請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘國隆 | zh_TW |
| dc.contributor.advisor | Kuo-Long Pan | en |
| dc.contributor.author | 謝仲博 | zh_TW |
| dc.contributor.author | Chung-Po Hsieh | en |
| dc.date.accessioned | 2023-08-15T17:19:28Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Adam, J. R, Linblad, N. R. and Hendricks, C. D. (1968). The collision ,and disruption of water droplet.Journal of Applied physics, 39,5713-5180
Ashigriz, N. and Poo, J. Y. (1900) Coalescence and separation in binary collisions of liquid drops,Journal of Fluid Mechanics,221,pp. 183-204 Ang F. Chen, M. Akmal Adzmi, Abdullah Adam, Mohd. Fahmi Othman, Mohd Kami Kamaruzzaman, Anes G. Mrwan. (2018). Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Conversion and Management 171 461-471 Brazier-Smith, P. R., Jennings, S. G., and Latham, J. (1972). The interaction of falling water drops:coalescence,Proc. Proceeding of the Royal Society of London A: Mathematical,Physical and Engineering Sciences,The Royal Society,pp.393-408 Bilal Sungur, Bahattin Topaloglu, Hakan Ozcan. (2016). Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler. Energy 113 44-51 Chen, R. H. (2007). Diesel-diesl and diesel-ethanol drop collisions. Applied Thermal Engineering.27,604-610. Chunbo Hu, Shengyong XiaChao LiGuanjie Wu. (2017). Three-dimensional numerical investigation and modeling of binary alumina droplet collisions.International Journal of Heat and Mass Transfer Volume 113, Pages 569-588. Estrade, J. P., Herve Carentz,L. G. and Biscos, Y. (1999). Experimental investigation of dynamic bunary collision of ethanol droplets – a model for droplet coalescence and bouncing.International journal of Heat and Fluid Flow,20,486-491 Gao, T. C., Chen, R. H., Pu, J. Y. and Lin, T. H. (2005). Collision between an ethanol drop and a water drop. Experiment in Fluids, 38, 731-738 Gotaas, C., Havelka, P., Jakoben, H. A., Svendsen, H. F., Hase, M., Roth, N. and Weigand, D. (2007). Effect of viscosity on droplet-droplet collision outcomes:Experimental study and numerical comparison.Physics of Fluids, 19,102106. Giulia Finotello, Roeland F. Kooiman, Johan T. Padding, Kay A. Buist, Alfred Jongsma, Fredrik Innings. (2018). The dynamics of milk droplet–droplet collisions. Experiments in Fluids 59:17 Giulia Finotello, Shauvik De, Jeroen C. R. Vrouwenvelder, Johan T. Padding, Kay A. Buist, Alfred Jongsma, Fredrik Innings, J. A. M. Kuipers. (2018). Experimental investigation of non Newtonian droplet collisions: the role of extensional viscosity Experiments in Fluids 59:113 Giulia Finotello, Johan T. Padding, Niels G. Deen, et al. (2017). Effect of viscosity on droplet-droplet collisional interaction. Phys. Fluids 29, 067102 Harish Venu, Venkataramanan Madhavan. (2017). Effect of diethyl ether and Al2O3 nano additives in diesel-biodiesel-ethanol blends: Performance, combustion and emission characteristics. Journal of Mechanical Science and Technology 31 (1) 409~420 Jiang, Y. J., Umemura, A. and Law, C. K. (1992). An experimental investigation on the collision of hydrocarbon droplet. Journal of Fluid Mechanics, 234,171-190 Karrar H. Al-Dirawi ,Andrew E. Bayly. (2019). A new model for the bouncing regime boundary in binary droplet collisions. Physics of Fluids 31, 027105 Karrar H. Al-Dirawi, Khaled H.A. Al-Ghaithi, Thomas C. Sykes, J. Rafael Castrejón-Pita , Andrew E. Bayly. (2021). Inertial stretching separation in binary droplet collisions. J. Fluid Mech. vol. 927, A9 Kuan-Ling Huang, Kuo-Long Pan (2021). Transitions of bouncing and coalescence in binary droplet collisions. J. Fluid Mech. (2021) ), vol. 928 A7-1- 928A7-29 Kuo-Long Pan (2004). Dynamics of droplet collision and flame-front motion.Ph.D. Kuo-Long Pan, Chung K. Law , Biao Zhou (2008). Experimental and mechanistic description of merging and bouncing in head-on bunary droplet collision. Journal of Applied Physics,103,064901_1-064901_11 Kuo-Long Pan, Kuan-Ling Huang, Wan-Ting Hsieh, Chi-Ru Lu (2019). Rotational separation after temporary coalescence in binary droplet collisions. PHYSICAL REVIEW FLUIDS 4, 123602 Lauren P. McCarthy, Peter Knapp, Jim S. Walker, Justice Archer, Rachael E. H. Miles, Marc E. J. Stettlerb, Jonathan P. Reid. (2022). Dynamics and outcomes of binary collisions of equi-diameter picolitre droplets with identical viscosities. Phys. Chem. Chem. Phys., 2022, 24, 21242 Matthias Kuschel and Martin Sommerfeld. (2013). Investigation of droplet collisions for solutions with different solids content. Exp Fluids 54:1440 Martin Sommerfeld and Matthias Kuschel. (2016). Modelling droplet collision outcomes for different substances and viscosities. Exp Fluids 57:187 Maohong Sui, Martin Sommerfeld , Lars Pasternak. (2023). Extended model of bouncing boundary for droplet collisions considering numerous different liquids. International Journal of Multiphase Flow Volume 162, 104418. N Jacob, N Carroll, MJ Huels, D Kling. (1991). Intermolecular and surface forces Orme, M. E. (2003). Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Experiments in Fluid, 34,28-41 Qian,J. and Law, C. K. (1997). Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331,59-80. Rong-Horng Chen, Wei-Cgeng Wang, You-Wei Chen. (2016). Like-drop collisions of biodiesel and emultion diesel. European Journal of Mechanics B/Fluids 60 62-69 Soner Gumus, Hakan Ozcan, Mustafa Ozbey, Bathattin Topalglu. (2016). Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel 163 80-87 Shotland, R. M. (1960). Experimental results relating to the coalescence of water droplets with water surface. Disc. Faraday Society,30,72-77 Sandip K. Pawar, Filip Henrikson, Giulia Finotello, Johan T. Padding, Niels G. Deen, Alfred Jongsma, Fredrik Innings, J.A.M. Hans Kuipers. (2016). An experimental study of droplet-particle collisions. Powder Technology 300 157-163 XiaoJia , Juan-ChengYang, JieZhang, Ming-Jiu Ni. (2019). An experimental investigation on the collision outcomes of binary liquid metal droplets. International Journal of Multiphase Flow 116 80-90 陳任鈞(2010) 界面活性劑對雙液滴碰撞效應之研究,臺灣大學機械工程學研究所碩士論文。 呂季儒(2011) 雙液滴碰撞:一、偏心碰撞的再研究二、加入界面活性劑Span 80對雙油滴碰撞的影響,臺灣大學機械工程學研究所碩士論文。 洪誌隆(2015) 液體黏滯性對雙液滴碰撞之影響:以甘油與奈米水溶液為例,臺灣大學機械工程學研究所碩士論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88675 | - |
| dc.description.abstract | 本研究使用多種流體的液滴進行雙液滴碰撞實驗,以同步閃頻儀確定液滴所在位置後開啟高速攝影機拍攝液滴撞擊之現象,使用癸烷、十六烷、奈米粒子溶液來探討不同液滴尺寸如何影響雙液滴碰撞結果。
鑒於前人研究多為考慮歐式數差異明顯的液滴碰撞型態分界圖變化,較少比較相似歐式數的液滴碰撞變化,因此我們首先做出十二烷、十六烷和矽油的碰撞型態分界圖,分別調配相似歐式數之不同重量百分濃度甘油水溶液的液滴碰撞型態分界圖進行比較,觀察相似歐式數時液滴碰撞型態分界圖之間的變化,探討不同流體材料性質是否影響碰撞結果,討論歐式數是否為主要影響不同現象間的無因次參數。 我們使用七組不同重量百分濃度和液滴尺寸的甘油水溶液觀察黏性對碰撞彈開和顯著變形後結合間的邊界影響,發現若黏性越大則碰撞彈開區域將增加,以液滴尺寸為450 μm的甘油水溶液為例,在重量百分濃度為30%時尚未出現完全發展彈開型態,而當重量百分濃度為59.1%時則出現完全發展彈開型態,甘油水溶液黏度越大則碰撞彈開區域越大,另外液滴尺寸若越大則此趨勢越明顯。 | zh_TW |
| dc.description.abstract | The study aimed at investigating binary droplet collision experiments using various fluids at ambient conditions. The droplet image and collision video were recorded by using a strobe light and high-speed camera. The fluid, decane, hexadecane, and nanoparticle solution were used as working fluids to discuss how different droplet sizes influence droplet collisions.
View of the fact that most of the previous studies considered the changes in the droplet collision map with obvious differences in Ohnesorge number, and seldom compared the changes in droplet collisions with similar Ohnesorge number. We compared regime diagrams of dodecane, hexadecane, and silicon oil with corresponding similar Ohnesorge number glycerol aqueous solutions, and observed changes in their regime diagrams. We investigated whether the properties of different fluid materials would affect the collision result, and discussed if the Ohnesorge number was the main dimensionless parameter that influenced the boundary between different phenomenons. Seven groups of glycerol aqueous solutions with different weight percent concentrations and droplet sizes were used to observe the effect of viscosity on the boundary between bouncing and coalescence after substantial deformation. Take the glycerol aqueous solution with a droplet size of 450 μm, for example. The fully developed bouncing regime was not observable when the concentration was 30% by weight. But when the concentration was 59.1% by weight, then the fully developed bouncing regime occurred. If the glycerol aqueous solutions concentration increased, subsequently the viscosity increased, then the bouncing area expanded. If the droplet size of the working fluid was larger, then this trend was more obvious. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:19:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:19:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 符號說明 v 目錄 vi 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1前言 1 1.2文獻回顧 1 1.2.1 液滴碰撞之研究 2 1.2.2 燃料溶液 8 1.3研究目的與動機 9 第二章 實驗設備與配置 11 2.1 液滴產生系統 11 2.1.1 液滴產生器 11 2.1.2 玻璃噴嘴 13 2.1.3 訊號產生器 14 2.2 影像擷取系統 15 2.2.1 高速攝影機 16 2.2.2 LED光源 16 2.2.3 顯微鏡頭 17 2.2.4 同步閃頻儀 17 2.2.5 PCC 3.3 18 2.2.6 Matrox Inspector 10.0 19 2.2.7 Matlab Program 20 2.3 液滴碰撞機構 22 2.3.1 調整機構 22 2.3.2 壓克力罩 23 2.4 測量儀器 25 2.4.1電子秤 25 2.4.2 黏度計 26 2.4.3 表面張力計 27 2.4.4 吸量管 28 第三章 實驗方法 29 3.1實驗流程 29 3.1.1 實驗流體 29 3.1.2 奈米溶液調製 31 3.1.3 液滴產生與控制 32 3.1.4 實驗校正 33 3.1.5 觀察誤差 34 3.1.6 實驗數據讀取與分析處理 35 3.2誤差分析 36 第四章 結果與討論 38 4.1雙液滴碰撞型態 38 4.1.1結合 39 4.1.1.1 液滴輕微變形後結合 39 4.1.1.2 液滴顯著變形後結合 40 4.1.2 碰撞彈開 41 4.1.3 分離 41 4.1.3.1 反射分離 41 4.1.3.1 旋轉分離 42 4.1.3.1 拉伸分離 43 4.2液滴碰撞型態分界圖 44 4.2.1 水 600 μm 44 4.2.2 癸烷 450 μm 45 4.2.3 癸烷 600 μm 46 4.2.4 十二烷 600 μm 47 4.2.5 Gly30% 450 μm 48 4.2.6 Gly34% 600 μm 49 4.2.7 十六烷 600 μm 50 4.2.8 十六烷 300 μm 51 4.2.9 Gly51.3% 300 μm 52 4.2.10 Kf-96l-5cs 450 μm 53 4.2.11 Gly59.1% 450 μm 54 4.2.12 Kf-96l-6cs 450 μm 55 4.2.13 Diesel 450 μm 56 4.2.14 Diesel_Al_2 〖O_3〗_(50 ppm) 450 μm 57 4.2.14 Diesel_Al_2 〖O_3〗_(100 ppm) 450 μm 58 4.3 歐式數與液滴尺寸對於液滴碰撞之影響 59 4.3.1 歐式數對於碰撞彈開的之影響 59 4.3.2 歐式數對於分離和結合的影響 64 4.3.2.1 歐式數對於正撞分離之影響 64 4.3.2.2 歐式數對於分離與結合邊界之影響 65 4.4 流體添加奈米粒子之碰撞結果 66 4.5 黏性對碰撞彈開與顯著變形後結合之邊界的影響 69 第五章 結論 86 5.1 結論 86 5.2未來展望 87 參考文獻 88 附錄 92 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 柴油 | zh_TW |
| dc.subject | 相似歐式數 | zh_TW |
| dc.subject | 液滴碰撞 | zh_TW |
| dc.subject | droplet collision | en |
| dc.subject | similar Ohnesorge number | en |
| dc.subject | diesel | en |
| dc.subject | nanoparticle | en |
| dc.title | 流體黏性對雙液滴碰撞彈開結合之研究 | zh_TW |
| dc.title | Viscous Effect on the Transition between Bouncing and Coalescence in Binary Droplet Collisions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王安邦;張鈞棣 | zh_TW |
| dc.contributor.oralexamcommittee | An-Bang Wang;Chun-Ti Chang | en |
| dc.subject.keyword | 液滴碰撞,相似歐式數,柴油,奈米粒子, | zh_TW |
| dc.subject.keyword | droplet collision,similar Ohnesorge number,diesel,nanoparticle, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202302858 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2026-11-19 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
