請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88756
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李承叡 | zh_TW |
dc.contributor.advisor | Cheng-Ruei Lee | en |
dc.contributor.author | 吳培文 | zh_TW |
dc.contributor.author | Pei-Wen Ong | en |
dc.date.accessioned | 2023-08-15T17:39:34Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-03 | - |
dc.identifier.citation | 1001 Genomes Consortium. 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481-491. DOI: https://doi.org/10.1016/j.cell.2016.05.063
Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19:1655-1664. DOI: https://doi.org/10.1101/gr.094052.109 Annanepesov M, Bababekov HN. 2003. The Khanates of Khiva and Kokand and the relations between the Knanates and with other powers. In: Adle C, Habib I (Eds). History of Civilizations of Central Asia, Volume 5: Development in Contrast, from the Sixteenth to the mid-Nineteenth Century. Paris: UNESCO Publishing. p. 64-89. Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA, Castellanos-Morales G, Gutiérrez-Guerrero YT, Aguirre-Dugua X, Aguirre-Planter E, Tenaillon MI, Lira-Saade R, Eguiarte LE. 2021. The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative. Horticulture Research 8:109. DOI: https://doi.org/10.1038/s41438-021-00544-9 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. DOI: https://doi.org/10.1093/bioinformatics/btu170 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. DOI: https://doi.org/10.1093/bioinformatics/btm308 Breria CM, Hsieh CH, Yen J-Y, Nair R, Lin C-Y, Huang S-M, Noble TJ, Schafleitner R. 2020. Population structure of the World Vegetable Center mungbean mini core collection and genome-wide association mapping of loci associated with variation of seed coat luster. Tropical Plant Biology 13:1-12. DOI: https://doi.org/10.1007/s12042-019-09236-0 Bryant C, Wheeler NR, Rubel F, French RH. 2017. kgc: Köeppen-Geiger climatic zones. (Version R package version 1.0.0.2.). Retrieved from https://CRAN.R-project.org/package=kgc Burlyaeva M, Vishnyakova M, Gurkina M, Kozlov K, Lee C-R, Ting C-T, Schafleitner R, Nuzhdin S, Samsonova M, Wettberg E. 2019. Collections of mungbean [Vigna radiata) (L.) R. Wilczek] and urdbean [V. mungo (L.) Hepper] in Vavilov Institute (VIR): traits diversity and trends in the breeding process over the last 100 years. Genetic Resources and Crop Evolution 66:767-781. DOI: https://doi.org/10.1007/s10722-019-00760-2 Cai K, Chen X, Han Z, Wu X, Zhang S, Li Q, Nazir MM, Zhang G, Zeng F. 2020. Screening of worldwide barley collection for drought tolerance: the assessment of various physiological measures as the selection criteria. Frontiers in Plant Science 11:1195. DOI: https://doi.org/10.3389/fpls.2020.01159 Castillo CC, Bellina B, Fuller DQ. 2016. Rice, beans and trade crops on the early maritime Silk Route in Southeast Asia. Antiquity 90:1255-1269. DOI: https://doi.org/10.15184/aqy.2016.175 Chen L-T. 1980. A study of the systems of rotating crops in Chinese history 我國歷代輪種制度之研究. Bulletin of the Institute of History and Philology 51:281-313. Cox MP, Peterson DA, Biggs PJ. 2010. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485. DOI: https://doi.org/10.1186/1471-2105-11-485 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158. DOI: https://doi.org/10.1093/bioinformatics/btr330 Dela Vina AC, Tomooka N. 1994. Genetic diversity in mungbean [Vigna radiata (L.) Wilczek] based on two enzyme systems. Philippine Journal of Crop Science 19:1-9. Douglas C, Pratap A, Rao BH, Manu B, Dubey S, Singh P, Tomar R. 2020. Breeding progress and future challenges: abiotic stresses. In: Nair R M, Schafleitner R, Lee S-H (Eds). The Mungbean Genome. Cham: Springer International Publishing. p. 81-96. Dray S, Dufour A-B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22:1-20. DOI: https://doi.org/10.18637/jss.v022.i04 Dupuy PD. 2016. Bronze Age Central Asia. In: The Oxford Handbook of Topics in Archaeology: Oxford University Press. Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, Sousa VC. 2021. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 37:4882-4885. DOI: https://doi.org/10.1093/bioinformatics/btab468 Fitak RR. 2021. OptM: estimating the optimal number of migration edges on population trees using Treemix. Biology Methods and Protocols 6:bpab017. DOI: https://doi.org/10.1093/biomethods/bpab017 Francis RM. 2017. pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources 17:27-32. DOI: https://doi.org/10.1111/1755-0998.12509 Fuller DQ. 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world. Annals of Botany 100:903-924. DOI: https://doi.org/10.1093/aob/mcm048 Fuller DQ, Boivin N, Hoogervorst T, Allaby R. 2011. Across the Indian Ocean: the prehistoric movement of plants and animals. Antiquity 85:544-558. DOI: https://doi.org/10.1017/S0003598X00067934 Fuller DQ, Harvey EL. 2006. The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environmental Archaeology 11:219-246. DOI: https://doi.org/10.1179/174963106x123232 Goudet J, Buchi L. 2006. The effects of dominance, regular inbreeding and sampling design on QST, an estimator of population differentiation for quantitative traits. Genetics 172:1337-1347. DOI: https://doi.org/10.1534/genetics.105.050583 Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK, Slayton ER, Wilkins O, Castillo CC, Negrão S, Oliveira MM, Fuller DQ, Guedes JA, Lasky JR, Purugganan MD. 2020. Genomic history and ecology of the geographic spread of rice. Nature Plants 6:492-502. DOI: https://doi.org/10.1038/s41477-020-0659-6 Gwag J-G, Dixit A, Park Y-J, Ma K-H, Kwon S-J, Cho G-T, Lee G-A, Lee S-Y, Kang H-K, Lee S-H. 2010. Assessment of genetic diversity and population structure in mungbean. Genes & Genomics 32:299-308. DOI: https://doi.org/10.1007/s13258-010-0014-9 Ha J, Lee S-H. 2019. Mung bean (Vigna radiata (L.) R. Wilczek) breeding. In: Al-Khayri J M, Jain S M, Johnson D V (Eds). Advances in Plant Breeding Strategies: Legumes: Volume 7. Cham: Springer International Publishing. p. 371-407. Ha J, Satyawan D, Jeong H, Lee E, Cho K-H, Kim MY, Lee S-H. 2021. A near-complete genome sequence of mungbean (Vigna radiata L.) provides key insights into the modern breeding program. Plant Genome 14:e20121. DOI: https://doi.org/10.1002/tpg2.20121 Herniter IA, Muñoz-Amatriaín M, Close TJ. 2020. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Science 2:leg3.57. DOI: https://doi.org/10.1002/leg3.57 Hijmans R. 2021. Raster: geographic data analysis and modeling (Version R package version 3.4-13). Retrieved from https://CRAN.R-project.org/package=raster Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978. DOI: https://doi.org/10.1002/joc.1276 Islam A, Blair MW. 2018. Molecular characterization of mung bean germplasm from the USDA core collection using newly developed KASP-based SNP markers. Crop Science 58:1659-1670. DOI: https://doi.org/10.2135/cropsci2018.01.0044 Jeong C, Balanovsky O, Lukianova E, Kahbatkyzy N, Flegontov P, Zaporozhchenko V, Immel A, Wang C-C, Ixan O, Khussainova E, Bekmanov B, Zaibert V, Lavryashina M, Pocheshkhova E, Yusupov Y, Agdzhoyan A, Koshel S, Bukin A, Nymadawa P, Turdikulova S, Dalimova D, Churnosov M, Skhalyakho R, Daragan D, Bogunov Y, Bogunova A, Shtrunov A, Dubova N, Zhabagin M, Yepiskoposyan L, Churakov V, Pislegin N, Damba L, Saroyants L, Dibirova K, Atramentova L, Utevska O, Idrisov E, Kamenshchikova E, Evseeva I, Metspalu M, Outram AK, Robbeets M, Djansugurova L, Balanovska E, Schiffels S, Haak W, Reich D, Krause J. 2019. The genetic history of admixture across inner Eurasia. Nature Ecology & Evolution 3:966-976. DOI: https://doi.org/10.1038/s41559-019-0878-2 Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee SH. 2014. Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications 5:5443. DOI: https://doi.org/10.1038/ncomms6443 Kim SK, Nair RM, Lee J, Lee SH. 2015. Genomic resources in mungbean for future breeding programs. Frontiers in Plant Science 6:626. DOI: https://doi.org/10.3389/fpls.2015.00626 Kingwell-Banham E, Petrie CA, Fuller DQ. 2015. Early agriculture in South Asia. In: Goucher C, Barker G (Eds). The Cambridge World History. Cambridge: Cambridge University Press. p. 261-288. Kistler L, Maezumi SY, Souza JGd, Przelomska NAS, Costa FM, Smith O, Loiselle H, Ramos-Madrigal J, Wales N, Ribeiro ER, Morrison RR, Grimaldo C, Prous AP, Arriaza B, Gilbert MTP, de Oliveira Freitas F, Allaby RG. 2018. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362:1309-1313. DOI: https://doi.org/doi:10.1126/science.aav0207 Kohl PL. 2007. Entering a sown world of irrigation agriculture – from the steppes to Central Asia and beyond: processes of movement, assimilation, and transformation into the “civilized” world east of Sumer. In: Kohl P L (Ed). The Making of Bronze Age Eurasia. Cambridge: Cambridge University Press. p. 182-243. Kohl PL, Lyonnet B. 2008. By land and by sea: the circulation of materials and peoples, ca. 3500-1800 B.C. In: Olijdam E, Spoor R H (Eds). Intercultural Relations between South and Southwest Asia. Studies in Commemoration of E.C.L. During Caspers (1934–1996). BAR International Series 1826. Oxford: Archaeopress. p. 29-42. Köppen W. 2011. The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorologische Zeitschrif 20:351-360. DOI: https://doi.org/10.1127/0941-2948/2011/105 Korunes KL, Samuk K. 2021. pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Molecular Ecology Resources 21:1359-1368. DOI: https://doi.org/10.1111/1755-0998.13326 Kumar N, Nandwal AS, Waldia RS, Singh S, Devi S, Sharma KD, Kumar A. 2012. Drought tolerance in chickpea as evaluated by root characteristics, plant water status, membrane integrity and chlorophyll fluorescence techniques. Experimental Agriculture 48:378-387. DOI: https://doi.org/10.1017/S0014479712000063 Lamberg‐Karlovsky CC. 2002. Archaeology and language: The Indo‐Iranians. Current Anthropology 43:63-88. DOI: https://doi.org/10.1086/324130 Lee CR, Svardal H, Farlow A, Exposito-Alonso M, Ding W, Novikova P, Alonso-Blanco C, Weigel D, Nordborg M. 2017. On the post-glacial spread of human commensal Arabidopsis thaliana. Nature Communications 8:14458. DOI: https://doi.org/10.1038/ncomms14458 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. DOI: https://doi.org/10.1093/bioinformatics/btp324 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078-2079. DOI: https://doi.org/10.1093/bioinformatics/btp352 Lin Y-P, Chen H-W, Yeh P-M, Anand SS, Lin J, Li J, Noble T, Nair R, Schafleitner R, Samsonova M, Bishop-von-Wettberg E, Nuzhdin S, Ting C-T, Lawn RJ, Lee C-R. 2023. Demographic history and distinct selection signatures of two domestication genes in mungbean. Plant physiology. DOI: https://doi.org/10.1093/plphys/kiad356 Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, Cao Z, Gao Y, Wang X, Li S, Su Q, Zhang Z, Wang S, Wu X, Shang Q, Shi H, Shen Y, Wang B, Tian J. 2022. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant communications 3:100352. DOI: https://doi.org/10.1016/j.xplc.2022.100352 Liu X, Jones PJ, Motuzaite Matuzeviciute G, Hunt HV, Lister DL, An T, Przelomska N, Kneale CJ, Zhao Z, Jones MK. 2019. From ecological opportunism to multi-cropping: mapping food globalisation in prehistory. Quaternary Science Reviews 206:21-28. DOI: https://doi.org/10.1016/j.quascirev.2018.12.017 Lombard P. 2020. The Oxus civilization/BMAC and its interaction with the Arabian Gulf. A review of the evidences. In: Lyonnet; B, Dubova N (Eds). The World of the Oxus Civilization, Routledge p. 607-634. Lyonnet B. 2005. Another possible interpretation of the Bactro-Margiana Culture (BMAC) of Central Asia: the tin trade. In: Jarrige C, Lefevre V (Eds). South Asian Archaeology: Paris: Editions Recherche sur les Civilisations. p. 191-200. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297-1303. DOI: https://doi.org/10.1101/gr.107524.110 Michel BE, Kaufmann MR. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology 51:914-916. DOI: https://doi.org/10.1104/pp.51.5.914 Miller NF. 1999. Agricultural development in western Central Asia in the Chalcolithic and Bronze Ages. Vegetation History and Archaeobotany 8:13-19. DOI: https://doi.org/10.1007/BF02042837 Mishra GP, Dikshit HK, Tripathi K, Aski MS, Pratap A, Dasgupta U, Nair RM, Gupta S. 2022. Mungbean Breeding. In: Yadava D K, Dikshit H K, Mishra G P, Tripathi S (Eds). Fundamentals of Field Crop Breeding. Singapore: Springer Nature Singapore. p. 1097-1149. Nair R, Schreinemachers P. 2020. Global status and economic importance of mungbean. In: Nair R, Schafleitner R, Lee S-H (Eds). The Mungbean Genome. Berlin: Springer International Publishing. p. 1-8. Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG. 2018. Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Frontiers in Plant Science 8:2102. DOI: https://doi.org/10.3389/fpls.2017.02102 Nychka D, Furrer R, Paige J, Sain S. 2017. fields: tools for spatial data (Version R package version 12.5). Retrieved from https://github.com/NCAR/Fields Pataczek L, Zahir ZA, Ahmad M, Rani S, Nair R, Schafleitner R, Cadisch G, Hilger T. 2018. Beans with benefits - the role of mungbean (Vigna radiata) in a changing environment. American Journal of Plant Sciences 9:1577-1600. DOI: https://doi.org/10.4236/ajps.2018.97115 Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. 2012. Ancient admixture in human history. Genetics 192:1065-1093. DOI: https://doi.org/10.1534/genetics.112.145037 Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026 Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allelefrequency data. PLOS Genetics 8:e1002967. DOI: https://doi.org/10.1371/journal.pgen.1002967 Pratap A, Gupta S, Basu PS, Tomar R, Dubey S, Rathore M, Prajapati US, Singh P, Kumari G. 2019. Towards development of climate smart mungbean: challenges and opportunities. In: Kole C (Ed). Genomic Designing of Climate-Smart Pulse Crops. Chamsford: Springer International Publishing. p. 235-264. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81:559-575. DOI: https://doi.org/10.1086/519795 R Core Team. 2021. R: a language and environment for statistical computing (Version R version 4.1.0). Retrieved from https://www.R-project.org/ Rani S, Schreinemachers P, Kuziyev B. 2018. Mungbean as a catch crop for dryland systems in Pakistan and Uzbekistan: a situational analysis. Cogent Food & Agriculture 4:1499241. DOI: https://doi.org/10.1080/23311932.2018.1499241 Sandhu K, Singh A. 2021. Strategies for the utilization of the USDA mung bean germplasm collection for breeding outcomes. Crop Science 61:422-442. DOI: https://doi.org/10.1002/csc2.20322 Sangiri C, Kaga A, Tomooka N, Vaughan D, Srinives P. 2007. Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis. Australian Journal of Botany 55:837-847. DOI: https://doi.org/10.1071/BT07105 Singh V, Yadav RN, Singh J. 2017. Role of genomic tools for mungbean [Vigna radiata (L.) Wilczek] improvement. Legume Research 40:601-608. DOI: https://doi.org/10.18805/lr.v0i0.8406 Spengler RN. 2015. Agriculture in the Central Asian Bronze Age. Journal of World Prehistory 28:215-253. DOI: 10.1007/s10963-015-9087-3 Spengler RN, Cerasetti B, Tengberg M, Cattani M, Rouse LM. 2014a. Agriculturalists and pastoralists: Bronze Age economy of the Murghab alluvial fan, southern Central Asia. Vegetation History and Archaeobotany 23:805-820. DOI: https://doi.org/10.1007/s00334-014-0448-0 Spengler RN, de Nigris I, Cerasetti B, Carra M, Rouse LM. 2018a. The breadth of dietary economy in Bronze Age Central Asia: case study from Adji Kui 1 in the Murghab region of Turkmenistan. Journal of Archaeological Science: Reports 22:372-381. DOI: https://doi.org/10.1016/j.jasrep.2016.03.029 Spengler RN, Frachetti MD, Doumani PN. 2014b. Late Bronze Age agriculture at Tasbas in the Dzhungar Mountains of eastern Kazakhstan. Quaternary International 348:147-157. DOI: https://doi.org/10.1016/j.quaint.2014.03.039 Spengler RN, Maksudov F, Bullion E, Merkle A, Hermes T, Frachetti M. 2018b. Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak. PLOS ONE 13:e0201409. DOI: https://doi.org/10.1371/journal.pone.0201409 Spengler RN, Miller NF, Neef R, Tourtellotte PA, Chang C. 2017. Linking agriculture and exchange to social developments of the Central Asian Iron Age. Journal of Anthropological Archaeology 48:295-308. DOI: https://doi.org/10.1016/j.jaa.2017.09.002 Spengler RN, Tang L, Nayak A, Boivin N, Olivieri LM. 2021. The southern Central Asian mountains as an ancient agricultural mixing zone: new archaeobotanical data from Barikot in the Swat valley of Pakistan. Vegetation History and Archaeobotany 30:463-476. DOI: https://doi.org/10.1007/s00334-020-00798-8 Stevens CJ, Murphy C, Roberts R, Lucas L, Silva F, Fuller DQ. 2016. Between China and South Asia: a Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene 26:1541-1555. DOI: https://doi.org/10.1177/0959683616650268 Takahashi Y, Kongjaimun A, Muto C, Kobayashi Y, Kumagai M, Sakai H, Satou K, Teruya K, Shiroma A, Shimoji M, Hirano T, Isemura T, Saito H, Baba-Kasai A, Kaga A, Somta P, Tomooka N, Naito K. 2020. Same locus for non-shattering seed pod in two independently domesticated legumes, Vigna angularis and Vigna unguiculata. Frontiers in Genetics 11:748. DOI: https://doi.org/10.3389/fgene.2020.00748 Takahashi Y, Tomooka N. 2020. Taxonomy of mungbean and its relatives. In: Nair R M, Schafleitner R, Lee S-H (Eds). The Mungbean Genome. Cham: Springer International Publishing. p. 27-41. Tomooka N, Lairungreang C, Nakeeraks P, Egawa Y, Thavarasook C. 1992. Center of genetic diversity and dissemination pathways in mung bean deduced from seed protein electrophoresis. Theoretical and Applied Genetics 83:289-293. DOI: https://doi.org/10.1007/BF00224273 Van der Veen M, Morales J. 2015. The Roman and Islamic spice trade: new archaeological evidence. Journal of Ethnopharmacology 167:54-63. DOI: https://doi.org/10.1016/j.jep.2014.09.036 Vir R, Lakhanpaul S, Malik S, Umdale S, Bhat KV. 2016. Utilization of germplasm for the genetic improvement of mung bean [Vigna radiata (L.) Wilczek]: the constraints and the opportunities. In: Rajpal V R, Rao S R, Raina S N (Eds). Gene Pool Diversity and Crop Improvement. Cham: Springer International Publishing. p. 367-391. Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607-611. DOI: https://doi.org/10.1111/j.1600-0587.2009.06142.x Xu W, Cui K, Xu A, Nie L, Huang J, Peng S. 2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum 37:9. DOI: https://doi.org/10.1007/s11738-014-1760-0 Zhang C, Dong SS, Xu JY, He WM, Yang TL. 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786-1788. DOI: https://doi.org/10.1093/bioinformatics/bty875 Zhang C, Shi S, Wang B, Zhao J. 2018. Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiologiae Plantarum 40:25. DOI: https://doi.org/10.1007/s11738-017-2597-0 Zheng X, Wang T, Cheng T, Zhao L, Zheng X, Zhu F, Dong C, Xu J, Xie K, Hu Z, Yang L, Diao Y. 2022. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans.). Horticulture Research 9:uhac029. DOI: https://doi.org/10.1093/hr/uhac029 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88756 | - |
dc.description.abstract | 無 | zh_TW |
