請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭友晉 | zh_TW |
| dc.contributor.advisor | Yo-Jin Shiau | en |
| dc.contributor.author | 張雅涵 | zh_TW |
| dc.contributor.author | Ya-Han Zhang | en |
| dc.date.accessioned | 2023-08-15T17:22:09Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | Abdalla, M., Smith, P., & Williams, M. (2011). Emissions of nitrous oxide from agriculture: Responses to management and climate change. Understanding Greenhouse Gas Emissions from Agricultural Management, 343-370.
Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433-459. Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., & Vallejo, A. (2013). The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, ecosystems & environment, 164, 32-52. Alves, R. J. E., Wanek, W., Zappe, A., Richter, A., Svenning, M. M., Schleper, C., & Urich, T. (2013). Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. The ISME journal, 7(8), 1620-1631. Aneja, V. P., Robarge, W. P., Sullivan, L. J., Moore, T. C., Pierce, T. E., Geron, C., & Gay, B. (1996). Seasonal variations of nitric oxide flux from agricultural soils in the Southeast United States. Tellus B, 48(5), 626-640. Bai, E., Li, S., Xu, W., Li, W., Dai, W., & Jiang, P. (2013). A meta‐analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199(2), 441-451. Baolan, H., Shuai, L., Wei, W., Lidong, S., Liping, L., Weiping, L., Guangming, T., Xiangyang, X., & Ping, Z. (2014). pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS microbiology ecology, 90(1), 290-299. Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. The ISME journal, 5(5), 908-917. Belser, L. W. (1979). Population ecology of nitrifying bacteria. Annual reviews in microbiology, 33(1), 309-333. Berg, P., Klemedtsson, L., & Rosswall, T. (1982). Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biology and Biochemistry, 14(3), 301-303. Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P., & Goodman, R. M. (1997). Molecular phylogeny of Archaea from soil. Proceedings of the National Academy of Sciences, 94(1), 277-282. Bollmann, A., & Conrad, R. (1998). Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 4(4), 387-396. Bouchez, T., Blieux, A., Dequiedt, S., Domaizon, I., Dufresne, A., Ferreira, S., Godon, J.-J., Hellal, J., Joulian, C., & Quaiser, A. (2016). Molecular microbiology methods for environmental diagnosis. Environmental Chemistry Letters, 14, 423-441. Bouwman, A. (1990). Soils and the greenhouse effect. Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E., Reynolds, J. F., Treseder, K. K., & Wallenstein, M. D. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11(12), 1316-1327. Bramley, R., & White, R. (1989). The effect of pH, liming, moisture and temperature on the activity of nitrifiers in a soil under pasture. Soil Research, 27(4), 711-724. Brown, A. M. (2005). A new software for carrying out one-way ANOVA post hoc tests. Computer methods and programs in biomedicine, 79(1), 89-95. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130122. Butterbach-Bahl, K., Gasche, R., Huber, C., Kreutzer, K., & Papen, H. (1998). Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmospheric Environment, 32(3), 559-564. Cao, W. J., Sui, X., & Han, S. J. (2013). Global ecological pattern of ammonia-oxidizing archaea. PloS one, 8(2), e52853. Case, S. D., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–the role of soil aeration. Soil Biology and Biochemistry, 51, 125-134. Cattânio, J. H., Davidson, E. A., Nepstad, D. C., Verchot, L. V., & Ackerman, I. L. (2002). Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO 2, CH 4, N 2 O, and NO in eastern Amazonia. Biology and Fertility of Soils, 36, 102-108. Chen, M., Pan, H., Sun, M., He, W., Wei, M., Lou, Y., Wang, H., Yang, Q., Feng, H., & Zhuge, Y. (2021). Nitrosospira cluster 3 lineage of AOB and nirK of Rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils. Ecological Indicators, 127, 107722. Christensen, T. R., Friborg, T., Sommerkorn, M., Kaplan, J., Illeris, L., Soegaard, H., Nordstroem, C., & Jonasson, S. (2000). Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochemical Cycles, 14(3), 701-713. Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., & Bulaev, A. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504-509. Dalal, R. C., & Allen, D. E. (2008). Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany, 56(5), 369-407. Dalal, R. C., Wang, W., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Soil Research, 41(2), 165-195. Dang, H., Zhang, X., Sun, J., Li, T., Zhang, Z., & Yang, G. (2008). Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology, 154(7), 2084-2095. Davidson, E., Matson, P., Vitousek, P., Riley, R., Dunkin, K., Garcia-Mendez, G., & Maass, J. (1993). Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology, 74(1), 130-139. Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience, 50(8), 667-680. Denecke, M., & Liebig, T. (2003). Effect of carbon dioxide on nitrification rates. Bioprocess and Biosystems Engineering, 25, 249-253. Di, H. J., Cameron, K. C., Shen, J.-P., Winefield, C. S., O'Callaghan, M., Bowatte, S., & He, J.-Z. (2010). Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS microbiology ecology, 72(3), 386-394. Di, H. J., Cameron, K. C., Shen, J.-P., Winefield, C. S., O’Callaghan, M., Bowatte, S., & He, J.-Z. (2009). Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2(9), 621-624. Dobbie, K., McTaggart, I., & Smith, K. (1999). Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research: Atmospheres, 104(D21), 26891-26899. Dong, X., Zhang, J., Qiu, H., Zhang, H., Luo, C., Deng, D., Shen, Q., & Jia, Z. (2019). Chronic nitrogen fertilization modulates competitive interactions among microbial ammonia oxidizers in a loess soil. Pedosphere, 29(1), 24-33. FAO. (2021). EMISSIONS AND CLIMATE CHANGE. Food and Agriculture Organization of the United Nations. Fierer, N., Carney, K. M., Horner-Devine, M. C., & Megonigal, J. P. (2009). The biogeography of ammonia-oxidizing bacterial communities in soil. Microbial ecology, 58, 435-445. Fierer, N., & Schimel, J. P. (2002). Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34(6), 777-787. Flessa, H., Wild, U., Klemisch, M., & Pfadenhauer, J. (1998). Nitrous oxide and methane fluxes from organic soils under agriculture. European journal of soil science, 49, 327-335. Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment, 31(2), 64-71. Garrido, F., Hénault, C., Gaillard, H., & Germon, J. (2000). Inhibitory capacities of acetylene on nitrification in two agricultural soils. Soil Biology and Biochemistry, 32(11-12), 1799-1802. Giglio, S., Monis, P. T., & Saint, C. P. (2003). Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real‐time multiplex PCR. Nucleic acids research, 31(22), e136-e136. Groffman, P. M. (1995). A conceptual assessment of the importance of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems. Fertilizer research, 42, 139-148. Groffman, P. M., Gold, A. J., & Jacinthe, P. A. (1998). Nitrous oxide production in riparian zones and groundwater. Nutrient Cycling in Agroecosystems, 52(2-3), 179-186. Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. Gu, J., Zheng, X., & Zhang, W. (2009). Background nitrous oxide emissions from croplands in China in the year 2000. Plant and Soil, 320, 307-320. Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B. C., James, P., Schloter, M., Griffiths, R. I., Prosser, J. I., & Nicol, G. W. (2011). Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences, 108(52), 21206-21211. Guo, J., Ling, N., Chen, H., Zhu, C., Kong, Y., Wang, M., Shen, Q., & Guo, S. (2017). Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment. Soil Biology and Biochemistry, 115, 403-414. Hénault, C., Grossel, A., Mary, B., Roussel, M., & Léonard, J. (2012). Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere, 22(4), 426-433. Hastings, R., Butler, C., Singleton, I., Saunders, J., & McCarthy, A. (2000). Analysis of ammonia‐oxidizing bacteria populations in acid forest soil during conditions of moisture limitation. Letters in Applied Microbiology, 30(1), 14-18. He, J. z., Shen, J. p., Zhang, L. m., Zhu, Y. g., Zheng, Y. m., Xu, M. g., & Di, H. (2007). Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices. Environmental microbiology, 9(9), 2364-2374. Henault, C., Bourennane, H., Ayzac, A., Ratie, C., Saby, N. P. A., Cohan, J. P., Eglin, T., & Le Gall, C. (2019). Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. Scientific Reports, 9, 11, Article 20182. Horz, H.-P., Barbrook, A., Field, C. B., & Bohannan, B. J. (2004). Ammonia-oxidizing bacteria respond to multifactorial global change. Proceedings of the National Academy of Sciences, 101(42), 15136-15141. Hu, H.-W., Macdonald, C. A., Trivedi, P., Anderson, I. C., Zheng, Y., Holmes, B., Bodrossy, L., Wang, J.-T., He, J.-Z., & Singh, B. K. (2016). Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biology and Biochemistry, 92, 1-15. Hu, H.-W., Zhang, L.-M., Dai, Y., Di, H.-J., & He, J.-Z. (2013). pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments, 13, 1439-1449. Humphreys, J., Lan, R., & Tao, S. (2021). Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process. Advanced Energy and Sustainability Research, 2(1), 2000043. Hynes, R. K., & Knowles, R. (1978). Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS microbiology letters, 4(6), 319-321. Jetten, M. S. (2008). The microbial nitrogen cycle. In (Vol. 10, pp. 2903-2909): Wiley Online Library. Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental microbiology, 11(7), 1658-1671. Jiang, Q. Q., & Bakken, L. R. (1999). Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS microbiology ecology, 30(2), 171-186. Jiang, X., Hou, X., Zhou, X., Xin, X., Wright, A., & Jia, Z. (2015). pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry, 81, 9-16. Joshi, M., & Deshpande, J. (2010). Polymerase chain reaction: methods, principles and application. International Journal of Biomedical Research, 2(1), 81-97. Könneke, M., Bernhard, A. E., de La Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546. Karhu, K., Auffret, M. D., Dungait, J. A., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.-A., Wookey, P. A., Ågren, G. I., & Sebastia, M.-T. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513(7516), 81-84. Kemmitt, S. J., Wright, D., Goulding, K. W., & Jones, D. L. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38(5), 898-911. Kester, R. A., de Boer, W., & Laanbroek, H. J. (1996). Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples. FEMS microbiology ecology, 20(2), 111-120. Kim, D. G., Hernandez-Ramirez, G., & Giltrap, D. (2013). Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture Ecosystems & Environment, 168, 53-65. Kim, D. G., Mishurov, M., & Kiely, G. (2010). Effect of increased N use and dry periods on N2O emission from a fertilized grassland. Nutrient Cycling in Agroecosystems, 88(3), 397-410. Kits, K. D., Jung, M.-Y., Vierheilig, J., Pjevac, P., Sedlacek, C. J., Liu, S., Herbold, C., Stein, L. Y., Richter, A., & Wissel, H. (2019). Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature communications, 10(1), 1836. Klemedtsson, L., Svensson, B., & Rosswall, T. (1988). A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biology and Fertility of Soils, 6, 112-119. Koops, H.-P., & Pommerening-Röser, A. (2005). The lithoautotrophic ammonia-oxidizing bacteria. In Bergey’s Manual® of Systematic Bacteriology (pp. 141-147). Springer. Koops, H.-P., Purkhold, U., Pommerening-Röser, A., Timmermann, G., & Wagner, M. (2006). The Lithoautotrophic Ammonia-Oxidizing Bacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses (pp. 778-811). Springer New York. Kuenzer, C., & Knauer, K. (2013). Remote sensing of rice crop areas. International Journal of Remote Sensing, 34(6), 2101-2139. Lai, T. V., & Denton, M. D. (2018). N 2 O and N 2 emissions from denitrification respond differently to temperature and nitrogen supply. Journal of Soils and Sediments, 18, 1548-1557. Lai, T. V., Farquharson, R., & Denton, M. D. (2019). High soil temperatures alter the rates of nitrification, denitrification and associated N 2 O emissions. Journal of Soils and Sediments, 19, 2176-2189. Lehtovirta-Morley, L. E. (2018). Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS microbiology letters, 365(9), fny058. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S., & Schleper, C. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806-809. Li, Y.-C., Liu, B.-R., Li, S.-H., Qin, H., Fu, W.-J., & Xu, Q.-F. (2014). Shift in abundance and structure of soil ammonia-oxidizing bacteria and archaea communities associated with four typical forest vegetations in subtropical region. Journal of Soils and Sediments, 14, 1577-1586. Liu, B., Frostegård, Å., Bakken L.R. (2014). Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. MBio, 5(3), e01383-01314. Liu, C., Zheng, X., Zhou, Z., Han, S., Wan, Y., Wan, K., Liang, W., Li, M., Chen, D., Yang, Z. (2010). Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil, 332, 123-134. Liu, J. J., Wu, W. X., Ding, Y., Shi, D. Z., & Chen, Y. X. (2010). Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: A review. Yingyong Shengtai Xuebao, 21(8). Liu, L. L., & Greaver, T. L. (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12(10), 1103-1117. Liu, R., Hayden, H. L., Suter, H., Hu, H., Lam, S. K., He, J., Mele, P. M., & Chen, D. (2017). The effect of temperature and moisture on the source of N 2 O and contributions from ammonia oxidizers in an agricultural soil. Biology and Fertility of Soils, 53, 141-152. Liu, Y., Zhang, J., Zhang, X., & Xie, S. (2014). Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Applied microbiology and biotechnology, 98, 5697-5707. Long, X.-E., Shen, J.-P., Wang, J.-T., Zhang, L.-M., Di, H., & He, J.-Z. (2017). Contrasting response of two grassland soils to N addition and moisture levels: N 2 O emission and functional gene abundance. Journal of Soils and Sediments, 17, 384-392. Lu, L., & Jia, Z. (2013). Urease gene‐containing A rchaea dominate autotrophic ammonia oxidation in two acid soils. Environmental microbiology, 15(6), 1795-1809. Ludwig, J., Meixner, F. X., Vogel, B., & Förstner, J. (2001). Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. Biogeochemistry, 52, 225-257. Malhi, S., & McGill, W. (1982). Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration. Soil Biology and Biochemistry, 14(4), 393-399. Manefield, M., Whiteley, A., & Bailey, M. (2004). What can stable isotope probing do for bioremediation? International biodeterioration & biodegradation, 54(2-3), 163-166. Maynard, D., Kalra, Y., & Crumbaugh, J. (1993). Nitrate and exchangeable ammonium nitrogen. Soil sampling and methods of analysis, 1, 25-38. McCarty, G. (1999). Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 29, 1-9. McCarty, G., & Bremner, J. (1991). Inhibition of nitrification in soil by gaseous hydrocarbons. Biology and Fertility of Soils, 11, 231-233. McSwiney, C. P., & Robertson, G. P. (2005). Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology, 11(10), 1712-1719. Montzka, S. A., Dlugokencky, E. J., & Butler, J. H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43-50. Mpongwana, N., Ntwampe, S. K., Omodanisi, E. I., Chidi, B. S., & Razanamahandry, L. C. (2019). Sustainable approach to eradicate the inhibitory effect of free-cyanide on simultaneous nitrification and aerobic denitrification during wastewater treatment. Sustainability, 11(21), 6180. Mummey, D., Smith, J., & Bolton Jr, H. (1994). Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation. Soil Biology and Biochemistry, 26(2), 279-286. Neufeld, J. D., Vohra, J., Dumont, M. G., Lueders, T., Manefield, M., Friedrich, M. W., & Murrell, J. C. (2007). DNA stable-isotope probing. Nature protocols, 2(4), 860-866. Nobre, A., Keller, M., Crill, P., & Harriss, R. (2001). Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils. Biology and Fertility of Soils, 34, 363-373. Norton, J. M., Alzerreca, J. J., Suwa, Y., & Klotz, M. G. (2002). Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of microbiology, 177, 139-149. Offre, P., Prosser, J. I., & Nicol, G. W. (2009). Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS microbiology ecology, 70(1), 99-108. Ormeci, B., Sanin, S. L., & Peirce, J. J. (1999). Laboratory study of NO flux from agricultural soil: Effects of soil moisture, pH, and temperature. Journal of Geophysical Research: Atmospheres, 104(D1), 1621-1629. Panek, J., Matson, P., Ortiz-Monasterio, I., & Brooks, P. (2000). Distinguishing nitrification and denitrification sources of N2O in a Mexican wheat system using 15N. Ecological Applications, 10(2), 506-514. Parmesan, C., Morecroft, M. D., & Trisurat, Y. (2022). Climate change 2022: Impacts, adaptation and vulnerability GIEC]. Parton, W., Holland, E., Del Grosso, S., Hartman, M., Martin, R., Mosier, A., Ojima, D., & Schimel, D. (2001). Generalized model for NO x and N2O emissions from soils. Journal of Geophysical Research: Atmospheres, 106(D15), 17403-17419. Parton, W., Mosier, A., Ojima, D., Valentine, D., Schimel, D., Weier, K., & Kulmala, A. E. (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 10(3), 401-412. Persson, T., & Wirén, A. (1995). Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Nutrient Uptake and Cycling in Forest Ecosystems: Proceedings of the CEC/IUFRO Symposium Nutrient Uptake and Cycling in Forest Ecosystems Halmstad, Sweden, June, 7–10, 1993, Pester, M., Rattei, T., Flechl, S., Gröngröft, A., Richter, A., Overmann, J., Reinhold-Hurek, B., Loy, A., & Wagner, M. (2012). amoA‐based consensus phylogeny of ammonia‐oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environmental microbiology, 14(2), 525-539. Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, J. C. I., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., Ashmore, M. R., & Ineson, P. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12(3), 470-476. Pratscher, J., Dumont, M. G., & Conrad, R. (2011). Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences, 108(10), 4170-4175. Prentice, I. (2008). Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology, 14(8), 1745-1764. Prosser, J. (1990). Autotrophic nitrification in bacteria. Advances in microbial physiology, 30, 125-181. Prosser, J. I., Hink, L., Gubry‐Rangin, C., & Nicol, G. W. (2020). Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology, 26(1), 103-118. Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M. C., Koops, H.-P., & Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 66(12), 5368-5382. Qiu, Q., Mgelwa, A. S., Jin, S., & Hu, Y. (2022). Nitrogen-Induced Changes in Soil Environmental Factors Are More Important Than Nitrification and Denitrification Gene Abundance in Regulating N2O Emissions in Subtropical Forest Soils. Frontiers in Plant Science, 13. Quaiser, A., Ochsenreiter, T., Klenk, H. P., Kletzin, A., Treusch, A. H., Meurer, G., Eck, J., Sensen, C. W., & Schleper, C. (2002). First insight into the genome of an uncultivated crenarchaeote from soil. Environmental microbiology, 4(10), 603-611. Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature climate change, 2(6), 410-416. Rees, R. M., Wuta, M., Furley, P. A., & Li, C. S. (2006). Nitrous oxide fluxes from savanna (miombo) woodlands in Zimbabwe. Journal of Biogeography, 33(3), 424-437. Ryden, J., Lund, L., Letey, J., & Focht, D. (1979). Direct measurement of denitrification loss from soils: II. Development and application of field methods. Soil Science Society of America Journal, 43(1), 110-118. Saggar, S., Jha, N., Deslippe, J., Bolan, N., Luo, J., Giltrap, D., Kim, D.-G., Zaman, M., & Tillman, R. (2013). Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of the Total Environment, 465, 173-195. Sanhueza, E., Hao, W. M., Scharffe, D., Donoso, L., & Crutzen, P. J. (1990). N2O and NO emissions from soils of the northern part of the Guayana Shield, Venezuela. Journal of Geophysical Research: Atmospheres, 95(D13), 22481-22488. Sayavedra-Soto, L. A., Hommes, N. G., & Arp, D. J. (1994). Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. Journal of bacteriology, 176(2), 504-510. Scheiner, D. (1976). Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water research, 10(1), 31-36. Schleper, C., & Nicol, G. W. (2010). Ammonia-oxidising archaea–physiology, ecology and evolution. Advances in microbial physiology, 57, 1-41. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., & Robinson, C. J. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. Shi, X., Hu, H.-W., Wang, J., He, J.-Z., Zheng, C., Wan, X., & Huang, Z. (2018). Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology and Biochemistry, 126, 114-122. Skiba, U., & Smith, K. (2000). The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere-global change science, 2(3-4), 379-386. Smith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS microbiology ecology, 67(1), 6-20. Smith, K., Thomson, P., Clayton, H., McTaggart, I., & Conen, F. (1998). Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment, 32(19), 3301-3309. Soliman, M., & Eldyasti, A. (2018). Ammonia-Oxidizing Bacteria (AOB): opportunities and applications—a review. Reviews in Environmental Science and Bio/Technology, 17(2), 285-321. Stein, L. Y. (2011). Heterotrophic nitrification and nitrifier denitrification. Nitrification, 95-114. Stein, L. Y., & Klotz, M. G. (2011). Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochemical Society Transactions, 39(6), 1826-1831. Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94-R98. Sun, X., Zhao, J., Zhou, X., Bei, Q., Xia, W., Zhao, B., Zhang, J., & Jia, Z. (2022). Salt tolerance-based niche differentiation of soil ammonia oxidizers. The ISME journal, 16(2), 412-422. Szukics, U., Hackl, E., Zechmeister-Boltenstern, S., & Sessitsch, A. (2009). Contrasting response of two forest soils to nitrogen input: rapidly altered NO and N 2 O emissions and nirK abundance. Biology and Fertility of Soils, 45, 855-863. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution, 24(8), 1596-1599. Taylor, A. E., Zeglin, L. H., Wanzek, T. A., Myrold, D. D., & Bottomley, P. J. (2012). Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. The ISME journal, 6(11), 2024-2032. Thamdrup, B. (2012). New pathways and processes in the global nitrogen cycle. Annual Review of Ecology, Evolution, and Systematics, 43, 407-428. Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I. (2008). Growth, activity and temperature responses of ammonia‐oxidizing archaea and bacteria in soil microcosms. Environmental microbiology, 10(5), 1357-1364. Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., & Richter, A. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108(20), 8420-8425. Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental microbiology, 7(12), 1985-1995. Van Groenigen, J. W., Velthof, G., Oenema, O., Van Groenigen, K., & Van Kessel, C. (2010). Towards an agronomic assessment of N2O emissions: a case study for arable crops. European journal of soil science, 61(6), 903-913. Wang, B. Z., Zhao, J., Guo, Z. Y., Ma, J., Xu, H., & Jia, Z. J. (2015). Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. The ISME journal, 9(5), 1062-1075. Wang, X., Wang, C., Bao, L., & Xie, S. (2014). Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils. Applied microbiology and biotechnology, 98, 1883-1892. Wang, X., Wang, Y., Zhu, F., Zhang, C., Wang, P., & Zhang, X. (2021a). Effects of Different Land Use Types on Active Autotrophic Ammonia and Nitrite Oxidizers in Cinnamon Soils. Applied and Environmental Microbiology, 87(12), 14, Article e00092-21. Wang, X., Wang, Y., Zhu, F., Zhang, C., Wang, P., & Zhang, X. (2021b). Effects of different land use types on active autotrophic ammonia and nitrite oxidizers in cinnamon soils. Applied and Environmental Microbiology, 87(12), e00092-00021. Wertz, S., Leigh, A. K., & Grayston, S. J. (2012). Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS microbiology ecology, 79(1), 142-154. Wessén, E., Nyberg, K., Jansson, J. K., & Hallin, S. (2010). Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Applied Soil Ecology, 45(3), 193-200. Wessén, E., Söderström, M., Stenberg, M., Bru, D., Hellman, M., Welsh, A., Thomsen, F., Klemedtson, L., Philippot, L., & Hallin, S. (2011). Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. The ISME journal, 5(7), 1213-1225. Wittwer, C. T., Herrmann, M. G., Moss, A. A., & Rasmussen, R. P. (1997). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22(1), 130-138. Wolf, I., & Russow, R. (2000). Different pathways of formation of N2O, N2 and NO in black earth soil. Soil Biology and Biochemistry, 32(2), 229-239. Wu, Y., Ke, X., Hernández, M., Wang, B., Dumont, M. G., Jia, Z., & Conrad, R. (2013). Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures. Applied and Environmental Microbiology, 79(9), 3076-3084. Wu, Y., Xiang, Y., Wang, J., Zhong, J., He, J., & Wu, Q. L. (2010). Heterogeneity of archaeal and bacterial ammonia‐oxidizing communities in Lake Taihu, China. Environmental Microbiology Reports, 2(4), 569-576. Wuebbles, D. J. (2009). Nitrous oxide: no laughing matter. Science, 326(5949), 56-57. Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., & Cai, Z. (2011). Autotrophic growth of nitrifying community in an agricultural soil. The ISME journal, 5(7), 1226-1236. Xiao, C., Ye, J., Esteves, R. M., & Rong, C. (2016). Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, 28(14), 3866-3878. Xu, M., Schnorr, J., Keibler, B., & Simon, H. M. (2012). Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Applied and Environmental Microbiology, 78(7), 2137-2146. Xu, X., Liu, X., Li, Y., Ran, Y., Liu, Y., Zhang, Q., Li, Z., He, Y., Xu, J., & Di, H. (2017). High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biology and Biochemistry, 107, 168-179. Yin, Y. L., Wang, Z. H., Tian, X. S., Wang, Y. C., Cong, J. H., & Cui, Z. L. (2022). Evaluation of variation in background nitrous oxide emissions: A new global synthesis integrating the impacts of climate, soil, and management conditions. Global Change Biology, 28(2), 480-492. Yoshinari, T., & Knowles, R. (1976). Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochemical and biophysical research communications, 69(3), 705-710. Zhang, C., Ju, X., Zhang, J., Rees, R. M., & Müller, C. (2023). Soil pH and long-term fertilization affect gross N transformation and N2O production pathways in Chinese and UK croplands. Biology and Fertility of Soils, 1-13. Zhang, L.-M., Hu, H.-W., Shen, J.-P., & He, J.-Z. (2012). Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME journal, 6(5), 1032-1045. Zhang, Q., Li, Y., He, Y., Liu, H., Dumont, M. G., Brookes, P. C., & Xu, J. (2019a). Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biology and Biochemistry, 131, 229-237. Zhang, Q., Li, Y., He, Y., Liu, H. Y., Dumont, M. G., Brookes, P. C., & Xu, J. M. (2019b). Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils . Soil Biology & Biochemistry, 131, 229-237. Zheng, Y., Hou, L., Liu, M., Lu, M., Zhao, H., Yin, G., & Zhou, J. (2013). Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments. Applied microbiology and biotechnology, 97, 8351-8363. Zhou, X., Li, B., Guo, Z., Wang, Z., Luo, J., & Lu, C. (2018). Niche separation of ammonia oxidizers in mudflat and agricultural soils along the Yangtze River, China. Frontiers in Microbiology, 9, 3122. Zhu, X., Burger, M., Doane, T. A., & Horwath, W. R. (2013). Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proceedings of the National Academy of Sciences, 110(16), 6328-6333. Zou, J., Huang, Y., Zheng, X., & Wang, Y. (2007). Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: dependence on water regime. Atmospheric Environment, 41(37), 8030-8042. Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Principal component analysis and redundancy analysis. Analysing ecological data, 193-224. 行政院環境保護署. (2011). 水中硝酸鹽氮及亞硝酸鹽氮檢測方法-鎘還原法(NIEA W452.51C). 行政院環境保護署. https://www.laws.taipei.gov.tw/lawatt/SLaw/100467/02410009090004-001.pdf 行政院環境保護署. (2012). 土壤及底泥水分含量測定方法-重量法. 行政院環境保護署. https://www.epa.gov.tw/DisplayFile.aspx?FileID=1909B524D6FD888B 行政院環境保護署. (2019). 國家溫室氣體減量法規資訊網. 行政院環境保護署. https://ghgrule.epa.gov.tw/qa/qa | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88686 | - |
| dc.description.abstract | 農田的管理與利用,使其形成獨特的生態系統,透過不同的灌溉、施肥方式與種植作物,對其生態系統的可持續性和功能產生不同程度的影響,微生物硝化作用在土壤生態系統的氮循環中發揮著重要作用,硝化作用由氨氧化古菌 (ammonia-oxidizing archaea, AOA) 、氨氧化細菌 (ammonia oxidizing bacteria, AOB) 執行氨氧化反應,然而氨氧化菌在土壤之自營硝化作用中與溫室氣體及環境因子的相對重要性仍不清楚。
本研究選擇了霧峰農業試驗所之水稻與甘藍輪作的農田土壤做為水、旱田代表,探討兩種土壤經由基肥與追肥後,活性氨氧化群落的結構變化與氧化亞氮 (N2O) 在其土壤中的排放潛力,以及與環境因子之間的相關性。 由尿素培養的過程中,顯示出四種土壤在42天內的硝化活性變化,分別為水稻基肥 (Rice-B) 4.37、水稻追肥 (Rice-T) 3.50、甘藍基肥 (Cabbage-B) 1.81與甘藍追肥 (Cabbage-T) 0.57 µg NO3- -N g-1 soil day-1。氧化亞氮 (N2O) 於四種土壤中的排放潛力皆低於其能被偵測的極限,因此未有N2¬O排放被測得。amoA基因的實時定量PCR和16S rRNA基因的Illumina MiSeq定序顯示,AOA群落具有不同程度的增加,AOB則僅於Rice-B與Cabbage-B展現相對較小的活性反應,表示在四種土壤中由AOA主導氨氧化的反應過程。 透過DNA穩定同位素探針 (DNA stable-isotope probing, DNA-SIP) 進一步表示,由13CO2所標記的四種土壤中,Rice-B與Cabbage-B土壤之活性AOA在數值上比其AOB高出1.32與42.69倍,而Rice-T與Cabbage-T則僅出現對AOA的活性標記,並且在乙炔 (C2H2) 的加入後,完全消除氨氧化菌群對13CO2的同化作用,根據系統發育分析表示,古菌氨氧化主要由土壤group 1.1b之54d9 cluster與29i4 cluster的AOA催化,Nitrosospira cluster 3-like AOB則僅於水稻與甘藍農田的基肥土壤中出現,透過冗餘分析研究顯示四種土壤的氨氧化作用主要受到NO3-、TDN、pH的調控。 這項結果提供在人為干擾的農田土壤環境中,氨氧化活性群落的反應、結構分布與其生理差異的理解。 | zh_TW |
| dc.description.abstract | The management and utilization of agricultural fields create unique ecosystems, and different irrigation, fertilization methods, and crop choices can have varying impacts on the sustainability and functionality of these ecosystems. Microbial nitrification plays a crucial role in the nitrogen cycle of soil ecosystems. Nitrification is performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) through the process of ammonia oxidation. However, the relative importance of ammonia oxidizers in soil's autotrophic nitrification, in relation to greenhouse gases and environmental factors, remains unclear.
This study selected rice paddy and cabbage under rotation at the Taiwan Agricultural Research Institute as representative examples of rice paddy and upland farmland,respectively. The aim was to investigate the structural changes in the active ammonia oxidizer communities and the potential emissions of nitrous oxide (N2O) in these soils after basal and additional fertilization. Additionally, the study aimed to assess the correlation between these factors and environmental variables. In urea-amended microcosms, the four types of soils exhibited varying levels of nitrification activity within 42 days. The nitrification rates, expressed as 4.37, 3.50, 1.81 and 0.57 µg NO3--N g-1 soil per day in the Rice-B (rice basal fertilization), Rice-T (rice topdressing), Cabbage-B (cabbage basal fertilization) and Cabbage-T (cabbage topdressing) soils. The emission potential of nitrous oxide (N2O) in all four soils was found to be below the detectable limit, and thus, no N2O emissions were measured. Real-time quantitative PCR of the amoA gene and Illumina MiSeq sequencing of the 16S rRNA genes revealed varying degrees of increase in the AOA communities. AOB, on the other hand, showed relatively minor activity responses only in Rice-B and Cabbage-B, indicating that AOA dominated the ammonia oxidation process in the four soil types. Further analysis using DNA stable isotope probing (DNA-SIP) revealed that in the four soils labeled with 13CO2, the active AOA in Rice-B and Cabbage-B soils showed 1.32-fold and 42.69-fold higher values, respectively, compared to their AOB counterparts. In contrast, Rice-T and Cabbage-T only exhibited activity labeling for AOA, and the addition of acetylene completely abolished the assimilation of 13CO2 by ammonia oxidizer populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB, on the other hand, were only detected in the basal fertilized soils of rice and cabbage fields. Redundancy analysis demonstrated that the ammonia oxidizers in the four soils were mainly regulated by NO3-, TDN, and pH. This finding provides insights into the response, structural distribution, and physiological differences of the ammonia oxidizer communities in agriculturally disturbed soil environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:22:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:22:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………………...ii
誌謝…………………………………………………………………………………......iii 摘要…………………………………………………………………………………......iv Abstract…………………………………………………………………………………vi 目錄………………………………………………………………………………….....vii 圖目錄……………………………………………………………………………….....xii 表目錄…………………………………………………………………………………xiv 第 1 章 緒論.....................................................................................................................1 1.1 研究背景............................................................................................................1 1.2 研究目的............................................................................................................4 第 2 章 文獻回顧.............................................................................................................5 2.1 氧化亞氮排放....................................................................................................5 2.1.1 自然生態系的氧化亞氮排放....................................................................5 2.1.2 農業中的氧化亞氮排放............................................................................7 2.2 氮循環..............................................................................................................10 2.2.1 硝化作用.................................................................................................12 2.3 影響氧化亞氮排放之環境因素......................................................................14 2.3.1 農業氮肥添加.........................................................................................16 2.3.2 土壤含水量.............................................................................................20 2.3.3 土壤溫度.................................................................................................21 2.3.4 土壤 pH 值..............................................................................................22 2.4 微生物的氨氧化作用......................................................................................23 2.4.1 氨氧化古菌.............................................................................................25 2.4.2 氨氧化細菌.............................................................................................26 2.5 分子生物技術..................................................................................................27 2.5.1 聚合酶鏈鎖反應 (polymerase chain reaction, PCR).............................27 2.5.2 即時聚合酶鏈鎖反應.............................................................................27 2.5.3 DNA 穩定同位素探針 (DNA stable-isotope probing, DNA-SIP).........29 第 3 章 材料與方法.......................................................................................................31 3.1 實驗架構..........................................................................................................31 3.2 土壤採集與樣點描述......................................................................................32 3.3 土壤培養條件..................................................................................................34 3.4 氧化亞氮測量..................................................................................................35 3.5 土壤特性分析..................................................................................................36 3.5.1 土壤不同成份氮濃度分析.....................................................................36 3.5.2 氨氮.........................................................................................................36 3.5.3 硝酸鹽氮.................................................................................................37 3.5.4 總可溶性氮 (Total dissolved nitrogen, TDN) .......................................39 3.5.5 含水率及含土率.....................................................................................40 3.5.6 酸鹼值 (pH) ...........................................................................................41 3.5.7 土壤有機碳 (soil organic carbon, SOC)................................................41 3.5.8 土壤陰陽離子分析.................................................................................41 3.6 分子生物檢測..................................................................................................43 3.6.1 DNA 萃取................................................................................................43 3.6.2 膠體電泳 (gel electrophoresis)..............................................................44 3.6.3 DNA 穩定同位素探針............................................................................45 3.6.4 即時聚合酶鏈鎖反應.............................................................................46 3.6.5 聚合酶鏈鎖反應與次世代定序.............................................................47 3.6.6 序列分析.................................................................................................48 3.6.7 親源分析.................................................................................................49 3.7 統計分析..........................................................................................................50 第 4 章 結果與討論.......................................................................................................51 4.1 土壤物理化學性質分析..................................................................................51 4.2 現地土壤氨氧化菌群分布..............................................................................53 4.3 土壤氧化亞氮排放潛力與硝化活性..............................................................60 4.4 土壤氨氧化群落豐度和組成..........................................................................65 4.5 穩定同位素標定之活性氨氧化群落..............................................................69 4.6 土壤特性與氨氧化菌之相關性......................................................................84 第 5 章 結論與建議.......................................................................................................91 5.1 結論..................................................................................................................91 5.2 建議..................................................................................................................93 參考文獻.........................................................................................................................94 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氨氧化古菌 | zh_TW |
| dc.subject | 農田 | zh_TW |
| dc.subject | DNA穩定同位素探針 | zh_TW |
| dc.subject | 硝化作用 | zh_TW |
| dc.subject | 氨氧化細菌 | zh_TW |
| dc.subject | agricultural fields | en |
| dc.subject | ammonia-oxidizing bacteria | en |
| dc.subject | ammonia-oxidizing archaea | en |
| dc.subject | DNA stable isotope probing | en |
| dc.subject | nitrification | en |
| dc.title | 以穩定同位素探針探討水田與旱田之土壤硝化作用及其活性微生物族群結構差異 | zh_TW |
| dc.title | Changes of Nitrification Rates and Active Ammonia Oxidizing Microbial Communities in Rice Paddy and Upland Farmland Using DNA Stable Isotope Probing | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周崇光;李家偉;羅凱尹;許少瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Charles C.-K Chou;Chia-Wei Lee;Kai-Yin Lo;Shao-Yiu Hsu | en |
| dc.subject.keyword | 農田,氨氧化古菌,氨氧化細菌,硝化作用,DNA穩定同位素探針, | zh_TW |
| dc.subject.keyword | agricultural fields,ammonia-oxidizing archaea,ammonia-oxidizing bacteria,nitrification,DNA stable isotope probing, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202303036 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
