Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪銘輝zh_TW
dc.contributor.advisorMinghwei Hongen
dc.contributor.author黃子蘋zh_TW
dc.contributor.authorZih-Ping Huangen
dc.date.accessioned2023-08-15T17:25:33Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-06-
dc.identifier.citation[1] M. Z. Hasan and C. L. Kane, Reviews of Modern Physics 82, 3045 (2010).
[2] J. E. Moore, Nature 464, 194 (2010).
[3] X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83, 1057 (2011).
[4] T. Ando et al., Journal of the Physical Society of Japan 67, 2857 (1998).
[5] Y. Ando, Journal of the Physical Society of Japan 82, 102001 (2013).
[6] R. J. Cava et al., Journal of Materials Chemistry C 1, 3176 (2013).
[7] D. Hsieh et al., Nature 452, 970 (2008).
[8] C.-Z. Chang and M. Li, Journal of Physics: Condensed Matter 28, 123002 (2016).
[9] J. Zhang et al., Nature Communications 2, 574 (2011).
[10] J.-M. Zhang et al., Physical Review B 88, 235131 (2013).
[11] Y. Tokura et al., Nature Reviews Physics 1, 126 (2019).
[12] R. Yu et al., Science 329, 61 (2010).
[13] H.-Z. Lu et al., Physical Review Letters 107, 076801 (2011).
[14] C.-Z. Chang et al., Science 340, 167 (2013).
[15] R. Watanabe et al., Applied Physics Letters 115, 102403 (2019).
[16] X.-L. Qi et al., Physical Review B 78, 195424 (2008).
[17] C.-Z. Chang et al., Mrs Bulletin 39, 867 (2014).
[18] C. Liu et al., Physical Rview Letters 100, 236601 (2008).
[19] I. Knez et al., Physical Review B 81, 201301 (2010).
[20] L. Fu et al., Physical Review Letters 98, 106803 (2007).
[21] S.-Y. Xu et al., Nature Physics 8, 616 (2012).
[22] Y. Chen et al., Science 329, 659 (2010).
[23] C.-Z. Chang et al., Nature Materials 14, 473 (2015).
[24] Y. Ou et al., Advanced Materials 30, 1703062 (2018).
[25] M. Mogi et al., Applied Physics Letters 107, 182401 (2015).
[26] P. Wei et al., Physical Review Letters 110, 186807 (2013).
[27] C. Wu et al., AIP Advances 8, 055904 (2018).
[28] E. R. Rosenberg et al., Physical Review Materials 2, 094405 (2018).
[29] C. Tang et al., Science Advances 3, e1700307 (2017).
[30] A. Grutter and Q. He, Physical Review Materials 5, 090301 (2021).
[31] V. H. Ortiz et al., APL Materials 6, 121113 (2018).
[32] S. Franchi et al., Progress in Crystal Growth and Characterization of Materials 47, 166 (2003).
[33] S. Hasegawa, Characterization of Materials 97, 1925 (2012).
[34] Scanning Probe Microscopy for Advanced Materials and Processes, https://www.nist.gov/programs-projects/scanning-probe-microscopy-advanced-materials-and-processes.
[35] Single-crystal X-ray Diffraction, https://serc.carleton.edu/msu_nanotech/methods/SXD.html.
[36] E. Z. Dahmash and A. R. Mohammed, Drug Discovery Today 21, 550 (2016).
[37] https://it.wikipedia.org/wiki/File:Scheme_TEM_en.svg.
[38] S. Rubin et al., Analytical Chemistry 29, 736 (1957).
[39] R. Kötz, in Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry, edited by C. Gutiérrez, and C. Melendres (Springer Netherlands, Dordrecht, 1990), pp. 439.
[40] S. Hikami et al., Progress of Theoretical Physics 63, 707 (1980).
[41] https://en.wikipedia.org/w/index.php?curid=22918777.
[42] Z. Jiang et al., Nano Letters 15, 5835 (2015).
[43] C. Chen et al., Applied Physics Letters 114, 031601 (2019).
[44] S. Iida, Journal of the Physical Society of Japan 22, 1201 (1967).
[45] S. M. Zanjani and M. C. Onbaşlı, Journal of Magnetism and Magnetic Materials 499, 166108 (2020).
[46] M. Guo et al., Physical Review Materials 6, 054412 (2022).
[47] M. Lang et al., Nano Letters 14, 3459 (2014).
[48] Z. Jiang et al., AIP Advances 6, 055809 (2016).
[49] J. Wang et al., Physica Scripta 2015, 014003 (2015).
[50] W. Liu et al., Journal of Crystal Growth 410, 23 (2015).
[51] C.-C. Chen, National Tsing Hua University, 2019.
[52] Q. Fu et al., Surface Science 600, 4870 (2006).
[53] C. Z. Chang et al., Advanced Materials 25, 1065 (2013).
[54] Z. Liu et al., Physical Review B 92, 100101 (2015).
[55] W. Liu et al., Journal of Alloys and Compounds 647, 50 (2015).
[56] N. V. Tarakina et al., CrystEngComm 19, 3633 (2017).
[57] Y. Ni et al., Journal of Applied Physics 117 (2015).
[58] X. Kou et al., ACS Nano 7, 9205 (2013).
[59] Z. Zhou et al., Physical Review B 74, 224418 (2006).
[60] J. G. Checkelsky et al., Nature Physics 8, 729 (2012).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88700-
dc.description.abstract最近,透過引入磁序來破壞時間反演對稱性,進而在拓撲表面態打開一個交換間隙的拓撲絕緣體中已觀察到量子反常霍爾效應。當費米能級被調入表面帶隙之中,便可以觀察到在沒有外加磁場的情況下達到量化的霍爾電阻。拓撲絕緣體與磁性絕緣體之異質結構上的磁鄰近效應被證明是一種在顯著高溫下實現量子異常霍爾效應的方式。本論文中,首先透過分子束磊晶技術及二階段長晶(two-step growth) ,以非晶的碲化鉍銻((Bi,Sb)2Te3)薄膜作為緩衝層的方式,於銪鐵石榴石(Eu3Fe5O12, EuIG)上成長c軸取向外延(c-axis oriented epitaxial)之拓撲絕緣體薄膜碲化鉍銻。在成長碲化鉍銻薄膜前會對銪鐵石榴石進行不同溫度的高溫退火處理,以優化銪鐵石榴石的起始表面狀態。我們展示了有序的碲化鉍銻表面及碲化鉍銻與銪鐵石榴石之間的銳利介面,並且在這個異質結構上量測到巨大的反常霍爾電阻。隨著退火溫度的提升,反常霍爾電阻的大小顯著增加,這可能是由於更乾淨且富有鐵的介面使碲化鉍銻與銪鐵石榴石之間的交換耦合更強。此異質結構中反常霍爾效應的可調性展現了其在為室溫下的自旋電子學應用的巨大潛力。除了磁鄰近效應外,具有強鐵磁有序(ferromagnetic order)的磁性參雜亦是達成量子異常霍爾效應的方式。本論文中,不同參雜量的鉻參雜碲化鉍銻被成長在藍寶石基板上。我們校正了樣品中的鉻含量及展示了樣品的結晶性。樣品透過反射式高能電子繞射振盪揭示了其二維層狀成長模式,並透過拉賽福溝道效應(Rutherford backscattering spectrometry (RBS) channeling)證實了其良好的晶體結構。此外,隨鉻參雜量變化的反常霍爾電阻及居禮溫度展示出和其他報導中的相似的趨勢。可重複成長的具有可控制鉻參雜量的碲化鉍銻薄膜展現了在同時磁化上下表面態之拓撲絕緣體的研究中作為上層可能性。zh_TW
dc.description.abstractRecently, quantum anomalous Hall effect (QAHE) has been observed in the time-reversal symmetry (TRS) broken topological insulators (TIs) by introducing magnetic order, which resulting in the opening of an exchange gap at the surface state. When the Fermi level is tuned within the surface band gap, the Hall resistance can reach a quantized value without external magnetic fields. The magnetic proximity effect (MPE) of topological insulator (TI)/magnetic insulator (MI) heterostructures has been demonstrated to be a viable route for realizing QAHE at significantly higher temperatures. First, in this work, c-axis oriented epitaxial TI films (Bi,Sb)2Te3 were grown on the ferrimagnetic insulator europium iron garnet (Eu3Fe5O12, EuIG) films by molecular beam epitaxy (MBE) and using a two-step growth method, where an amorphous (Bi,Sb)2Te3 was grown as a buffer layer. A high-temperature annealing process with different annealing temperatures (Ta) was implemented before the (Bi,Sb)2Te3 growth to improve the starting EuIG surface conditions. The well-ordered (Bi,Sb)2Te3 surface and the sharp interface between (Bi,Sb)2Te3 and EuIG were demonstrated, and an enormous anomalous Hall resistance (RAHE) was observed in this heterostructure at room temperature. The RAHE was enhanced significantly in (Bi,Sb)2Te3/EuIG with increased Ta, which could be attributed to the stronger exchange coupling between (Bi,Sb)2Te3 and EuIG due to the clean and Fe-rich EuIG surface. The tunability of AHE strength in (Bi,Sb)2Te3/EuIG provides great potential for spintronic applications at room temperature. Apart from MPE, the magnetic doping with strong ferromagnetic order is another approach to attain QAHE. In this work, the Cr-doped (Bi,Sb)2Te3 thin films were grown on α-Al2O3(0001) substrates with various Cr doping level. We calibrated the Cr concentration (Cr(y)) and characterized the crystallinities of our samples. The 2D layer-by-layer growth mode was revealed by the reflection high-energy electron diffraction (RHEED) oscillation, and the excellent crystalline structure of our sample was indicated by the Rutherford backscattering spectrometry (RBS) channeling mode. Additionally, the enhanced RAHE and Curie temperature (TC) with increased Cr(y) were demonstrated, displaying a similar trend reported by other groups. The reproducible growth of the Cr-doped (Bi,Sb)2Te3 demonstrates the possibility to be utilized as the top layer in the studies of TI with magnetized top and bottom surface state.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:25:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:25:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Publication list vi
List of figures xi
List of tables xv
Chapter 1 Introduction 1
1.1 Introduction of topological insulator (TI) 1
1.2 Breaking time reversal symmetry (TRS) in TIs 3
1.3 Breaking TRS by magnetic proximity effect (MPE) and magnetic doping 4
1.4 Motivation 7
Chapter 2 Experimentals 9
2.1 Sample growth of TI thin films 9
1.1.1 Molecular beam epitaxy (MBE) 9
2.2 Characterization 11
2.2.1 Reflection high-energy electron diffraction (RHEED) 11
2.2.2 Atomic force microscopy (AFM) 12
2.2.3 X-ray diffraction (XRD) 13
2.2.4 X-ray photoelectron spectroscopy (XPS) 14
2.2.5 Transmission electron microscopy (TEM) 15
2.2.6 Rutherford backscattering spectrometry (RBS) 16
2.2.7 Transport measurement 18
Chapter 3 Growth of (Bi,Sb)2Te3 on EuIG 20
3.1 Overview of the growth of (Bi,Sb)2Te3 20
3.1.1 Progress of our group 20
3.2 EuIG substrate preparation and characterization 22
3.2.1 Surface morphologies and magnetic properties 22
3.2.2 Outgassing process in UHV 23
3.3 (Bi,Sb)2Te3 grown on EuIG 26
3.3.1 The growth method 26
3.3.2 RHEED patterns 27
3.3.3 Surface morphologies 30
3.3.4 Characterization of interface qualities 32
3.3.5 Crystallography 34
3.3.6 Transport properties 35
3.4 Summary 38
Chapter 4 Growth of Cr-doped (Bi,Sb)2Te3 39
4.1 Growth of Cr-doped (Bi,Sb)2Te3 on α-Al2O3 39
4.1.1 Progress of our group 39
4.1.2 Cleaning process of α-Al2O3 40
4.1.3 Growth process 41
4.1.4 RHEED oscillations and surface morphologies 43
4.2 Varying Cr concentrations in Cr-doped (Bi,Sb)2Te3 thin films 46
4.2.1 Composition analysis by RBS 46
4.2.2 RHEED patterns 50
4.2.3 Surface morphologies 53
4.2.4 Crystallography 54
4.2.5 Transport properties 56
4.3 Summary 58
Chapter 5 Conclusion 59
Reference 61
Appendix 63
I. High temperature annealing process of EuIG 63
II. Tuning the Fermi level of (Bi,Sb)2Te3 66
-
dc.language.isoen-
dc.subject磁鄰近效應zh_TW
dc.subject拓樸絕緣體zh_TW
dc.subject分子束磊晶zh_TW
dc.subject異常霍爾效應zh_TW
dc.subject磁性參雜zh_TW
dc.subjectMagnetic dopingen
dc.subjectMolecular beam epitaxyen
dc.subjectAnomalous Hall effecten
dc.subjectMagnetic proximity effecten
dc.subjectTopological insulatoren
dc.title分子束磊晶成長之拓樸絕緣體:透過磁鄰近效應及磁性參雜磁化高品質碲化鉍銻薄膜zh_TW
dc.titleMBE Growth of Topological Insulators: High Quality (Bi,Sb)2Te3 Magnetized via Magnetic Proximity Effect and Magnetic Dopingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor郭瑞年zh_TW
dc.contributor.coadvisorRaynien Kwoen
dc.contributor.oralexamcommittee徐嘉鴻;蘇雲良zh_TW
dc.contributor.oralexamcommitteeChia-Hung Hsu;Yun-Liang Sooen
dc.subject.keyword拓樸絕緣體,分子束磊晶,異常霍爾效應,磁鄰近效應,磁性參雜,zh_TW
dc.subject.keywordTopological insulator,Molecular beam epitaxy,Anomalous Hall effect,Magnetic proximity effect,Magnetic doping,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202302539-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved