請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88751完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | zh_TW |
| dc.contributor.advisor | Hung-Yu Wei | en |
| dc.contributor.author | 陳巧錚 | zh_TW |
| dc.contributor.author | Chiao-Cheng Chen | en |
| dc.date.accessioned | 2023-08-15T17:38:20Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.
C. Babcock. Containers explained: 9 essentials you need to know. [Online]. Available: https://www.informationweek.com/it-strategy/containers-explained-9-essentials-you-need-to-know T. L. Foundation. Kubernetes. [Online]. Available: https://kubernetes.io T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Slacker: Fast distribution with lazy docker containers,” in 14th USENIX Conference on File and Storage Technologies (FAST 16), 2016, pp. 181–195. Z. Chen, Z. Zhou, and C. Chen, “Code caching-assisted computation offloading and resource allocation for multi-user mobile edge computing,” IEEE Transactions on Network and Service Management, vol. 18, no. 4, pp. 4517–4530, 2021. H. Jeon, S. Shin, C. Cho, and S. Yoon, “Multi-agent learning-based package caching in serverless edge computing,” in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 2022, pp. 400–402. Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy efficient task caching and offloading for mobile edge computing,” Ieee access, vol. 6, pp. 11 365–11 373, 2018. H. Jeon, S. Shin, C. Cho, and S. Yoon, “Deep reinforcement learning for qos-aware package caching in serverless edge computing,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6. X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching and workload scheduling in mobile edge computing,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications, 2020, pp. 2076–2085. J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for mobile edge computing in dense networks,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications, 2018, pp. 207–215. J. Lou, H. Luo, Z. Tang, W. Jia, and W. Zhao, “Efficient container assignment and layer sequencing in edge computing,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 1118–1131, 2022. S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and efficient container startup at the edge via dependency scheduling,” in 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20), 2020. B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint network selection and service placement for mobile edge computing,” in IEEE INFOCOM 2019-IEEE conference on computer communications, 2019, pp. 1459–1467. L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring layered container structure for cost efficient microservice deployment,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communications, 2021, pp. 1–9. H. Fan, S. Bian, S. Wu, S. Jiang, S. Ibrahim, and H. Jin, “Gear: Enable efficient container storage and deployment with a new image format,” in 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), 2021, pp. 115–125. H. Li, Y. Yuan, R. Du, K. Ma, L. Liu, and W. Hsu, “{DADI}:{Block-Level} image service for agile and elastic application deployment,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp. 727–740. J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast container provisioning on the edge and over the {WAN},” in 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), 2022, pp. 35–50. X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online collaborative data caching in edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, 2020. C. Wang, D. Feng, S. Zhang, and Q. Chen, “Video caching and transcoding in wireless cellular networks with mobile edge computing: A robust approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 9234–9238, 2020. Q. Jia, R. Xie, H. Lu, W. Zheng, and H. Luo, “Joint optimization scheme for caching, transcoding and bandwidth in 5g networks with mobile edge computing,” in 2019 IEEE 5th International Conference on Computer and Communications (ICCC), 2019, pp. 999–1004. A. Mehrabi, M. Siekkinen, and A. Ylä-Jaaski, “Qoe-traffic optimization through collaborative edge caching in adaptive mobile video streaming,” IEEE Access, vol. 6, pp. 52 261–52 276, 2018. Y. Chiang, C.-H. Hsu, and H.-Y. Wei, “Collaborative social-aware and qoe-driven video caching and adaptation in edge network,” IEEE Transactions on Multimedia, vol. 23, pp. 4311–4325, 2020. “Ieee standard for edge/fog manageability and orchestration,” IEEE Std 1935-2023, pp. 1–68, 2023. Y. Chiang, Y. Zhang, H. Luo, T.-Y. Chen, G.-H. Chen, H.-T. Chen, Y.-J. Wang, H.-Y. Wei, and C.-T. Chou, “Management and orchestration of edge computing for iot: A comprehensive survey,” IEEE Internet of Things Journal, 2023. T.-Y. Chen, Y. Chiang, J.-H. Wu, H.-T. Chen, C.-C. Chen, and H.-Y. Wei, “Ieee p1935 edge/fog manageability and orchestration: Standard and usage example,” in 2023 IEEE international conference on edge computing (EDGE), 2023. Prometheus. [Online]. Available: https://prometheus.io/ Google. Crfs: Container registry filesystem. [Online]. Available: https://github.com/google/crfs/ Containerd. Stargz snapshotter. [Online]. Available: https://github.com/containerd/stargz-snapshotter Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning scheduling algorithms for containers in mobile edge computing,” IEEE Transactions on Mobile Computing, 2022. A. Zhou, S. Li, and S. Wang, “Task offloading and resource allocation for container-enabled mobile edge computing,” in 2021 IEEE International Conference on Services Computing (SCC), 2021, pp. 222–232. A. Ahmed and G. Pierre, “Docker container deployment in fog computing infrastructures,” in 2018 IEEE International Conference on Edge Computing (EDGE), 2018, pp. 1–8. S. Li, A. Zhou, X. Ma, M. Xu, and S. Wang, “Commutativity-guaranteed docker image reconstruction towards effective layer sharing,” in Proceedings of the ACM Web Conference 2022, 2022, pp. 3358–3366. D. Inc. Distribution. [Online]. Available: https://github.com/distribution/distribution D. Yu, Y. Li, F. Xu, P. Zhang, and V. Kostakos, “Smartphone app usage prediction using points of interest,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, p. 174, 2018. D. Inc. Docker hub container image library | app containerization. [Online]. Available: https://hub.docker.com/ A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards minimizing delay in the internet of things,” in 2017 IEEE international conference on edge computing (EDGE), 2017, pp. 17–24. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88751 | - |
| dc.description.abstract | 隨著第五代行動通訊網路(5G)對低延遲應用的需求日益增長,多接取邊緣運算(MEC)已成為一項具有前景的解決方案。MEC通過將資源從雲端移至網路邊緣,能夠根據即時的網路資訊實現立即回應和動態資源分配。容器由於其輕量和易於部署的特性,被視為MEC服務部署中一向有價值的虛擬化技術。然而,容器冗長的啟動時間可能導致回應時間過長,特別是在擁有較長傳播延遲、頻繁部署和遷移特性的邊緣運算場景之中。在這篇論文,我們研究了MEC中的映像檔快取、容器分配和倉庫選擇問題,其中利用本地倉庫快取應用程式映像檔,並由工作節點為使用者提供服務。為了解決上述問題,我們提出了一種映像檔快取策略,採用部分快取方式,使得本地倉庫可以快取應用程式映像檔的基本或完整功能版本。此外,我們使用基於邊緣的協同延遲提取演算法來解決容器分配和倉庫選擇的問題。為了評估我們所提出的演算法的表現,我們在測試平台上使用真實的應用程式使用數據和熱門映像檔進行實驗。實驗結果顯示,我們的演算法在平均使用者回應時間和快取命中率方面皆優於傳統的貪婪演算法。 | zh_TW |
| dc.description.abstract | With the growing demand for latency-sensitive applications in 5G networks, Multi-access Edge Computing (MEC) has emerged as a promising solution. MEC enables instant response and dynamic resource allocation based on real-time network information by moving resources from the cloud to the network edge. Containers, known for their lightweight nature and ease of deployment, have been recognized as a valuable virtualization technology for MEC service deployment. However, the prolonged startup time of containers can lead to long response time, particularly in edge computing scenarios characterized by long propagation time, frequent deployment, and migration. In this paper, we investigate on the image caching, container assignment, and registry selection problem in MEC where local registries are utilized to cache application images, while worker nodes provide services to users. To address the problem, we propose an image caching strategy that employs partial caching, allowing local registries to cache either the least functional or complete version of application images. In addition, a container assignment and registry selection problem is solved by using an edge-based collaborative lazy pulling algorithm. To evaluate the performance of our proposed algorithms, we conduct experiments with real-world app usage data and popular images in a testbed environment. The experimental results demonstrate that our algorithms outperform traditional greedy algorithms in terms of average user response time and cache hit rate. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:38:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:38:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Problem Statement & Our Proposal 3 1.3 Contributions 3 1.4 Organizations 4 Chapter 2. Related Work 5 2.1 Existing Work in Different Aspects 5 2.1.1 Caching in Multi-access Edge Computing 5 2.1.2 Container Assignment and Registry Selection 6 2.1.3 Container Startup Acceleration 7 2.2 Comparison Table 7 Chapter 3. System Model 9 3.1 P1935 Edge Computing Platform 9 3.1.1 Registry Creation and Deletion 10 3.1.2 Resource Status Query 11 3.1.3 Application Onboarding 12 3.1.4 Application Instantiation 12 3.2 Implementation of Pulling Images in Our System 13 3.3 System Architecture 16 3.4 Storage Model 18 3.5 Delay Model 19 Chapter 4. Problem Formulation 23 4.1 Main Problem Formulation 23 4.2 Least Functional-based Caching Decision 26 4.2.1 Subproblem P1 26 4.2.2 Proposed Algorithm for P1 30 4.3 Edge-based Collaborative Container Assignment and Registry Selection Decisions 32 4.3.1 Subproblem P2 32 4.3.2 Proposed Algorithm for P2 34 4.4 System Workflow 36 Chapter 5. Experimental Results 37 5.1 Experiment Setup 37 5.1.1 Testbed Setting 37 5.1.2 Dataset Description 38 5.1.3 System Parameters 41 5.2 Compared Algorithms 43 5.3 Analysis of Cache Hit Rate Performance 44 5.3.1 The impact of cache size ratio 44 5.3.2 The impact of edge-based collaborative partial caching 44 5.4 Analysis of Average User Response Time Performance 46 5.4.1 The impact of cache size ratio 46 5.4.2 The impact of edge-based collaborative lazy pulling 46 5.4.3 The impact of least functional-based partial caching 48 5.5 Additional Analysis - Image Download Time 49 Chapter 6. Conclusions 53 Bibliography 55 | - |
| dc.language.iso | en | - |
| dc.subject | 資源分配 | zh_TW |
| dc.subject | 多接取邊緣運算 | zh_TW |
| dc.subject | 5G | zh_TW |
| dc.subject | 容器 | zh_TW |
| dc.subject | 快取 | zh_TW |
| dc.subject | Caching | en |
| dc.subject | 5G | en |
| dc.subject | Container | en |
| dc.subject | Multi-access edge computing | en |
| dc.subject | Resource Allocation | en |
| dc.title | 應用程式在邊緣運算系統中的協同延遲提取方法 | zh_TW |
| dc.title | Application Provisioning with Collaborative Lazy Pulling in Edge Computing System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 逄愛君;王志宇;黃琴雅 | zh_TW |
| dc.contributor.oralexamcommittee | Ai-Chun Pang;Chih-Yu Wang;Chin-Ya Huang | en |
| dc.subject.keyword | 多接取邊緣運算,5G,容器,快取,資源分配, | zh_TW |
| dc.subject.keyword | Multi-access edge computing,5G,Container,Caching,Resource Allocation, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202301591 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 16.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
