Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆zh_TW
dc.contributor.advisorFei-pei Laien
dc.contributor.author呂振均zh_TW
dc.contributor.authorChen-Chun Luen
dc.date.accessioned2023-08-15T17:25:19Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-28-
dc.identifier.citation[1] Bolton, M.J., et al., Initial evidence for increased weather salience in autism spectrum conditions. Weather, Climate, and Society, 2020. 12(2): p. 293-307.
[2] Hodges, H., C. Fealko, and N. Soares, Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Translational pediatrics, 2020. 9(Suppl 1): p. S55.
[3] Miller, L.E., et al., Characteristics of toddlers with early versus later diagnosis of autism spectrum disorder. Autism, 2021. 25(2): p. 416-428.
[4] Watson, L., P. Hanna, and C.J. Jones, A systematic review of the experience of being a sibling of a child with an autism spectrum disorder. Clinical Child Psychology and Psychiatry, 2021. 26(3): p. 734-749.
[5] Parner, E.T., et al., Parental age and autism spectrum disorders. Annals of epidemiology, 2012. 22(3): p. 143-150.
[6] York, A., et al., Fragile‐X syndrome, Down’s syndrome and autism: awareness and knowledge amongst special educators. Journal of Intellectual Disability Research, 1999. 43(4): p. 314-324.
[7] Werling, D.M. and D.H. Geschwind, Sex differences in autism spectrum disorders. Current opinion in neurology, 2013. 26(2): p. 146.
[8] Hudson, C.C., L. Hall, and K.L. Harkness, Prevalence of depressive disorders in individuals with autism spectrum disorder: A meta-analysis. Journal of Abnormal Child Psychology, 2019. 47: p. 165-175.
[9] Spoorthy, M.S., S. Chakrabarti, and S. Grover, Comorbidity of bipolar and anxiety disorders: An overview of trends in research. World journal of psychiatry, 2019. 9(1): p. 7.
[10] Morie, K.P., et al., Mood disorders in high-functioning autism: The importance of alexithymia and emotional regulation. Journal of Autism and Developmental Disorders, 2019. 49: p. 2935-2945.
[11] Black, M.H., et al., The use of wearable technology to measure and support abilities, disabilities and functional skills in autistic youth: a scoping review. Scandinavian Journal of Child and Adolescent Psychiatry and Psychology, 2020. 8(1): p. 48-69.
[12] Koumpouros, Y. and T. Kafazis, Wearables and mobile technologies in Autism Spectrum Disorder interventions: A systematic literature review. Research in Autism Spectrum Disorders, 2019. 66: p. 101405.
[13] Schmidt, M., et al., A process-model for minimizing adverse effects when using head mounted display-based virtual reality for individuals with autism. Frontiers in Virtual Reality, 2021. 2: p. 611740.
[14] Li, H., et al., Associations of emotional/behavioral problems with accelerometer-measured sedentary behavior, physical activity and step counts in children with autism spectrum disorder. Frontiers in Public Health, 2022. 10: p. 981128.
[15] Priya, A., S. Garg, and N.P. Tigga, Predicting anxiety, depression and stress in modern life using machine learning algorithms. Procedia Computer Science, 2020. 167: p. 1258-1267.
[16] Gaussier, E., et al. Improving backfilling by using machine learning to predict running times. in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2015.
[17] Li, D.-C., C.-W. Liu, and S.C. Hu, A learning method for the class imbalance problem with medical data sets. Computers in biology and medicine, 2010. 40(5): p. 509-518.
[18] Sharma, H. and S. Kumar, A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research (IJSR), 2016. 5(4): p. 2094-2097.
[19] Altman, N.S., An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992. 46(3): p. 175-185.
[20] Breiman, L., Random forests. Machine learning, 2001. 45: p. 5-32.
[21] Freund, Y., R. Schapire, and N. Abe, A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence, 1999. 14(771-780): p. 1612.
[22] Bradley, A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 1997. 30(7): p. 1145-1159.
[23] Raschka, S., Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv:1811.12808, 2018.
[24] Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017. 30.
[25] Cai, R.Y., et al., Resting heart rate variability, emotion regulation, psychological wellbeing and autism symptomatology in adults with and without autism. International Journal of Psychophysiology, 2019. 137: p. 54-62.
[26] Cheng, Y.-C., Y.-C. Huang, and W.-L. Huang, Heart rate variability in individuals with autism spectrum disorders: A meta-analysis. Neuroscience & Biobehavioral Reviews, 2020. 118: p. 463-471.
[27] Bazelmans, T., et al., Heart rate mean and variability as a biomarker for phenotypic variation in preschoolers with autism spectrum disorder. Autism Research, 2019. 12(1): p. 39-52.
[28] Souders, M.C., et al., Sleep behaviors and sleep quality in children with autism spectrum disorders. Sleep, 2009. 32(12): p. 1566-1578.
[29] Dong, L., Y. Xie, and X. Zou, Association between sleep duration and depression in US adults: A cross-sectional study. Journal of Affective Disorders, 2022. 296: p. 183-188.
[30] Jovevska, S., et al., Sleep quality in autism from adolescence to old age. Autism in Adulthood, 2020. 2(2): p. 152-162.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88699-
dc.description.abstract在這項研究中,我們使用從穿戴式設備(Garmin Vivosmart 4)收集的生理數據,其中包含心率、活動和睡眠時間的長度,通過機器學習演算法構建自閉症譜系失調的預測模型。我們可以根據可解釋模型的結果推薦治療方法或預防方法。
本研究招募了14名受試者。參與者是20至55歲的患者,他們被診斷患有自閉症類群障礙症,該疾病基於美國精神醫學會(American Psychiatric Association, APA)的精神疾病診斷和統計手冊(DSM-5)。使用的數據由兩部分組成。問卷數據包括貝克憂鬱量表(Beck Depression Inventory, BDI)和躁鬱症評定量表(Young Mania Rating Scale, YMRS),分別用於評估憂鬱症和躁症,以及用於模型構建的數位生物標記。我們使用 6 種機器學習演算法來構建預測模型。
預測模型在憂鬱發作的測試集上達到了79%的準確率,0.88 AUROC和0.88 f1得分。通過可解釋的模型SHAP我們發現相對較低的靜息心率、高活動與憂鬱症有關,並可能預測憂鬱症的發作。
總之,我們可以使用從可解釋模型中獲得的資訊來提供早期的臨床評估和一些預防治療。
zh_TW
dc.description.abstractIn this study, we utilized digital biomarkers collected from wearable devices (Garmin Vivosmart 4), which include heart rate, activity level, and length of sleeping hours, to construct predictive models of Autism Spectrum Disorder using machine learning algorithms. Based on the results obtained from interpretable models, we can recommend preventive methods.
Fourteen participants were recruited for this study. These participants were patients aged 20 to 55 who had received a diagnosis of ASD, according to the criteria outlined in the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The data used for analysis consisted of two parts: questionnaire data, including the Beck Depression Inventory (BDI) and the Young Mania Rating Scale (YMRS), used to assess depression and mania respectively, and digital biomarkers for model development. We employed six machine learning algorithms to construct a predictive model.
The predictive model achieved 79% accuracy, 0.88 AUROC, and 0.88 F1 score on the test set of depressive episodes. Using the explainable model SHAP, we discovered that relatively low resting heart rate and high activity were associated with depression and could potentially predict the onset of depressive episodes.
In conclusion, the information obtained from interpretable models can be used to provide earlier clinical evaluations for prevention.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:25:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:25:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Related Work 2
1.3 Objective 4
Chapter 2 Method 5
2.1 Participants 5
2.2 Data Collection 5
2.2.1 Digital biomarkers 5
2.2.2 Questionnaire data 6
2.3 Workflow Architecture 6
2.4 Data Preprocessing 6
2.5 Imbalanced Data 8
2.6 Machine Learning Algorithms 8
2.7 K-Fold Cross-Validation 9
2.8 Model Assessment 9
2.9 Explainable Machine Learning Model 11
Chapter 3 Result 12
3.1 Data Description 12
3.2 Patient Characteristics 13
3.3 Prediction Model 18
3.3.1 Prediction model for a manic episode in ASD 18
3.3.2 Prediction model for a manic episode in ASD with no demographic data 20
3.3.3 Prediction model for a depressive episode in ASD 22
3.3.4 Prediction model for a depressive episode in ASD with no demographic data 24
3.4 Explanation of Prediction Model 26
3.4.1 Explanation for a manic episode in ASD 26
3.4.2 Explanation for a manic episode in ASD with no demographic data 31
3.4.3 Explanation for a depressive episode in ASD 34
3.4.4 Explanation for a depressive episode in ASD no demographic data 37
Chapter 4 Discussion 41
4.1 Major Findings 41
4.2 Limitations 42
4.3 Future Work 43
Chapter 5 Conclusion 44
References 45
-
dc.language.isoen-
dc.subject自閉症類群障礙症zh_TW
dc.subject可解釋模型zh_TW
dc.subject機器學習zh_TW
dc.subject可穿戴設備zh_TW
dc.subject預測zh_TW
dc.subjectexplainable modelen
dc.subjectmachine learningen
dc.subjectwearable deviceen
dc.subjectpredictionen
dc.subjectautism spectrum disorderen
dc.title使用穿戴式裝置資料運用人工智慧模型預測自閉症類群障礙症病患之情緒徵兆zh_TW
dc.titleUsing Wearable Device and AI to Predict Mood Symptoms in Autism Spectrum Disorderen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor簡意玲zh_TW
dc.contributor.coadvisorYi-Ling Chienen
dc.contributor.oralexamcommittee許凱平;黃冠棠;林澤zh_TW
dc.contributor.oralexamcommitteeKai-Ping Hsu;Guan-Tarn Huang;Che Linen
dc.subject.keyword自閉症類群障礙症,可穿戴設備,機器學習,可解釋模型,預測,zh_TW
dc.subject.keywordautism spectrum disorder,wearable device,machine learning,explainable model,prediction,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202302181-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-31-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved