請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫珍理 | zh_TW |
| dc.contributor.advisor | Chen-li Sun | en |
| dc.contributor.author | 康聖捷 | zh_TW |
| dc.contributor.author | Sheng-Jie Kang | en |
| dc.date.accessioned | 2023-08-15T17:39:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] N. Simon, A. L. Cras, E. Foulon, and R. Lemee, "Diversity and evolution of marine phytoplankton," Comptes Rendus Biologies, vol. 332, no. 2-3, pp. 159-170, 2009, doi: 10.1016/j.crvi.2008.09.009.
[2] F. Not, R. Siano, W. H. C. F. Kooistra, N. Simon, D. Vaulot, and I. Probert, "Diversity and ecology of eukaryotic marine phytoplankton," in Advances in Botanical Research, vol. 64, G. Piganeau, Ed. Cambridge: Academic Press, 2012, pp. 1-53. [3] P. G. Falkowski, "The role of phytoplankton photosynthesis in global biogeochemical cycles," Photosynthesis Research, vol. 39, no. 3, pp. 235-258, 1994, doi: 10.1007/BF00014586. [4] P. Falkowski, "Ocean science: the power of plankton," Nature, vol. 483, no. 7387, pp. S17-S20, 2012, doi: 10.1038/483S17a. [5] R. C. Dewar, B. E. Medlyn, and R. E. Mcmurtrie, "Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model," Global Change Biology, vol. 5, no. 5, pp. 615-622, 1999, doi: 10.1046/j.1365-2486.1999.00253.x. [6] M. M. Tilzer, m. Elbrächter, W. W. Gieskes, and B. Beese, "Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton," Polar Biology, vol. 5, no. 2, pp. 105-111, 1986, doi: 10.1007/BF00443382. [7] M. Winder and U. Sommer, "Phytoplankton response to a changing climate," Hydrobiologia, vol. 698, no. 1, pp. 5-16, 2012, doi: 10.1007/s10750-012-1149-2. [8] P. A. Garrity, M. B. Goodman, A. D. Samuel, and P. Sengupta, "Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila," Genes & development, vol. 24, no. 21, pp. 2365-2382, 2010, doi: 10.1101/gad.1953710. [9] A. Bahat, I. Tur-Kaspa, A. Gakamsky, L. C. Giojalas, H. Breitbart, and M. Eisenbach, "Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract," Nature Medicine, vol. 9, no. 2, pp. 149-150, 2003, doi: 10.1038/nm0203-149. [10] M. Sekiguchi, S. Kameda, S. Kurosawa, M. Yoshida, and K. Yoshimura, "Thermotaxis in Chlamydomonas is brought about by membrane excitation and controlled by redox conditions," Scientific Reports, vol. 8, no. 1, 2018, Art. no. 16114, doi: 10.1038/s41598-018-34487-4. [11] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, no. 7101, pp. 368-373, 2006, doi: 10.1038/nature05058. [12] P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, S. M. Kim, and K. Y. Suh, "Soft lithography for microfluidics: a review," Biochip Journal, vol. 2, no. 1, pp. 1-11, 2008. [13] G. M. Whitesides and A. D. Stroock, "Flexible methods for microfluidics," Physics Today, vol. 54, no. 6, pp. 42-48, 2001, doi: 10.1063/1.1387591. [14] A. K. Wessel, L. Hmelo, M. R. Parsek, and M. Whiteley, "Going local: technologies for exploring bacterial microenvironments," Nature Reviews Microbiology, vol. 11, no. 5, pp. 337-348, 2013, doi: 10.1038/nrmicro3010. [15] D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, "Microfabrication meets microbiology," Nature Reviews Microbiology, vol. 5, no. 3, pp. 209-218, 2007, doi: 10.1038/nrmicro1616. [16] R. K. Goswami, K. Agrawal, S. Mehariya, and P. Verma, "Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach," Environmental Science and Pollution Research, vol. 29, no. 41, pp. 61905-61937, 2022, doi: 10.1007/s11356-021-16860-5. [17] M. Arora, "Tetraselmis: an introduction," The Botanica, vol. 66, pp. 155-175, 2016. [18] R. E. Norris, T. Hori, and M. Chihara, "Revision of the genus Tetraselmis (Class Prasinophyceae)," The botanical magazine, vol. 93, no. 4, pp. 317-339, 1980, doi: 10.1007/BF02488737. [19] J. L. Salisbury and G. L. Floyd, "Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga," Science, vol. 202, no. 4371, pp. 975-977, 1978, doi: doi:10.1126/science.202.4371.975. [20] D. G. Sirico, E. Cavalletti, L. Miccio, V. Bianco, P. Memmolo, A. Sardo, and P. Ferraro, "Kinematic analysis and visualization of Tetraselmis microalgae 3D motility by digital holography," Applied Optics, vol. 61, no. 5, pp. B331-B338, 2022, doi: 10.1364/ao.444976. [21] R. W. Butcher, "Introduction and Chlorophyceae," in An Introductory Account of the Smaller Algae of British Coastal Waters. London: Her Majesty’s Stationery Office, 1959, pp. 1-74. [22] J. Fabregas, J. Abalde, C. Herrero, B. Cabezas, and M. Veiga, "Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations," Aquaculture, vol. 42, no. 3, pp. 207-215, 1984, doi: 10.1016/0044-8486(84)90101-7. [23] M. Arora, A. C. Anil, F. Leliaert, J. Delany, and E. Mesbahi, "Tetraselmis indica (Chlorodendrophyceae, Chlorophyta), a new species isolated from salt pans in Goa, India," European Journal of Phycology, vol. 48, no. 1, pp. 61-78, 2013, doi: 10.1080/09670262.2013.768357. [24] G. Ulloa, A. Otero, M. Sánchez, J. Sineiro, M. J. Núñez, and J. Fábregas, "Effect of Mg, Si, and Sr on growth and antioxidant activity of the marine microalga Tetraselmis suecica," Journal of Applied Phycology, vol. 24, no. 5, pp. 1229-1236, 2012, doi: 10.1007/s10811-011-9764-2. [25] J. Fábregas, E. Morales, D. García, B. Cabezas, and A. Otero, "The soluble fraction of Solanum tuberosum enhances growth and pigmentation of the microalga Tetraselmis suecica under photoheterotrophic conditions," Bioresource Technology, vol. 59, no. 2, pp. 263-266, 1997, doi: 10.1016/S0960-8524(96)00141-1. [26] M. A. González, P. A. Aguayo, I. D. L. Inostroza, P. A. Castro, G. A. Fuentes, and P. I. Gómez, "Ultrastructural and molecular characterization of Tetraselmis strains (Chlorodendrophyceae, Chlorophyta) isolated from Chile," Gayana. Botánica, vol. 72, no. 1, pp. 47-57, 2015, doi: 10.4067/S0717-66432015000100007. [27] P. Coutteau, "Micro-algae," in Manual on the production and use of live food for aquaculture, P. Lavens and P. Sorgeloos, Eds. Rome: FAO, 1996, pp. 7-48. [28] H. Pereira, J. Silva, T. Santos, K. N. Gangadhar, A. Raposo, C. Nunes, M. A. Coimbra, L. Gouveia, L. Barreira, and J. Varela, "Nutritional potential and toxicological evaluation of Tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors," Molecules, vol. 24, no. 17, 2019, doi: 10.3390/molecules24173192. [29] R. Fu, B. Xu, and D. Li, "Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye," International Journal of Thermal Sciences, vol. 45, no. 9, pp. 841-847, 2006, doi: 10.1016/j.ijthermalsci.2005.11.009. [30] H. Salman, A. Zilman, C. Loverdo, M. Jeffroy, and A. Libchaber, "Solitary modes of bacterial culture in a temperature gradient," Physical Review Letters, vol. 97, no. 11, 2006, Art. no. 118101, doi: 10.1103/PhysRevLett.97.118101. [31] M. Demir, C. Douarche, A. Yoney, A. Libchaber, and H. Salman, "Effects of population density and chemical environment on the behavior of Escherichia coli in shallow temperature gradients," Physical biology, vol. 8, no. 6, 2011, Art. no. 063001, doi: 10.1088/1478-3975/8/6/063001. [32] M. Demir and H. Salman, "Bacterial thermotaxis by speed modulation," Biophysical Journal, vol. 103, no. 8, pp. 1683-1690, 2012, doi: 10.1016/j.bpj.2012.09.005. [33] M. R. Clegg, S. C. Maberly, and R. I. Jones, "Behavioural responses of freshwater phytoplanktonic flagellates to a temperature gradient," European Journal of Phycology, vol. 38, no. 3, pp. 195-203, 2003, doi: 10.1080/0967026031000121697. [34] S. G. Menon and P. C. Goswami, "A redox cycle within the cell cycle: ring in the old with the new," Oncogene, vol. 26, no. 8, pp. 1101-1109, 2007, doi: 10.1038/sj.onc.1209895. [35] S. Saito, G. Hamanaka, N. Kawai, R. Furukawa, J. Gojobori, M. Tominaga, H. Kaneko, and Y. Satta, "Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae," Scientific Reports, vol. 7, no. 1, 2017, Art. no. 2173, doi: 10.1038/s41598-017-02171-8. [36] "f/2 Medium." ncma.bigelow.org. https://ncma.bigelow.org/PDF%20Files/NCMA%20algal%20medium%20f_2.pdf (accessed May. 20, 2023). [37] MATLAB. (9.10.0 R2021a). The MathWorks Inc. Accessed: May. 29, 2023. [Online]. Available: https://www.mathworks.com [38] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, "Fiji: an open-source platform for biological-image analysis," Nature Methods, vol. 9, no. 7, pp. 676-682, 2012, doi: 10.1038/nmeth.2019. [39] N. Otsu, "A threshold selection method from gray-level histograms," IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979, doi: 10.1109/tsmc.1979.4310076. [40] D. Ershov, M.-S. Phan, J. W. Pylvänäinen, S. U. Rigaud, L. Le Blanc, A. Charles-Orszag, J. R. W. Conway, R. F. Laine, N. H. Roy, D. Bonazzi, G. Duménil, G. Jacquemet, and J.-Y. Tinevez, "TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines," Nature Methods, vol. 19, no. 7, pp. 829-832, 2022, doi: 10.1038/s41592-022-01507-1. [41] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004, doi: 10.1023/B:VISI.0000029664.99615.94. [42] "Particle analysis." imagej.net. https://imagej.net/imaging/particle-analysis (accessed Mar.13, 2023). [43] "Thermocouple types." omega.com. https://www.omega.com/en-us/resources/thermocouple-types (accessed Mar. 18, 2023). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88757 | - |
| dc.description.abstract | 本研究利用溫控平台系統在一字型微流道內產生水平方向的溫度梯度,藉由分析各溫度區間的浮游生物族群密度與運動特徵,探討浮游生物Tetraselmis sp.於不同溫度梯度與環境溫度下的趨溫性行為。
實驗結果顯示,當浮游生物處於不同冷熱端溫差和環境溫度之下,會有各自對應的偏好溫度區間。當溫度梯度為1.28 ℃ mm-1時,介於10℃與35℃之間的環境下,浮游生物會聚集至22.1℃、23.6℃以及25℃區間;當溫度梯度為1.06 ℃ mm-1時,介於15℃與35℃之間的環境下,浮游生物會集中至24.2℃和25.4℃區間,而當溫度梯度為1.21 ℃ mm-1時,介於10℃與30℃之間的環境下,浮游生物則明顯往20.6℃與21.9℃區間聚集,並且遠離16.6℃和17.9℃區間;當溫度梯度同為0.83 ℃ mm-1時,介於20℃與35℃之間的環境下,浮游生物會聚集至26.2℃、28℃以及29℃區間,而介於15℃與30℃之間的環境下,浮游生物則會往23.3℃與24.3℃區間集中;當溫度梯度為0.6 ℃ mm-1時,介於20℃與30℃之間的環境下,浮游生物會傾向聚集至25.3℃和25.9℃區間。在冷熱端溫差為10℃至25℃之情況下,均可發現浮游生物在高環境溫度處的平均游動速率較快,其中最高溫區間之游動速率較最低溫區間增加5.7%至30.2%,且游動速率均會隨時間增加而逐漸降低,代表浮游生物在長時間的觀測過程中會漸漸降低活動力。此外,除在熱端30℃、冷端10℃之條件外,皆可觀察到在族群密度顯著增加的溫度區間中,浮游生物亦具備較高之轉彎機率,代表當浮游生物處於偏好的溫度區間時,便會提高自身的轉彎機率,以延長停留於該區間的時間。 | zh_TW |
| dc.description.abstract | In this study, we utilized a thermally-controlled stage to generate a temperature gradient in a microchannel, in which the motility response of the plankton Tetraselmis sp. to its ambient thermal environment was investigated.