dc.description.abstract | While considerable attention has been devoted to comprehending the process of crop domestication, comparatively less emphasis has been placed on investigating the post-domestication spread of crops beyond their native range. However, the details of the cultivation route and the factors that influence the expansion of the crop's cultivation range remain unknown. In this study, we used mungbean (Vigna radiata var. radiata) as a case study to investigate the crucial role of climatic adaptation in shaping the unique route of cultivation range expansion across Asia. Using genomic data from over 1,000 cultivated mungbean accessions that represent global diversity, our analysis revealed the existence of four distinct genetic groups with specific geo-climatic distributions. Despite South and Central Asia being geographically close, our genetic evidence indicates that mungbean originated in South Asia, followed by its spread to Southeast Asia. Subsequently, it experienced a northward expansion into East Asia and reached Central Asia. The ecological niche modelling and plant morphology among each genetic group suggests that the cultivation route of mungbean in Asia was influenced by climatic limitations related to annual precipitation variability and farmer practices in each region. These factors resulted in the divergent selection, favouring higher yield production in the southern regions while promoting the cultivation of accession, which has a shorter growing season and more drought tolerance in northern Asia. This study reveals that the cultivation of mungbean was not solely determined by human activity but was shaped by the adaptations developed by mungbean accessions in response to local environments. Our results reinforce the idea that the south-north axis poses considerable challenges to the dissemination of human commensals across continents. Reconstructing the dispersal history of mungbean and its adaptation to diverse climates may help to uncover the genetic basis for crop adaptation to new environments, assisting plant breeders in identifying mungbean accessions with drought tolerance or genetic traits that can be utilized for crop improvement. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:39:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:39:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Certificate of Dissertation Approval from the Oral Defence Committee i
Acknowledgements ii Abstract iv Table of Contents vi List of Figures viii List of Tables x 1. Introduction 1 1.1 Mungbean 2 1.2 Origin and route of dispersal 4 1.2.1 The archaeobotanical evidence 4 1.2.2 The genetic evidence 5 1.3 Objectives 7 2. Materials and Methods 8 2.1 Plant materials and sequencing data 8 2.2 SNP calling 9 2.3 Genomic analyses 10 2.3.1 Population structure 10 2.3.2 Genetic diversity and divergence 11 2.3.3 Linkage disequilibrium 11 2.3.4 Isolation by distance 11 2.3.5 Population history 12 2.3.6 f3 and f4 statistics 12 2.3.7 Demographic history 13 2.4 Ecological niche modelling 13 2.5 Field evaluation 15 2.6 Drought phenotyping 16 2.7 QST-FST comparisons 18 3. Results 19 3.1 Population structure 19 3.2 Population history and spread of mungbean 22 3.3 Environmental differentiation of the inferred genetic groups 28 3.4 Morphological trait variation among genetic groups 34 4. Discussion 38 4.1 The climate-driven spread route despite historical human activities 39 4.2 Local adaptation of mungbean genetic groups 41 5. Conclusion 46 References 49 | - |
dc.language.iso | en | - |
dc.title | 環境差異為影響綠豆傳播史的限制因子 | zh_TW |
dc.title | Environment as a limiting factor of the historical spread of mungbean | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 胡哲明;王弘毅;廖培鈞;陳賢明 | zh_TW |
dc.contributor.oralexamcommittee | JER-MING HU;HURNG-YI WANG;Pei-Chun Liao;Hieng-Ming Ting | en |
dc.subject.keyword | 綠豆, | zh_TW |
dc.subject.keyword | Mungbean,Vigna radiata var. radiata,route of cultivation,adaptation,local climate,range expansion, | en |
dc.relation.page | 94 | - |
dc.identifier.doi | 10.6342/NTU202302818 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 植物科學研究所 | - |
dc.date.embargo-lift | 2028-08-02 | - |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 3.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。