Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88726
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorHong-Yueh Loen
dc.contributor.author葉濬瑋zh_TW
dc.contributor.authorChun-Wei Yehen
dc.date.accessioned2023-08-15T17:32:08Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation台灣電力公司 (2018). 離岸風力發電第二期計畫可行性研究.
世紀離岸風電設備股份有限公司(2020). 單樁式水下基礎. http://www.cwptw.com/tw/results/50/.
海域大地能源研究室(2016). 離岸風機支撐結構設計-大口徑單樁基礎最佳化設計. http://www.loge.hyd.ncku.edu.tw/research1-2.html.
中華民國國家發展委員會(2020). 臺灣2050 淨零排放路徑及策略總說明. https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76#.
李崧瑋 (2022). 孤立波於雙黏性泥質海床上過直立式圓柱之數值研究. 碩士論文, 國立臺灣大學.
郭一羽 (2001). 海岸工程學. 文山書局.
郭榮煉 (2021). 孤立波對泥質海床上直立式圓柱作用的數值研究. 碩士論文, 國立臺灣大學.
經濟部中央地質調查所 (2019). 工程地質探勘資料庫.
董東璟(2016). 海面上的奔馳者:湧浪. https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=8be2a70a-d625-4dcf-87f7-7ee0dda3e6d8.
鄭偉成、林曉琪(2019). 離岸風力機的雙腳─ 水下基礎技術簡述. https://www.iner.gov.tw/eip/msn.aspx?datatype=YW5hbHlzaXM=&id=MTc4.
廖學瑞、丁金彪、林俶寬 (2014). 離岸風力電場開發之海事工程施工船機與安裝技術初探. https://www.ceci.org.tw/Upload/Download/82AA9555-CC73-4F7C-8A14-2A9664E4B4AC.pdf.
American Petroleum Institute (2000). Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design: Upstream Segment. API Recommended Practice 2A-WSD (RP 2A-WSD): Errata and Supplement 1, December 2002. American Petroleum Institute.
Bihs, H., Kamath, A., Alagan Chella, M., and Arntsen, Ø. A. (2016). Breaking-wave interaction with tandem cylinders under different impact scenarios. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(5):04016005.
Borgman, L. and Chappelear, J. (1957). The use of the Stokes-Struik approximation for waves of finite height. Coastal Engineering Proceedings, (6):16–16.
Chan, I.-C. and Liu, P. L.-F. (2009). Responses of Bingham-plastic muddy seabed to a surface solitary wave. Journal of Fluid Mechanics, 618:155–180.
Chen, L., Zang, J., Hillis, A. J., Morgan, G. C., and Plummer, A. R. (2014). Numerical investigation of wave–structure interaction using OpenFOAM. Ocean Engineering, 88:91–109.
Chen, Z., Xu, G., Ren, Y., Wu, H., Li, M., and Li, Y. (2023). Fluid characteristics of waveinduced liquefied silty seabed and the resulting wave attenuation. Ocean Engineering, 279:114581.
Dean, R. G. and Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists, volume 2. World Scientific Publishing Company.
Gazi, A. H., Afzal, M. S., and Dey, S. (2019). Scour around piers under waves: Current status of research and its future prospect. Water, 11(11):2212.
Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.
Goda, Y. (1966). A study on impulsive breaking wave force upon a vertical pile. Rept. Port and Harbour Res. Inst., 5(6):1–30.
Greenshields, C. (2020). OpenFOAM v8 User Guide. The OpenFOAM Foundation, London, UK.
Guo, R. and Lo, P. H.-Y. (2022). Numerical investigation on solitary wave interaction with a vertical cylinder over a viscous mud bed. Water, 14(7):1135.
Healy, T., Wang, Y., and Healy, J.-A. (2002). Muddy coasts of the world: processes, deposits and function. Elsevier.
Higuera, P. (2017). olaflow: CFD for waves [Software]. https://doi.org/10.5281/zenodo.1297013.
Higuera, P., Lara, J. L., and Losada, I. J. (2013). Realistic wave generation and active wave absorption for navier–stokes models: Application to openfoam®. Coastal Engineering, 71:102–118.
Hirt, C. W. and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1):201–225.
Hsu, W., Hwung, H., Hsu, T., Torres-Freyermuth, A., and Yang, R. (2013). An experimental and numerical investigation on wave-mud interactions. Journal of Geophysical Research: Oceans, 118(3):1126–1141.
Huang, Z. and Aode, H. (2009). A laboratory study of rheological properties of mudflows in hangzhou bay, china. International Journal of Sediment Research, 24(4):410–424.
Jiang, X., Yin, Z., and Wang, Y. (2022). Numerical modelling of breaking wave interaction with the individual sections of a vertical cylinder using OpenFOAM®. Ocean Engineering, 266:112693.
Kirkgöz, M. (1995). Breaking wave impact on vertical and sloping coastal structures. Ocean Engineering, 22(1):35–48.
Larsen, B. E. and Fuhrman, D. R. (2023). Re-parameterization of equilibrium scour depths and time scales for monopiles. Coastal Engineering, page 104356.
Le Méhauté, B. (1969). An introduction to hydrodynamics and water waves, volume 52. Environmental Science Servies Administration.
Morison, J., Johnson, J. W., and Schaaf, S. A. (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, 2(05):149–154.
Ogino, Y., Hirata, Y., Kihana, S., and Nitta, N. (2018). Numerical simulation of free-flight transfer by a 3D metal transfer model. Quarterly Journal of the Japan Welding Society, 36:94–103.
Park, Y. S., Liu, P. L.-F., and Clark, S. J. (2008). Viscous flows in a muddy seabed inducedby a solitary wave. Journal of Fluid Mechanics, 598:383–392.
Sarpkaya, T. (1981). Morison’s Equation and the Wave Forces on Offshore Structures. Technical report, CR 82.008, Naval Civil Engineering Laboratory, Port Hueneme, CA, USA.
Shademan, M., Barron, R., and Balachandar, R. (2013). Evaluation of OpenFOAM in academic research and industrial applications. In 21st Conference of the CFD Society of Canada, page 7.
Soltanpour, M., Shamsnia, S. H., Shibayama, T., and Nakamura, R. (2018). A study on mud particle velocities and mass transport in wave-current-mud interaction. Applied Ocean Research, 78:267–280.
Sumer, B., Christiansen, N., and Fredsøe, J. (1993). Influence of cross section on wave scour around piles. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(5):477–495.
Sumer, B. M. et al. (2002). The mechanics of scour in the marine environment. World Scientific.
Sumer, B. M. and Fredsøe, J. (1998). Wave scour around group of vertical piles. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(5):248–256.
Sumer, B. M. and Fredsøe, J. (2001). Wave scour around a large vertical circular cylinder. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(3):125–134.
Sumer, B. M., Fredsøe, J., and Christiansen, N. (1992). Scour around vertical pile in waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(1):15–31.
Sumer, B. M., Whitehouse, R. J., and Tørum, A. (2001). Scour around coastal structures: a summary of recent research. Coastal Engineering, 44(2):153–190.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88726-
dc.description.abstract本研究使用計算流體力學軟體OpenFOAM,模擬台灣離岸風電單樁式基礎在泥質海床與週期波浪的交互作用,為了模擬較真實的情況,查閱台灣離岸風電相關文獻,取得設計波浪條件、基樁直徑及土壤參數,使用雙黏性流體及牛頓流體簡化描述泥的運動行為。過去研究多關注於砂質海床,較少泥質海床的研究,因此本研究針對泥質海床深入探討。研究成果顯示,圓柱附近泥水交界面以上有小部分的水流速會被泥影響,使流速發生減速甚至回流的現象。不考慮泥床影響將低估負x方向的圓柱水平作用力,高估正x方向的圓柱水平作用力,而圓柱的俯仰力矩將隨著水平受力上升或下降,兩者趨勢相同。泥質海床與砂質海床兩者在圓柱周圍的沖刷深度量級相近。這些研究結果可以提供台灣離岸風電或其他海洋工程參考。zh_TW
dc.description.abstractThis study is based on the computational fluid dynamics software OpenFOAM to simulate the interaction between a monopile foundation and a muddy seabed under periodic waves in Taiwan. To capture more realistic conditions, relevant literature on offshore wind energy in Taiwan is reviewed to obtain design wave conditions, pile diameter, and soil parameters. The motion of mud is simplified using the bi-viscous and Newtonian models. Most of the existing research has focused on sandy seabeds, with limited studies on muddy seabeds. Consequently, this study focuses on muddy seabeds. Here we show that near the cylinder and above the mud-water interface, a small portion of the water flow is influenced by the mud, resulting in a deceleration or even reversal flow. Neglecting the influence of the mud bed would underestimate the negative horizontal force acting on the cylinder and overestimate the positive horizontal force in the x-direction. The pitching moment of the cylinder will increase or decrease with the horizontal force, following a similar trend. The order of scour depth magnitude around cylinder between muddy and sandy seabeds is the same. These research results can provides reference for Taiwan's offshore wind and other marine engineering structures.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:32:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:32:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
目錄ix
圖目錄xiii
表目錄xvii
符號列表xix
第一章緒論1
1.1 研究背景1
1.2 文獻回顧2
1.3 研究目的2
1.4 研究方法3
1.5 論文架構4
第二章OpenFOAM 數值模型5
2.1 雙黏性流體模型6
2.2 自由液面計算方法9
2.3 控制方程式10
2.4 初始條件及邊界條件10
2.5 圓柱方位角定義12
2.6 圓柱受力及傾倒力矩計算方法12
第三章真實尺度15
3.1 圓柱直徑15
3.2 波浪參數15
3.3 土壤參數17
3.4 本章小結21
第四章模型驗證23
4.1 週期波23
4.1.1 Third-order Stokes wave 24
4.1.2 計算區域25
4.1.3 網格劃分26
4.1.4 模型參數27
4.1.5 物理參數27
4.1.6 數值結果驗證27
4.2 圓柱受力29
4.2.1 Morison 波力計算公式30
4.2.2 計算區域31
4.2.3 網格劃分31
4.2.4 模型參數34
4.2.5 物理參數34
4.2.6 數值結果驗證34
4.3 研究室過去研究經驗35
4.4 本章小結36
第五章數值研究37
5.1 實驗設計37
5.1.1 計算區域39
5.1.2 網格劃分40
5.1.3 模型參數41
5.1.4 物理參數43
5.1.5 波高計位置43
5.1.6 選用數據:泥面異常44
5.1.7 選用數據:波高百分比誤差46
5.1.8 模型驗證49
5.2 流速分析49
5.2.1 xz 截面流場分布50
5.2.2 不同泥質海床流變模型流速53
5.2.3 不同泥質海床厚度流速55
5.3 圓柱受力57
5.3.1 不同泥質海床流變模型圓柱受力57
5.3.2 不同泥質海床厚度圓柱水平受力58
5.4 圓柱傾倒力矩59
5.4.1 不同泥質海床流變模型傾倒力矩60
5.4.2 不同泥質海床厚度傾倒力矩61
5.5 底床沖刷62
5.5.1 歷時最大沖刷與堆積62
5.5.2 與砂質海床比較沖刷深度63
5.5.3 不同泥質海床流變模型泥面高程65
5.5.4 不同泥質海床厚度泥面高程66
5.6 本章小結67
第六章結論與未來展望69
6.1 結論69
6.2 未來展望70
參考文獻71
附錄1 — OpenFOAM 設定77
1.1 0.org 77
1.2 Constant 80
1.3 System 81
-
dc.language.isozh_TW-
dc.subjectOpenFOAMzh_TW
dc.subject海床沖刷zh_TW
dc.subject風機基座zh_TW
dc.subject真實尺度zh_TW
dc.subject週期波zh_TW
dc.subject雙黏性泥床zh_TW
dc.subjectperiodic waveen
dc.subjectbi-viscous muddy seabeden
dc.subjectseabed erosionen
dc.subjectwind turbine foundationen
dc.subjectreal-scaleen
dc.subjectOpenFOAMen
dc.title以真實尺度模擬週期波於泥質海床上過風機基座zh_TW
dc.titleUsing Realistic Parameters to Simulate Periodic Waves Passing a Wind Turbine Foundation over a Muddy Seabeden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee戴璽恆;詹益齊zh_TW
dc.contributor.oralexamcommitteeHsi-Heng Dai;I-Chi Chanen
dc.subject.keyword真實尺度,週期波,風機基座,雙黏性泥床,海床沖刷,OpenFOAM,zh_TW
dc.subject.keywordreal-scale,periodic wave,wind turbine foundation,bi-viscous muddy seabed,seabed erosion,OpenFOAM,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202303445-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf11.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved