Lichtenthaler, H. K. (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148(1-2), 4-14. Liu, D., Chen, X., Liu, J., Ye, J., & Guo, Z. (2012). The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 63(10), 3899-3911. Liu, X., Yang, C., Miao, R., Zhou, C., Cao, P., Lan, J., Zhu, X., Mou, C., Huang, Y., & Liu, S. (2018). DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 11, 1-12. Llorente, F., López‐Cobollo, R. M., Catalá, R., Martínez‐Zapater, J. M., & Salinas, J. (2002). A novel cold‐inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. The Plant Journal, 32(1), 13-24. Locke, A. M., Barding Jr, G. A., Sathnur, S., Larive, C. K., & Bailey‐Serres, J. (2018). Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post‐submergence recovery. Plant, Cell & Environment, 41(4), 721-736. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., & Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 15(1), 165-178. Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459-481. Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J. I., Damsz, B., Narasimhan, M. L., Hasegawa, P. M., Joly, R. J., & Bressan, R. A. (2002). Does proline accumulation play an active role in stress‐induced growth reduction? The Plant Journal, 31(6), 699-712. Majda, M., & Robert, S. (2018). The role of auxin in cell wall expansion. International Journal of Molecular Sciences, 19(4), 951. Mito, T., Seki, M., Shinozaki, K., Ohme‐Takagi, M., & Matsui, K. (2011). Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnology Journal, 9(7), 736-746. Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11-19. Mundade, R., Ozer, H. G., Wei, H., Prabhu, L., & Lu, T. (2014). Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle, 13(18), 2847-2852. Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140(2), 411-432. Nakato, R., & Sakata, T. (2021). Methods for ChIP-seq analysis: a practical workflow and advanced applications. Methods, 187, 44-53. Nick, P. (2000). Control of plant height. Plant Microtubules: Potential for Biotechnology, 1-23. Papdi, C., Pérez‐Salamó, I., Joseph, M. P., Giuntoli, B., Bögre, L., Koncz, C., & Szabados, L. (2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP 2.12, RAP 2.2 and RAP 2.3. The Plant Journal, 82(5), 772-784. Park, H. J., Kim, W.-Y., & Yun, D.-J. (2016). A new insight of salt stress signaling in plant. Molecules and Cells, 39(6), 447. Passardi, F., Tognolli, M., De Meyer, M., Penel, C., & Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 223, 965-974. Passioura, J. B., & Munns, R. (2000). Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Functional Plant Biology, 27(10), 941-948. Perini, M. A., Sin, I. N., Villarreal, N. M., Marina, M., Powell, A., Martinez, G. A., & Civello, P. M. (2017). Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility. Plant Physiology and Biochemistry, 113, 122-132. Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), a001446. Petrásek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertová, D., Wisniewska, J., Tadele, Z., Kubes, M., & Covanová, M. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312(5775), 914-918. Qiao, J., Jiang, H., Lin, Y., Shang, L., Wang, M., Li, D., Fu, X., Geisler, M., Qi, Y., & Gao, Z. (2021). A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Molecular Plant, 14(10), 1683-1698. Qin, J., Li, M. J., Wang, P., Zhang, M. Q., & Wang, J. (2011). ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Research, 39(suppl_2), W430-W436. Rashid, M., Guangyuan, H., Guangxiao, Y., Hussain, J., & Xu, Y. (2012). AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evolutionary Bioinformatics, 8, EBO. S9369. Razzaq, A., Ali, A., Safdar, L. B., Zafar, M. M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1), 14-20. Reed, J. W., Wu, M.-F., Reeves, P. H., Hodgens, C., Yadav, V., Hayes, S., & Pierik, R. (2018). Three auxin response factors promote hypocotyl elongation. Plant Physiology, 178(2), 864-875. Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z., & Zhang, Z. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 12(4), 468-479. Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. Sakamoto, T., Morinaka, Y., Inukai, Y., Kitano, H., & Fujioka, S. (2013). Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. The Plant Journal, 73(4), 676-688. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290(3), 998-1009. Scarpeci, T. E., Frea, V. S., Zanor, M. I., & Valle, E. M. (2017). Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. Journal of Experimental Botany, 68(3), 673-685. Serra, T. S., Figueiredo, D. D., Cordeiro, A. M., Almeida, D. M., Lourenço, T., Abreu, I. A., Sebastián, A., Fernandes, L., Contreras-Moreira, B., & Oliveira, M. M. (2013). OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Molecular Biology, 82, 439-455. Shafi, A., Pal, A. K., Sharma, V., Kalia, S., Kumar, S., Ahuja, P. S., & Singh, A. K. (2017). Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Molecular Biology Reporter, 35, 504-518. Shen, C., Wang, S., Bai, Y., Wu, Y., Zhang, S., Chen, M., Guilfoyle, T. J., Wu, P., & Qi, Y. (2010). Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.). Journal of Experimental Botany, 61(14), 3971-3981. Shen, C., Yue, R., Sun, T., Zhang, L., Yang, Y., & Wang, H. (2015). OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). Plant Science, 231, 148-158. Shin, H., Liu, T., Duan, X., Zhang, Y., & Liu, X. S. (2013). Computational methodology for ChIP-seq analysis. Quantitative Biology, 1, 54-70. Sieberer, T., & Leyser, O. (2006). Auxin transport, but in which direction? Science, 312(5775), 858-860. Sims, K., Abedi-Samakush, F., Szulc, N., Macias Honti, M. G., & Mattsson, J. (2021). OsARF11 promotes growth, meristem, seed, and vein formation during rice plant development. International Journal of Molecular Sciences, 22(8), 4089. Song, L., Huang, S.-s. C., Wise, A., Castanon, R., Nery, J. R., Chen, H., Watanabe, M., Thomas, J., Bar-Joseph, Z., & Ecker, J. R. (2016). A transcription factor hierarchy defines an environmental stress response network. Science, 354(6312), aag1550. Song, L., Koga, Y., & Ecker, J. R. (2016). Profiling of transcription factor binding events by chromatin immunoprecipitation sequencing (ChIP‐seq). Current Protocols in Plant Biology, 1(2), 293-306. Ulmasov, T., Hagen, G., & Guilfoyle, T. J. (1999). Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences, 96(10), 5844-5849. Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 1-10. Wan, L., Zhang, J., Zhang, H., Zhang, Z., Quan, R., Zhou, S., & Huang, R. (2011). Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One, 6(9), e25216. Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B., & Tao, Y. (2007). Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 394(1-2), 13-24. Wang, J., Wang, R., Mao, X., Li, L., Chang, X., Zhang, X., & Jing, R. (2019). TaARF4 genes are linked to root growth and plant height in wheat. Annals of Botany, 124(6), 903-915. Wang, S., Zhang, S., Sun, C., Xu, Y., Chen, Y., Yu, C., Qian, Q., Jiang, D. A., & Qi, Y. (2014). Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytologist, 201(1), 91-103. Wang, Y., Xia, D., Li, W., Cao, X., Ma, F., Wang, Q., Zhan, X., & Hu, T. (2022). Overexpression of a tomato AP2/ERF transcription factor SlERF. B1 increases sensitivity to salt and drought stresses. Scientia Horticulturae, 304, 111332. Wu, Y., Li, X., Zhang, J., Zhao, H., Tan, S., Xu, W., Pan, J., Yang, F., & Pi, E. (2022). ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Frontiers in Plant Science, 13, 1042084. Xie, Z., Nolan, T. M., Jiang, H., & Yin, Y. (2019). AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science, 10, 228. Xiong, H., Yu, J., Miao, J., Li, J., Zhang, H., Wang, X., Liu, P., Zhao, Y., Jiang, C., & Yin, Z. (2018). Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiology, 178(1), 451-467. Yadav, N., Monika, Kumar, A., Kumar, N., Mamta, Heena, Kumar, S., & Arya, S. (2022). Impacts on plant growth and development under stress. In Plant Stress Mitigators: Action and Application (pp. 61-100). Springer. Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217(2), 523-539. Yoshida, S. (1976). Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice, 61-66. You, J., & Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6, 1092. Yu, Y., Yang, D., Zhou, S., Gu, J., Wang, F., Dong, J., & Huang, R. (2017). The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 254, 401-408. Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy, 10(1), 127. Zeng, J., Dong, Z., Wu, H., Tian, Z., & Zhao, Z. (2017). Redox regulation of plant stem cell fate. The EMBO Journal, 36(19), 2844-2855. Zhang, H., Zhao, Y., & Zhu, J.-K. (2020). Thriving under stress: how plants balance growth and the stress response. Developmental Cell, 55(5), 529-543. Zhang, S., Deng, L., Zhao, L., & Wu, C. (2022). Genome‐wide binding analysis of transcription factor Rice Indeterminate 1 reveals a complex network controlling rice floral transition. Journal of Integrative Plant Biology, 64(9), 1690-1705. Zhang, S., Wang, S., Xu, Y., Yu, C., Shen, C., Qian, Q., Geisler, M., Jiang, D. A., & Qi, Y. (2015). The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3‐5 and OsBRI1. Plant, Cell & Environment, 38(4), 638-654. Zhao, Y., Chang, X., Qi, D., Dong, L., Wang, G., Fan, S., Jiang, L., Cheng, Q., Chen, X., & Han, D. (2017). A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Frontiers in Plant Science, 8, 299. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88758 | - |
| dc.description.abstract | APETALA2/ethylene-responsive factors轉錄因子 (AP2/ERFs) 除了參與調控植物生長發育與逆境耐受性外,也與多種植物荷爾蒙作用有關。本實驗室過去的研究發現OsERF106MZ受鹽分誘導,且過量表達OsERF106MZ (OsERF106MZ-OE) 會導致水稻幼苗地上部生長遲緩、降低鹽逆境耐受性。透過DNA微陣列分析比較OsERF106MZ-OE和WT的轉錄體,我們鑑定出多個與逆境反應有關的差異表現基因。進一步進行染色質免疫沉澱定序 (Chromatin immunoprecipitation sequencing, ChIP-seq),並與DNA微陣列數據結合後,最終我們從50個潛在的OsERF106MZ下游調控基因中選取OsARF11 (Auxin response factor 11) 及 OsPOX22.3 (Peroxidase 22.3) 進行後續分析。結果顯示在OsERF106MZ-OE背景下,不論正常環境或鹽逆境,兩基因的表現量均受到抑制。此外,生長分析結果則顯示OsERF106MZ-OE降低了水稻幼苗對生長素的敏感性。ChIP-qPCR結果顯示,OsERF106MZ可分別與OsARF11之5’ UTR以及OsPOX22.3啟動子區域的GCC box進行結合。綜合上述,這些結果說明OsERF106MZ調控的下游基因中包含了OsARF11與OsPOX22.3,並且為OsERF106MZ調控水稻株高與鹽逆境耐受性之機制提供新的線索。 | zh_TW |
| dc.description.abstract | The APETALA2/ethylene response factor (AP2/ERF) family transcription factors are involved in the regulation of plant growth, stress tolerance, and signaling of phytohormones. Our previous study found that overexpression of the salt inducible OsERF106MZ (OsERF106MZ-OE) can cause growth retardation in the shoots of rice seedlings and reduce tolerance to salt stress. To further dissect the molecular mechanism, comparative analysis of DNA microarray and Chromatin immunoprecipitation sequencing (ChIP-seq) were conducted between OsERF106MZ-OE and WT. By combining differentially expressed genes with ChIP‐seq data, 50 downstream target genes of OsERF106MZ were identified. Two candidate genes, OsARF11 (Auxin response factor 11), and OsPOX22.3 (Peroxidase 22.3), were selected for follow-up analysis. The results showed that under the OsERF106MZ-OE background, the expression levels of both genes were reduced regardless of the normal environment and salt stress. Furthermore, growth analysis results showed that OsERF106MZ-OE reduced the sensitivity of rice to auxin. The ChIP-qPCR analysis showed that OsERF106MZ can bind to the GCC box in the 5’ UTR of OsARF11 and the promoter region of OsPOX22.3, respectively. The results indicate that OsARF11 and OsPOX22.3 are the downstream regulatory genes of OsERF106MZ. These findings offer new clues for studying the molecular mechanism of OsERF106MZ-regulated plant height and salt stress tolerance in rice. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:40:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:40:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
中文摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 附錄目錄 viii 縮寫字對照表 ix 第一章 前人研究 1 一、植株構型的調控 1 1. 生長素調控植物生長 1 2. 生長素訊號刺激細胞壁結構改變 2 二、鹽逆境下植物的生理反應與耐鹽機制 3 1. 鹽逆境造成之生理反應 3 1.1 ROS 對植物的影響 4 1.2 酵素介導的 ROS 清除 4 2. 耐鹽機制的探討 5 2.1 離子穩態調節 5 2.2 細胞滲透調節 5 三、AP2/ERF 轉錄因子調控植物生長與逆境反應 6 四、染色質免疫沉澱 (ChIP) 與 ChIP-seq 7 1. ChIP-seq 於植物轉錄因子上的應用 8 2. ChIP-seq 與轉錄組數據的結合分析 9 五、研究目的與動機 10 第二章 材料方法 11 一、植物材料及生長環境 11 二、鹽逆境處理與存活率調查 11 三、OsERF106MZ 表現部位和蛋白質位置 11 1. OsERF106MZ 組織化學染色法 (GUS staining) 11 2. OsERF106MZ 蛋白質定位 12 四、西方墨點法 12 1. 植物蛋白質萃取 12 2. 蛋白質濃度測定 12 3. SDS 膠體電泳與蛋白質轉印 12 4. 免疫呈色 13 五、染色質免疫沉澱 13 1. 交連反應 (Cross-linking) 13 2. 染色質萃取與片段化 13 3. 免疫沉澱 14 4. 清洗與解交連 14 5. DNA 純化 14 六、ChIP-seq 定序流程 15 七、基因表現分析 15 1. RNA 萃取與 cDNA 合成 15 2. 及時定量聚合酶連鎖反應 (qPCR) 16 八、荷爾蒙處理 16 九、ChIP-qPCR 16 十、統計方法 16 第三章 結果 17 一、過量表現 OsERF106MZ 抑制水稻幼苗地上部生長並降低鹽逆境耐受性 17 二、OsERF106MZ 組織表現位置與蛋白質定位 17 三、OsERF106MZ ChIP-seq 與轉錄組學數據的結合分析 18 四、GO enrichment 與 pathway 分析 19 五、過量表現 OsERF106MZ 會影響生長素相關基因的表現 19 六、過量表現 OsERF106MZ 會降低水稻幼苗對生長素反應的敏感度 20 七、OsERF106MZ 可直接結合 OsARF11 之 5’ UTR 與 OsPOX22.3 啟動子上的 GCC box 序列 21 第四章 討論 22 一、OsERF106MZ 在調控水稻生長發育與逆境反應的雙重角色 22 二、OsERF106MZ 透過降低水稻對生長素反應的敏感度來抑制株高 24 三、OsERF106MZ 在水稻中的生理意義 25 四、未來規劃 27 1. 深入探討 OsERF106MZ 對 OsARF11 及 OsPOX22.3 的調控機制 27 2. ChIP 實驗的優化 27 3. 其餘 OsERF106MZ 靶向基因的探勘 28 第五章 結論 29 第六章 參考文獻 30 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | DNA 微陣列 | zh_TW |
| dc.subject | 染色質免疫沉澱定序 | zh_TW |
| dc.subject | 生長素 | zh_TW |
| dc.subject | 株高 | zh_TW |
| dc.subject | 鹽逆境 | zh_TW |
| dc.subject | 轉錄因子 | zh_TW |
| dc.subject | OsERF106MZ | zh_TW |
| dc.subject | OsERF106MZ | en |
| dc.subject | Plant height | en |
| dc.subject | Salt stress | en |
| dc.subject | DNA-microarray | en |
| dc.subject | ChIP-seq | en |
| dc.subject | Transcription factor | en |
| dc.subject | auxin | en |
| dc.title | 利用染色質免疫沉澱法找尋水稻轉錄因子ERF106MZ下游調控基因 | zh_TW |
| dc.title | Identification of ERF106MZ Downstream Target Genes by Chromatin Immunoprecipitation Assay in Rice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 蔡育彰;張孟基 | zh_TW |
| dc.contributor.coadvisor | Yu-Chang Tsai;Men-Chi Chang | en |
| dc.contributor.oralexamcommittee | 黃文理;鄭萬興;陸重安 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Lii Huang;Wan-Hsing Cheng;Chung-An Lu | en |
| dc.subject.keyword | 轉錄因子,OsERF106MZ,株高,鹽逆境,DNA 微陣列,染色質免疫沉澱定序,生長素, | zh_TW |
| dc.subject.keyword | Transcription factor,OsERF106MZ,Plant height,Salt stress,DNA-microarray,ChIP-seq,auxin, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202302584 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