The experimental results indicated that the plankton exhibited a preference for a specific temperature range. Under different temperature gradients, the plankton tended to aggregate in regions with a temperature between 22°C and 25°C. However, with a lower temperature gradient of 0.83 ℃ mm-1, when the two ends of the microchannel are set to 20°C and 35°C, the plankton showed a tendency to concentrate in warmer regions around 28°C and 29°C. Despite the temperature gradients, we observed that the plankton tended to move faster at warmer water, but their motility generally decreased with time. The mean planktonic speed in the warmest region was 5.7% to 30.2% higher than that in the coldest region. Apart from a temperature range between 10℃ and 30℃, the aggregation of the plankton is attributed to the increase in the probability of turning. Regions with significant enhancements in the cell density were highly correlated to higher probability of turning for the plankton. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:39:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:39:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v 目錄 vi 符號索引 x 表目錄 xiii 圖目錄 xiv 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 Tetraselmis sp. 2 1.2.2 探討趨溫性之微流元件設計 4 1.2.3 趨溫性對浮游生物與細菌之影響 5 1.3 研究動機 8 第二章 實驗架構與不確定性分析 9 2.1 微流元件設計與製作 9 2.1.1 母模設計 9 2.1.2 PDMS製程 9 2.2 實驗架構 11 2.2.1 溫控平台系統 11 2.2.2 流體驅動裝置 12 2.2.3 光學影像系統 13 2.2.4 溫度擷取系統 13 2.3 實驗程序 14 2.3.1 浮游生物培養 14 2.3.2 浮游生物濃縮 16 2.3.3 實驗步驟 16 2.4 實驗數據分析 18 2.4.1 流體溫度梯度計算 18 2.4.2 分析區間溫度計算 19 2.4.3 浮游生物追蹤與計數程序 19 2.4.4 浮游生物之族群密度與個數淨變化率分析 21 2.4.5 浮游生物之運動行為分析 22 2.5 不確定性分析 24 2.5.1 量測溫度之不確定性 25 2.5.2 溫度梯度之不確定性 26 2.5.3 分析區間溫度之不確定性 27 2.5.4 體積流率之不確定性 27 2.5.5 浮游生物族群密度之不確定性 28 2.5.6 浮游生物正規化族群密度之不確定性 29 2.5.7 浮游生物個數淨變化率之不確定性 30 2.5.8 浮游生物位移之不確定性 31 2.5.9 浮游生物速度之不確定性 32 2.5.10 浮游生物運動方向之不確定性 32 2.5.11 浮游生物轉彎角度之不確定性 33 第三章 實驗結果 34 3.1 浮游生物於冷熱端溫差25℃之運動行為分析 34 3.1.1 浮游生物族群密度與正規化族群密度 34 3.1.2 浮游生物游動速度與轉彎機率分析 35 3.1.3 浮游生物游動速度與游泳角度之機率質量分布 37 3.2 浮游生物於冷熱端溫差20℃之運動行為分析 38 3.2.1 浮游生物族群密度與正規化族群密度 39 3.2.2 浮游生物游動速度與轉彎機率分析 40 3.2.3 浮游生物游動速度與游泳角度之機率質量分布 44 3.3 浮游生物於冷熱端溫差15℃之運動行為分析 46 3.3.1 浮游生物族群密度與正規化族群密度 47 3.3.2 浮游生物游動速度與轉彎機率分析 48 3.3.3 浮游生物游動速度與游泳角度之機率質量分布 52 3.4 浮游生物於冷熱端溫差10℃之運動行為分析 54 3.4.1 浮游生物族群密度與正規化族群密度 54 3.4.2 浮游生物游動速度與轉彎機率分析 55 3.4.3 浮游生物游動速度與游泳角度之機率質量分布 57 第四章 結論與建議 59 4.1 結論 59 4.2 建議 61 參考文獻 62 附表 66 附圖 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 溫度梯度 | zh_TW |
| dc.subject | 扁藻 | zh_TW |
| dc.subject | 浮游生物運動 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 趨溫性 | zh_TW |
| dc.subject | microchannel | en |
| dc.subject | temperature gradient | en |
| dc.subject | planktonic locomotion | en |
| dc.subject | thermotaxis | en |
| dc.subject | Tetraselmis sp. | en |
| dc.title | 浮游生物Tetraselmis sp.於微流元件中對溫度梯度之運動行為探討 | zh_TW |
| dc.title | On the motility response of Tetraselmis sp. in a microchannel with a temperature gradient | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃士豪;陳品銓 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Hao Huang;Pin-Chuan Chen | en |
| dc.subject.keyword | 微流道,溫度梯度,浮游生物運動,扁藻,趨溫性, | zh_TW |
| dc.subject.keyword | microchannel,temperature gradient,planktonic locomotion,Tetraselmis sp.,thermotaxis, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202303146 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 21.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
