Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88713
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李國譚zh_TW
dc.contributor.advisorKuo-Tan Lien
dc.contributor.author陳越予zh_TW
dc.contributor.authorYue-Yu Chenen
dc.date.accessioned2023-08-15T17:28:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-26-
dc.identifier.citation行政院農業委員會. 藍莓品種性狀表填列說明. <https://law.coa.gov.tw/glrsnews/Download.ashx?FileID=10459>
林順福. 2005. 作物品種之DNA 鑑定技術. 21 世紀農業發展與新興科技應用研討會.
高典林. 2006. 遠親雜交育種. p. 115–124. 刊於: 高典林主編. 現代作物育種學. 藝軒. 臺北. 臺灣.
王怡雯、李國譚. 2013. 兔眼藍莓品種改良. 植物種苗. 15:15–27.
林家玉、王柏蓉、丁文彥. 2014. 利用簡單重複序列(SSR)分子技術鑑別小米品種. 臺東區農業改良場研究彙報. 24:36–46.
蔡明軒. 2016. 葉片顏色與人為遮陰對兔眼藍莓葉片氣體交換及植株生長之生理影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
王顥澄. 2022 探討兔眼藍莓果實無子或少子之機制. 國立臺灣大學園藝暨景觀學系碩士論文.
Ballington, J.R. 2009. The Role of Interspecific Hybridization in Blueberry Improvement. Acta Hort 810:49–59.
Ballington, J.R., and S.D. Rooks. 2009. Blueberry Named ‘Robeson’. Plant patent Application Pub.
Ballington, J.R., and W.T. Bland. 2017. Blueberry Plant Named ‘HEINTOOGA’. Plant patent Application Pub.
Bassil, N., A. Bidani, A. Nyberg, K. Hummer, and L.J. Rowland. 2020. Microsatellite markers confirm identity of blueberry (Vaccinium spp.) plants in the USDA-ARS National Clonal Germplasm Repository collection. Genet. Resour. Crop Evol. 67:393–409.
Bennett, M.D., and I.J. Leitch. 1995. Nuclear DNA amounts in angiosperms. Ann. Bot. 76:113–176.
Boches, P.S., N.V. Bassil, and L.J. Rowland. 2005. Microsatellite markers for Vaccinium from EST and genomic libraries. Mol. Ecol. Notes 5:657–660.
Boches, P.S., N.V. Bassil, and L.J. Rowland. 2006. Genetic diversity in the highbush blueberry evaluated with microsatellite markers. J. Am. Soc. Hortic. Sci. 131:674–686.
Bretagnolle, F., and J.D. Thompson. 1995. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 129:1–22.
Brevis, P.A., D.S. NeSmith, H.Y. Wetzstein, and D.B. Hausman. 2006. Production and viability of pollen and pollen–ovule ratios in four rabbiteye blueberry cultivars. J. Am. Soc. Hortic. Sci. 131:181–184.
Brewbaker, J.L., and B.H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 50:859–865.
Brightwell, W.T., G.M. Darrow, and O.J. Woodard. 1949. Inheritance of seedlings of Vaccinium constablaei · Vaccinium ashei variety Pecan. Proc. Amer. Soc. Hort. Sci. 53:239–240.
Brightwell, W.T., O. Woodard, G.M. Darrow, and D.H. Scott. 1955. Observations on breeding blueberries for the Southeast. Proc. Am. Soc. Hortic. Sci. 65:274–278.
Butler, J.M. 2006. Genetics and genomics of core short tandem repeat loci used in human identity testing. J. Forensic Sci. 51:253–265.
Camp, W.H. 1945. The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 5:203–275.
Cappai, F., R.R. Amadeu, J. Benevenuto, R. Cullen, A. Garcia, A. Grossman, L.F.V. Ferrão, and P. Munoz. 2020. High-resolution linkage map and QTL analyses of fruit firmness in autotetraploid blueberry. Front. Plant Sci. 11:562171.
Chavez, D.J. and P.M. Lyrene. 2009. Interspecific crosses and backcrosses between diploid Vaccinium darrowii and tetraploid southern highbush blueberry. J. Am. Soc. Hortic. Sci. 134:273–280.
Carlson, J.D., and J.F. Hancock. 1991. A methodology for determining suitable heat-unit requirements for harvest of highbush blueberry. J. Am. Soc. Hortic. Sci. 116: 774–779.
Chandler, C.K., A.D. Draper, and G.J. Galletta. 1985. Crossability of a diverse group of polyploid blueberry interspecific hybrids. J. Am. Soc. Hortic. Sci. 110: 878–881.
Chou, L., S.J. Huang, Chen Hsieh, M.T. Lu, C.W. Song, and F.C. Hsu. 2020. A high-resolution melting analysis-based genotyping toolkit for the peach (Prunus persica) chilling requirement. Int. J. Mol. Sci. 21:1543.
Clark, Melody. and W. J. Wall. 1997. Chromosomes: the Complex Code / M.S. Clark and W.J. Wall. First edition. Chapman & Hall, London
Collard, B.C.Y., and D.J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B 363:557–572.
Costich, D.E., Ortiz, R., Meagher, T.R., Bruederle, L.P., Vorsa, N., 1993. Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theor. Appl. Genet. 86:1001–1006.
Darnell, R. L., G.W. Stutte, G.C. Martin, G.A. Lang, and J.D. Early. 1992. Developmental physiology of rabbiteye blueberry. Hort. Rev. 13:339–405.
Drapper, A.D. 1997. Blueberry breeding for the southern United States. Fruit Var. J. 51:135–138.
Ehlenfeldt, M.K. 1994. The genetic composition and tetrasomic inbreeding coefficients of highbush blueberry cultivars. HortScience 29:1342–1345.
Ehlenfeldt, M.K., Rowland, L.J., Ogden, E.L. 2007. Floral bud cold hardiness of Vaccinium ashei, V. constablaei, and hybrid derivatives and the potential for producing northern-adapted rabbiteye cultivars. HortScience 42:1131–1134.
Ehlenfeldt, M.K., and J.J. Polashock. 2014. Highly fertile intersectional blueberry hybrids of Vaccinium padifolium section Hemimyrtillus and V. corymbosum section Cyanococcus. J. Amer. Soc. Hort. Sci. 139:30–38.
Farneti, B., F. Emanuelli, I. Khomenko, M. Ajelli, F. Biasioli, and L. Giongo. 2020. Development of a novel phenotypic roadmap to improve blueberry quality and storability. Front. Plant Sci. 11:1140.
Galbraith, D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, D.P. Sharma, and E. Firoozababy. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051.
Godwin, I.D., E.A.B. Aitken, and L.W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophor. 18: 1524–1528.
Gómez-Mena, C., D. Honys, R. Datla, and P.S. Testillano. 2022. Editorial: Advances in pollen research: Biology, biotechnology, and plant breeding applications. Front. Plant Sci. 13:876502.
Goodman, R.D., and K.A. Clayton-Green. 1988. Honeybee pollination of highbush blueberries (Vaccinium corymbosum). Aust. J. Expt. Agr. 28:287–290.
Hancock, J.F., and J.H. Siefker. 1982. Levels of inbreeding in highbush blueberry cultivars. HortScience 17:363–366.
Hancock, J.F. 2020. Strawberries, 2nd Edition. CABI, Oxfordshire, UK.
Hinrichsen, P., M.H. Castro, G. Ravest, G. Rojas, M. Mendez, N.V. Bassi, and C. Muñoz. 2008. Minimal microsatellite marker panel for fingerprinting blueberry cultivars. Acta Hortic. 810: 173–180.
Huang, Y., and C.E. Johnson. 1996. A convenient and reliable method to evaluate blueberry pollen viability. HortScience 31:1235.
Jelenkovic, G., A.D. Draper. 1973. Breeding value of pentaploid interspecific hybrids of Vaccinium. J. Yugosl. Pomol. 7:237–244.
Kalt, W., A. Cassidy, L.R. Howard, R. Krikorian, A.J. Stull, F. Tremblay, and R. Zamora-Ros. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr. 11:224–236.
Krebs, S.L., and J.F. Hancock. 1989. Tetrasomic inheritance of isoenzyme markers in the highbush blueberry Vaccinium corymbosum L. Heredity 63:11–18.
Langer, S.M., C.F.H. Longin, and T. Würschum. 2014. Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed. 133:433–441.
Li, K.T. 2009. BLUE FORMOSA- a blueberry initiative program in Taiwan. HortScience 44:1122.
Lyrene, P.M. 1987. Breeding Rabbiteye Blueberries, p.307-353. In: J. Janick (ed.). Plant breeding reviews (Volume 5). VNR, New York, USA.
Lyrene, P.M. 1994. Variation within and among Blueberry Taxa in Flower Size and Shape. J. Amer. Soc. Hort. Sci. 119:1039–1042.
Lyrene, P.M., and R. Ritzinger. 1999. Flower morphology in blueberry species and hybrids. HortScience 34:130–131.
Lyrene, P.M., and J.W. Williamson. 2003. Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica 133:27–36.
Lyrene, P.M. 2008. Breeding Southern Highbush Blueberries, p. 353-414. In: J. Janick (ed.). Plant breeding reviews (Volume 30). John Wiley & Sons, New Jersey, USA.
Martinez, C.P., K. Arumuganathan, H. Kikuchi, and E.D. Earle. 1994. Nuclear DNA content of ten rice species as determined by flow cytometry. Jpn. J. Genet. 69:513–523.
Medeiros, J.G.S., L.A. Biasi, C.M.D. Bona, and F.L. Cuquel. 2018. Phenology, production and quality of blueberry produced in humid subtropical climate. Rev. Bras. Frutic. 40:1–10.
Menzel, A., T. H. Sparks, N. Estrella, and D.B. Roy. 2006. Altered geographic and temporal variability in phenology in response to climate change. Global Ecol. Biogeogr. 15: 498–504.
Miyashita, C., Y. Koito, and I. Ogiwara. 2019. Utility of parthenocarpic interspecific hybrids between Vaccinium corymbosum and Vaccinium virgatum for breeding blueberry cultivars suitable for cluster harvesting. The Horticulture Journal 88: 180–188.
Murray, M.G., and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321–¬4325.
Nishiyama, S., M. Fujikawa, H. Yamane, K. Shirasawa, E. Babiker, and R. Tao. 2021. Genomic insight into the developmental history of southern highbush blueberry populations. Heredity 126:194–205.
Ortiz, R., L.P. Bruederle, T. Laverty, and N. Vorsa. 1991. The origin of polyploids via 2n gametes in Vaccinium section Cyanococcus. Euphytica 61:241–246.
Pathirana, R., C. Wiedow, S. Pathirana, C. Norling, E. Morgan, J. Scalzo, T. Frew, and G. Timmerman-Vaughan. 2016. Better cultivars faster – identification of interspecific blueberry hybrids using SSR markers. Acta Hortic. 1127:223–230.
Qu, L., J.F. Hancock, and J.H. Whallon. 1998. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: Genomic similarity of diploid Vaccinium darrowii and autotetraploid V. corymbosum (Ericaceae). Am. J. Bot. 85:698–703.
Rafalski, J.A., and S.V. Tingey. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9:275–280.
Redpath, L.E., R. Aryal, N. Lynch, J.A. Spencer, A.M. Hulse-Kemp, J.R. Ballington, J. Green, N. Bassil, K. Hummer, T. Ranney, and H. Ashrafi. 2022. Nuclear DNA contents and ploidy levels of North American Vaccinium species and interspecific hybrids. Sci. Hortic. 297:110955.
Retamales, J.B. and J.F. Hancock. 2012. Blueberries. CABI, Oxfordshire, UK.
Ritzinger, R., P.M. Lyrene. 1999. Flower morphology in blueberry species and hybrids. Hortscience 34:130–131.
Rowland, L.J., N. Alkharouf, O. Darwish, E.L. Ogden, J.J. Polashock, N.V. Bassil, and D. Main. 2012. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol. 12:46.
Rowland, L.J., E.L. Ogden, N. Bassil, E.J. Buck, S. McCallum, J. Graham, A. Brown, C. Wiedow, A.M. Campbell, K.G. Haynes, and B.T. Vinyard. 2014. Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Mol. 34:2033–2048.
Sakhanokho, H.F., T.A. Rinehart, S.J. Stringer, M.N. Islam-Faridi, and C.T. Pounders.2018. Variation in nuclear DNA content and chromosome numbers in blueberry. Sci. Hortic. 233:108–113.
Sharpe, R.H., and W.B. Sherman. 1976a. ‘Flordablue’ blueberry. HortScience 11:64–65.
Sharpe, R.H., and W.B. Sherman. 1976b. ‘Sharpblue’ blueberry. HortScience 11:65.
Sharpe, R.H., and W.B. Sherman. 1976c. ‘Flordablue’ and ‘Sharpblue’. Two new blueberries for central Florida. Univ. Fla. Agr. Exp. Sta. Circ. S-240.
Shehata, A.I., H.A. Al-Ghethar, and A.A. Al-Homaidan. 2009. Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J. Biol. Sci. 16: 57–62.
Sliwinska, E. 2018. Flow cytometry – a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30:103–128.
Stucky, B.J., R. Guralnick, J. Deck, E.G. Denny, K. Bolmgren, and R. Walls. 2018. The plant phenology ontology: A new informatics resource for large-scale integration of plant phenology data. Front. Plant Sci. 9: 517.
Treuren, R., H. Kemp, G. Ernsting, B. Jongejans, H. Houtman, and L. Visser. 2010. Microsatellite genotyping of apple (Malus x domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet. Resour. Crop Evol. 57: 853–865.
Tsuda, H., H. Kunitake, M. Yamasaki, H. Komatsu, and K. Yoshioka. 2013. Production of intersectional hybrids between colchicine-induced tetraploid Shashanbo (Vaccinium bracteatum) and highbush blueberry ‘Spartan’. J. Am. Soc. Hortic. Sci. 138:317–324.
Vander Kloet, S.P. 1983. The taxonomy of Vaccinium section Cyanococcus: A summation. Can. J. Bot. 61:256–266.
Vorsa, N., G. Jelenkovic, A.D. Draper, and W.V. Welker. 1987. Fertility of 4x x 5x and 5x x 4x progenies derived from Vaccinium ashei/corymbosum pentaploid hybrids. J. Am. Soc. Hortic. Sci. 112:993–997.
Vorsa, N., and J.R. Ballington. 1991. Fertility of triploid highbush blueberry. J. Am. Soc. Hortic. Sci. 116: 336–341.
Yousef, G.G., M.A. Lila, I. Guzman, J.R. Ballington, and A.F. Brown. 2014. Impact of Interspecific Introgression on Anthocyanin Profiles of Southern Highbush Blueberry. Journal of the American Society for Horticultural Science 139:99–112.
Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88713-
dc.description.abstract兔眼藍莓(Vaccinium virgatum Aiton)之原生地美國東南部氣候環境和臺灣相似,且於臺灣中北部平地種植之生長情形良好。另一方面,南高叢藍莓(V. hybrid)在美國育種歷程較長,多數品種含優良商業性狀,為驗證兩者雜交之五倍體藍莓是否具可發展為新品種或藍莓育種材料,本研究鑑定三個於2015年雜交之兔眼和南高叢藍莓組合AG (Austin x Gulfcoast)、PM (Powderblue x Misty) 及MO (Montgomery x O’Neal) 之親緣關係,並進行性狀、物候和稔性等調查。
流式細胞儀之分析結果顯示PM ‘NTU294’、PM ‘NTU295’和MO ‘NTU108’三者為五倍體,DNA含量介於2.69至2.96 pg/2C之間,而AG ‘NTU048’之DNA含量則為3.43 pg/2C,和母本‘Austin’的3.66 pg/2C接近,應為六倍體。為進一步驗證倍體數分析結果,再利用SSR (Simple sequence repeat)分子標誌VCC_K4進行鑑定,電泳結果顯示PM ‘NTU294’、PM ‘NTU295’和MO ‘NTU108’三者雜交成功,而AG ‘NTU048’之父本應非原先選定之‘Gulfcoast’。形態和性狀調查結果顯示,五倍體藍莓生長狀況良好,果實有少子特性,惟果實較小,且果實表面無果粉覆蓋。五倍體藍莓果實成熟期介於親本之間,PM ‘NTU295’於2021和2022兩年皆有最高產量。電子顯微鏡觀察PM ‘NTU294’、PM ‘NTU295’和MO ‘NTU108’三者之花粉皆顯示為四分體複合型花粉,PM ‘NTU294’和MO ‘NTU108’可觀測到發育不正常的花粉萌發孔,但體外花粉萌發率顯示所有五倍體子代花粉活力皆正常。AG ‘NTU048’之葉片、花朵、果實形態和果實成熟期都更似母本兔眼藍莓,花粉形態亦正常,判斷為純六倍體兔眼藍莓。綜上所述,本研究證實PM ‘NTU294’、PM ‘NTU295’和MO ‘NTU108’為雜交成功之五倍體藍莓,雖三者並無特別突出之優良商業性狀,但仍有作為育種材料之潛力。
zh_TW
dc.description.abstractRabbiteye blueberries (Vaccinium virgatum Aiton) are promising blueberry types for central and northern Taiwan where the climate is similar to their originated habitat. On the other hand, most southern highbush blueberry cultivars (V. hybrid) possess outstanding commercial traits due to their advanced breeding progresses in the United States. In this thesis, the parentage of three hybrid combinations between the rabbiteye and southern highbush blueberry AG (Austin x Gulfcoast), PM (Powderblue x Misty), and MO (Montgomery x O’Neal) was identified. The leaf, flower, and berry morphological traits, phenology, and pollen viability of these hybrids and parental plants were then compared and investigated to evaluate the potential of interspecific hybridization in rabbiteye blueberry breeding.
The results of flow cytometry indicated PM ‘NTU294’, PM ‘NTU295’, and MO ‘NTU108’ are pentaploid blueberries, with their DNA nuclear content ranging from 2.69 to 2.96 pg/2C. The DNA nuclear content of AG ‘NTU048’ was 3.43 pg/2C, being close to the number 3.66 pg/2C of its maternal parent ‘Austin’, indicating AG ‘NTU048’ was a hexaploid blueberry. Selected simple sequence repeat (SSR ) markers were then utilized to further confirm the results of the ploidy test. Through the gel electrophoresis result of SSR marker VCC_K4, PM ‘NTU294’, PM ‘NTU295’, and MO ‘NTU108’ were found to be successfully hybridized, while ‘Gulfcoast’ was verified not to be the pollen donor of AG ‘NTU048’. The pentaploid blueberries showed vigorous growth and had seedless traits but smaller berry size and lack of surface bloom. The harvest time of the pentaploid blueberries was later than their southern highbush parent but earlier than their rabbiteye parents, and PM ‘NTU295’ was found to have the highest yield in both 2021 and 2022. The pollen grain of ‘NTU294’, PM ‘NTU295’, and MO ‘NTU108’ was typical tetrahedral tetrad but abnormal pollen aperture was found in some pollen grains of PM ‘NTU294’ and MO ‘NTU108’. Nevertheless, the pollen viability of all pentaploid lines was normal. Morphological analysis indicated AG ‘NTU048’ was likely to be a pure rabbiteye blueberry. This study elucidated PM ‘NTU294’, PM ‘NTU295’, and MO ‘NTU108’ as pentaploid blueberries and these lines may have the potential of being new breeding materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:28:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:28:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致 謝 i
摘 要 ii
Abstract iii
目 錄 v
表目錄 viii
圖目錄 ix
附 錄 xii
第一章 前人研究 1
1.1前言 1
1.2藍莓種原 2
1.2.1藍莓分類 2
1.2.2高叢藍莓 2
1.2.3兔眼藍莓 3
1.3藍莓遺傳學之研究 3
1.3.1藍莓的遺傳背景 3
1.3.2藍莓的倍體數研究 4
1.3.3藍莓的生殖特性 4
1.4種間雜交藍莓之研究 5
1.4.1種間雜交對藍莓植株性狀的影響 5
1.4.2種間雜交對藍莓生殖之影響 5
1.4.3種間雜交對藍莓物候的影響 6
1.4.4雜交藍莓之親緣鑑定 6
1.4.5種間雜交藍莓之利用 7
1.5試驗假說及目的 8
第二章 材料與方法 9
2.1試驗地點和材料 9
2.2種間雜交藍莓倍體數及DNA含量分析 9
2.2.1樣品細胞核懸浮液之製備 9
2.2.2標準品細胞核懸浮液之製備 9
2.2.3細胞核懸浮液之染色與處理 10
2.2.4流式細胞儀分析與設定 10
2.2.5倍體數與基因組DNA含量估算 10
2.3種間雜交藍莓之親緣鑑定 11
2.3.1藍莓DNA之萃取 11
2.3.2 SSR分子標誌之選取及PCR (Poly Chain Reaction)反應條件 11
2.3.3電泳分析 11
2.4種間雜交藍莓子代與父母本形態和物候之調查 11
2.4.1性狀調查 11
2.4.2葉片性狀測量 12
2.4.3花性狀測量 12
2.4.4果實性狀測量 12
2.4.5物候期調查 12
2.5種間雜交藍莓花粉形態與萌發率 13
2.5.1花粉形態 13
2.5.2花粉萌發率之測定 13
2.6統計分析與製圖 13
第三章 試驗結果 15
3.1種間雜交藍莓之親緣鑑定 15
3.1.1雜交親本與F1子代藍莓之倍體數 15
3.1.2雜交親本與F1子代藍莓之基因體DNA含量 15
3.1.3 SSR分子標誌之鑑定結果 15
3.2種間雜交藍莓子代和父母本形態和物候之差異 16
3.2.1種間雜交對子代葉片、花朵和果實性狀之影響 16
3.2.2種間雜交對子代物候之影響 17
3.2.3父母本與子代花粉形態與萌發率調查 18
第四章 討論 58
4.1藍莓的親緣鑑定 58
4.2 五倍體藍莓之利用 59
4.3 五倍體藍莓之物候 61
4.4種間雜交對五倍體藍莓生殖之影響 62
第五章 結論 64
參考文獻 65
附錄 72
-
dc.language.isozh_TW-
dc.subject藍莓育種zh_TW
dc.subject倍體數分析zh_TW
dc.subject種間雜交zh_TW
dc.subject五倍體zh_TW
dc.subjectSSR分子標誌zh_TW
dc.subjectInterspecific hybridizationen
dc.subjectPentaploiden
dc.subjectblueberry breedingen
dc.subjectSSR markeren
dc.subjectploidy testen
dc.title種間雜交五倍體藍莓親緣鑑定及形態與物候分析zh_TW
dc.titleParentage Identification, and Morphological and Phenological Analysis of Interspecific Pentaploid Blueberry (Vaccinium virgatum Aiton x V. corymbosum hybrid)en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李金龍;張哲嘉;陳香君zh_TW
dc.contributor.oralexamcommitteeChing-Lung Lee;Jer-Chia Chang;Shiang-Jiuun Chenen
dc.subject.keyword五倍體,種間雜交,SSR分子標誌,倍體數分析,藍莓育種,zh_TW
dc.subject.keywordPentaploid,Interspecific hybridization,SSR marker,ploidy test,blueberry breeding,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202302086-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
Appears in Collections:園藝暨景觀學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
3.58 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved