請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方煒 | zh_TW |
| dc.contributor.advisor | Wei Fang | en |
| dc.contributor.author | 王博煜 | zh_TW |
| dc.contributor.author | Bo-Yu Wang | en |
| dc.date.accessioned | 2023-08-15T17:27:28Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | 1.方煒。2001。自動化植物工廠。出自〝設施栽培自動化專輯〞,103-111。林達德、李桂芝主編。臺北:國立臺灣大學生物產業機電工程學系。
2.方煒。2011。話說『植物工廠』。初版。台北:農業推廣委員會。 3.方煒。2012。人工光型植物工廠。初版,51-59。台北:豐年社。 4.方煒。2012。臺灣植物工廠發展現況與展望。精密設施工程與植物工廠實用化技術研討會。16-23。臺南:臺南區農業改良場。 5.方煒、仝宇欣。2020。數字化植物工廠理論與實踐。第一版。中國:中國農業科學技術出版社。 6.黃泓銘。2021。紅、遠紅光比例影響植物工廠中香波綠萵苣生長與光子及電力產能。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 7.黃煒哲。2019。植物工廠內仿生栽培之研究-陽光與靜電場。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 8.楊書瑋。2016。降低潮汐式淹灌系統之養液溫度允許於較高氣溫環境下栽培波士頓萵苣。碩士論文。臺北:臺灣大學生物產業機電工程學研究所。 9.蕭瑞展。2016。光照、溫度與風吹對人工光型植物工場水耕結球萵苣(Lactuca sativa L. var. capitata L.)產量與品質之影響。碩士論文。臺北:臺灣大學園藝暨景觀學研究所。 10.鍾興穎。2019。植物工廠中調整光質與養液配方生產高附加價值芽菜與萵苣。博士論文。臺北:臺灣大學生物產業機電工程學研究所。 11.Ahmed, H. A., Tong, Y. X. and Yang, Q. C. . 2020. Lettuce plant growth and tipburn occurrence as effected by airflow using a multi-fan system in a plant factory with artificial light. Journal of Thermal Biology 88 102496. 12.Aloni, B., Pashkar, T. and Libel, R. . 1986. The possible involvement of gibberellins and calcium in tipburn of Chinese cabbage: study of intact plants and detached leaves. Plant Growth Regulation 4: 3-11. 13.Baeza, E. J., Perez-Parra, P. P., Montero, J. I., Bailey, B. J., Lopez, J. C. and Gazquez, J. C. . 2009. Biosystems Eng. 4: 86-96. 14.Bartal, D. J. and Tibbitts, T. W. . 1991. Calcium localization in lettuce leaves with and without tipburn: comparison of controlled-environment and field-grown plants. HortScience 116(5): 870-875. 15.Choi, K. Y. and Paek, K. Y. . 2003. Effect of Air Temperature on Tipburn Incidence of Butterhead and Leaf Lettuce in a Plant Factory. J. Kor. Soc. Hort. Sci. 44(6):805-808. 16.Davis, S. K. . 2003. Ecological Climatology: Concepts and Application. Natural Resources Journal. 4: 1291-1296. 17.Esterhuizen, B. . 2019. The investigation of various methods of pollination as applied to pollinate Fragaria X ananassa in a cropbox/transformed shipping container environment. Assignment number 598729. 18.Fang, W. . 2013. Quantification of Performance in plant factory, p. 64–71, Technology Advances in Protected Horticulture-Proceedings of 2013 the 3rd High-level International Forum on Protected Horticulture (Shouguang China). 19.Fang, H., Li, K., Wu, G., Cheng, R., Zhang, Y. and Yang, Q. . 2019. A CFD analysis on improving lettuce canopy airflow distribution in a plant factory considering the crop resistance and LEDs heat dissipation. Biosystems Engineering 200: 1-12. 20.Freie, R. L. and Pugh, N. L. . 1994. Vegetable summary 1992-93. Fla, Agr. Stat, Serv., Orlando, FL. 107: 99-101. 21.Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. and Harder, L. D. . 2010. Global growth and stability of agricultural yield decrease with pollinator dependence, ed. Daily, G. C. . Stanford University. 22.Hiroki, R., Shimizua, H., Ito, A., Nakashima, H., Miyasaka, J. and Ohdoi, K. . 2014. Acta Hort. . 606, 8502. 23.Kang, J. H., Kumar, S. K., Atulba, S. L. S., Jeong, B. R. and Hwang, S. J. . 2013. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Korean Society for Horticultural Science and Springer. 24.Kubota, C. and Chun, C. . 2000. Transplant production in the 21st century. Springer Science+Business Media Dordrecht. 25.Lee, J. G., Choi, C. S., Jang, Y. A., Jang, S. W., Lee, S. G. and Um, Y. C. . 2013. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hort. Environ. Biotechnol. 54(4): 303-310. 26.Li, R., Yang, S., Ma, H., Wang, M., Wang, A., Huang, W., Wei, Q., Zhong, P. and Qiao, R. . 2020. Avdances in Research on Flower Bud Morphological Differentiation of Strawberry. Botanical Research. 9(2):101-113. 27.Liu, N., Ji, F., Xu, L. and He, D. . 2019. Effects of LED light quality on the growth of pepper seedling in plant factory. Int. J. Agric. and Biol. Eng. 12(5): 44-50. 28.Mohamed, M. J., Rihan, H. Z., Aljafer, F. N. and Fuller, M. P. . 2021. The impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.), ed. Fujita, M. Switzerland: MDPI. 29.Nagata, R. T. and Stratton, M. L. . 1994. Development of an objective test for tipburn evaluation. Proc. Fla. State Hort. Soc. 107: 99-104. 30.Pascal, D., Denyse, I. L., Sébastien, V. and Sabrina B. Q. . 2012. Thermophysical properties and thermal behavior of leafy vegetables packaged in clamshells. Journal of Food Engineering. 113(1):27–32. 31.Shibata, T., Iwao, K. and Takano, T. . 1995. Effect of vertical air flowering on lettuce growing in a plant factory. Acta Hort. . 399. 32.Shimizu, H., Hoshi, T., Nakamura K. and Park, J. E. .2014. Development of a non-contact ultrasonic pollination device. Environ. control Biol. 53(2): 85-88. 33.Timerman, D., Greene, D. F., Urzay, J. and Ackerman, J. D. . 2014. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae). J. R. Soc. Interface 11: 20140866. 34.Wietzkea, A., Westphal, C., Gras, P., Kraft, M., Pfohl, K., Karlovsky, P., Pawelzik, E,. Tscharntke, T. and Smit, I. . 2018. Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, ecosystems and environment 258: 197-204. 35.Zang, Y. and Kacira, M. . 2022. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosystems Engineering 220: 73-86. 36.Zang, Y., Kacira, M. and An, L. . 2016. A CFD studying on improving air flow uniformity in indoor plant factory system. Biosystems Engineering 147: 193-205. 37.Zou, S. H., Liu, H., Fan, R., He, Z., Zhang, Y., Chen, Y., Sun, X., Zhou, X., Yang, Q., Zheng, Y. and Liu, W. . 2020. Temperature field simulation using CFD in plant factory. Earth and Environmental Science. 560 38.Zwart, H. F. . 1996. Analyzing energy-saving options in greenhouse cultivation using a simulation model. DLO Institute of Agricultural and Environmental Engineering. 5-96. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88708 | - |
| dc.description.abstract | 本研究透過計算流體力學 (Computational Fluid Dynamics, CFD) 軟體模擬草莓 (Fragaria × ananassa Duch.) 與奶油萵苣 (Lactuca sativa var. capitata) 栽培空間的流場與溫度場分布,旨在為草莓自動授粉與半結球奶油萵苣葉燒 (Tip-burn) 問題提供對策。草莓栽培採用由CFD模擬得出的較佳給風方式,比較人工授粉與自動授粉之果實授粉率;奶油萵苣栽培採用三個不同流場設計進行試驗,探討透過栽培探討模擬結果對於葉燒程度之影響。
草莓流場模擬以風管中心軸相對於層架長邊水平軸旋轉30度,搭配層架左側軸流扇之流場具有最佳的風速分布,風速大於0.5 m·s-1的占比為85.85 %。依此流場設計進行栽培,層架內單層有五株作物,每株採收22 ~ 24顆果實,果實之授粉程度達80 % 以上。 半結球萵苣流場模擬結果顯示以兩支風管 (管內風速11 m·s-1) 可有最大占比 (45.24 %) 的適當葉冠層風速 (0.3 ~ 1 m·s-1),溫度場模擬結果顯示平均溫度為 293.9 K (20.8°C),略低於模擬之初的環境溫度 (294 K),栽培後植株地上部鮮重為 123 g.plant-1且均無葉燒發生。垂直流場 (風管處理組) 可有效降低葉燒程度,優於側向流場 (軸流風扇處理組)。高風速可促進蒸散發生,利於散熱,但過高的風速則會使地上部鮮重降低。以較低的風速 (4.5 m·s-1) 進行栽培且改採間歇方式送風,地上部鮮重 (143.6 g·plant-1) 可提高,但葉燒程度也略為增加 (0.2)。 本研究以CFD模擬探討層架內氣流與溫度的分布情形,藉此找出合適的流場設計,採用風管及軸流扇的給風方式進行草莓自動授粉與奶油萵苣之栽培,前者提供一個可行的方案,作為室內草莓授粉之選項;後者可降低葉燒程度,提高其生產效能並提升其賣相。 | zh_TW |
| dc.description.abstract | This study used Computational Fluid Dynamics (CFD) to simulate the airflow and temperature distribution within the cultivation space of strawberry (Fragaria × ananassa Duch.) and semi-head lettuce (Lactuca sativa var. capitata). The objective was to address the issues of automated pollination in strawberries and tip-burn in Boston lettuce. For strawberry cultivation, the optimal airflow configuration obtained through CFD simulation was utilized to compare the pollination rates between hand and automated methods. In the case of semi-head lettuce, three different flow field designs were tested to explore the impact of simulation results on tip-burn severity during cultivation.
In the strawberry flow field simulation, rotating the wind duct center axis 30 degrees relative to the long side of the shelf's horizontal axis and coupling it with the flow field generated by the axial fan on the left side of the shelf yielded the optimal wind velocity distribution. The proportion of wind velocity exceeding 0.5 m·s-1 was 85.85 %. Cultivation was carried out based on this flow field design, with a single layer of five plants per shelf. Each plant yielded around 22 to 24 fruits, and the pollination rate of the strawberries exceeded 80 %. The flow field simulation results for semi-head lettuce indicated that using two wind ducts (with an internal wind velocity of 11 m·s-1) achieved an appropriate canopy wind speed distribution with the highest proportion (45.24 %) falling within the range of 0.3 to 1 m·s-1. The temperature field simulation results reveal an average temperature of 293.9 K (20.8 °C), slightly lower than the initial environmental temperature in the simulation (294 K). After cultivation, the shoot fresh weight of the plants was 123 g·plant-1, and no instances of tip-burn were observed. The vertical flow field (wind duct treatment) effectively reduced tip-burn severity, outperforming the lateral flow field (axial fan treatment). Higher wind velocity facilitated transpiration and cooling, yet excessive wind velocity led to a reduction in shoot fresh weight. Employing lower wind velocity (4.5 m·s-1) for cultivation and adopting intermittent airflow delivery increased shoot fresh weight (143.6 g·plant-1) but slightly elevated tip-burn severity (0.2). This study used CFD simulation to explore the distribution of airflow and temperature within shelves. The wind duct and axial fan methods were used for the cultivation of strawberries with automated pollination and semi-head lettuce. The former provided a feasible solution as an option for indoor strawberry pollination, while the latter reduced tip-burn severity, enhanced production efficiency, and improved presentation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:27:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:27:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xv 第一章、前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章、文獻探討 3 2.1 植物工廠 3 2.2 光 5 2.2.1 光週期 5 2.2.2 光量 6 2.2.3 光質 7 2.3 草莓 9 2.3.1 室外草莓授粉 9 2.3.2 植物工廠內草莓之授粉 10 2.4 奶油萵苣 10 2.4.1 葉燒 (Tip-burn) 11 2.5 計算流體力學應用於植物工廠 13 第三章、研究方法 21 3.1 試驗場域 21 3.2 環境控制 21 3.2.1 溫度控制 21 3.2.2 二氧化碳控制 22 3.2.3 人工光源 22 3.3 水耕資材與養液成分 23 3.3.1 栽培系統與水耕資材 23 3.3.2 養液成分 24 3.4 量測儀器與設備 26 3.5 溫度量測系統設計與實現 26 3.6 量測方法 28 3.6.1 草莓授粉情形評級 28 3.6.2 植物生長性狀及重量量測 28 3.6.3 葉燒嚴重程度 29 3.7 統計分析 29 3.8 生產效能量化指標 29 3.8.1 電力產能 (Energy Yield, EY) 30 3.8.2 光子產能 (Photon Yield, PY) 31 3.9 運用CFD在電腦上之軟硬體規格 32 3.9.1 硬體規格 32 3.9.2 軟體規格 32 3.10 影像處理之應用 34 3.11 研究方法 34 3.11.1 草莓授粉試驗 34 3.11.2 不同流場之義大利半結球萵苣栽培試驗 42 3.11.3 奶油萵苣之CFD模擬Ⅰ與栽培驗證 45 3.11.4 奶油萵苣之CFD模擬Ⅱ與栽培驗證 49 3.11.5 給予週期性流場之奶油萵苣栽培試驗 50 第四章、結果與討論 53 4.1 草莓授粉試驗 53 4.1.1 東與南(E&S)和西與北(W&N)方向流場搭配三種風管旋轉角度之模擬 53 4.1.2 單一側風向及複合風向之模擬 60 4.1.3 草莓栽培情形 62 4.1.4 花朵之流場模擬 63 4.2 不同流場設計之義大利半結球萵苣栽培試驗 66 4.3 三種流場設計下之CFD模擬與奶油萵苣栽培 69 4.3.1 流場模擬 69 4.3.2 溫度場模擬 74 4.3.3 栽培試驗 78 4.4 修正後三種流場設計下CFD模擬與奶油萵苣栽培 83 4.4.1 流場模擬 83 4.4.2 溫度場模擬 88 4.4.3 栽培試驗 93 4.5 奶油萵苣在間歇式與明期連續式流場下之栽培 100 4.6 奶油萵苣栽培之數據總覽 105 4.6.1 風扇之能耗與電力產能總覽 108 4.6.2 葉燒程度與位置 109 4.7 與潮汐式水耕栽培奶油萵苣之比較 111 第五章、結論 113 第六章、建議 115 參考文獻 117 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 植物工廠 | zh_TW |
| dc.subject | 奶油萵苣 | zh_TW |
| dc.subject | 草莓授粉 | zh_TW |
| dc.subject | 葉燒 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | Strawberry pollination | en |
| dc.subject | Semi-head lettuce | en |
| dc.subject | Tip-burn | en |
| dc.subject | Plant factory | en |
| dc.subject | CFD | en |
| dc.title | 計算流體力學應用於植物工廠草莓自動授粉與半結球萵苣葉燒防止之探討 | zh_TW |
| dc.title | Applying Computational Fluid Dynamics to Investigate on Automatic Pollination of Strawberry and Tip-burn Prevention of Semi-Head Lettuce in Plant Factory | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊雯如;黃振康;鍾興穎 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ju Yang;Chen-Kang Huang;Hsing-Ying Chung | en |
| dc.subject.keyword | 植物工廠,草莓授粉,奶油萵苣,葉燒,計算流體力學, | zh_TW |
| dc.subject.keyword | Plant factory,Strawberry pollination,Semi-head lettuce,Tip-burn,CFD, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202302860 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
