請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88666
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張明輝 | zh_TW |
dc.contributor.advisor | Ming-Huei Chang | en |
dc.contributor.author | 何真珍 | zh_TW |
dc.contributor.author | Chen-Chen Ho | en |
dc.date.accessioned | 2023-08-15T17:17:16Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-03 | - |
dc.identifier.citation | Andreassen, Ø., HVIDSTEN, P. Ø., Fritts, D. C., & Arendt, S. (1998). Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. Journal of Fluid Mechanics, 367, 27-46.
Asher, W. E., Drushka, K., Jessup, A. T., Thompson, E. J., & Clark, D. (2019). Estimating Rain-Generated Turbulence at the Ocean Surface Using the Active Controlled Flux Technique. Oceanography, 32(2), 108-115. Bernie, D., Guilyardi, E., Madec, G., Slingo, J., & Woolnough, S. (2007). Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dynamics, 29, 575-590. Bernie, D., Woolnough, S., Slingo, J., & Guilyardi, E. (2005). Modeling diurnal and intraseasonal variability of the ocean mixed layer. Journal of climate, 18(8), 1190-1202. Bogdanoff, A. (2016). Through the Looking-Glass of the Ocean Surface. Oceanus, 51(2), 106. Bogdanoff, A. S. (2017). Physics of diurnal warm layers: Turbulence, internal waves, and lateral mixing Massachusetts Institute of Technology]. Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A. L. M., Le Sommer, J., Ajayi, A. O., & Naveira Garabato, A. C. (2019). The Contribution of Surface and Submesoscale Processes to Turbulence in the Open Ocean Surface Boundary Layer. Journal of Advances in Modeling Earth Systems, 11(12), 4066-4094. https://doi.org/10.1029/2019ms001801 Chang, M.-H., Jan, S., Liu, C.-L., Cheng, Y.-H., & Mensah, V. (2019). Observations of Island Wakes at High Rossby Numbers: Evolution of Submesoscale Vortices and Free Shear Layers. Journal of Physical Oceanography, 49(11), 2997-3016. https://doi.org/10.1175/jpo-d-19-0035.1 Chang, M.-H., Tang, T. Y., Ho, C.-R., & Chao, S.-Y. (2013). Kuroshio-induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research: Oceans, 118(3), 1508-1519. https://doi.org/10.1002/jgrc.20151 Chang, M. H., Cheng, Y. H., Yeh, Y. Y., Hsu, J. Y., Jan, S., Tseng, Y. h., Sui, C. H., Yang, Y. J., & Lin, P. H. (2023). Diurnal sea surface temperature warming along the Kuroshio off Taiwan under easterly wind conditions. Geophysical Research Letters, 50(2), e2022GL101412. Clayson, C. A., & Bogdanoff, A. S. (2013). The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. Journal of climate, 26(8), 2546-2556. Clayson, C. A., & Chen, A. (2002). Sensitivity of a coupled single-column model in the tropics to treatment of the interfacial parameterizations. Journal of climate, 15(14), 1805-1831. Cronin, M. F., & Sprintall, J. (2001). Wind And Buoyancy-forced Upper Ocean. In Encyclopedia of Ocean Sciences (pp. 3219-3226). https://doi.org/10.1006/rwos.2001.0157 Dijkstra, H. A. (2008). Dynamical oceanography (Vol. 1). Springer. Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research: Oceans, 87(C12), 9601-9613. Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., & Hersbach, H. (2013). On the exchange of momentum over the open ocean. Journal of Physical Oceanography, 43(8), 1589-1610. Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665-669. Fairall, C., Bradley, E. F., Godfrey, J., Wick, G., Edson, J. B., & Young, G. (1996). Cool‐skin and warm‐layer effects on sea surface temperature. Journal of Geophysical Research: Oceans, 101(C1), 1295-1308. Fairall, C. W., Bradley, E. F., Hare, J., Grachev, A. A., & Edson, J. B. (2003). Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. Journal of climate, 16(4), 571-591. Farrar, J. T., Zappa, C. J., Weller, R. A., & Jessup, A. T. (2007). Sea surface temperature signatures of oceanic internal waves in low winds. Journal of Geophysical Research, 112(C6). https://doi.org/10.1029/2006jc003947 Gentemann, C. L., Minnett, P. J., & Ward, B. (2009). Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming. Journal of Geophysical Research: Oceans, 114(C7). Goldstein, S. (1931). On the stability of superposed streams of fluids of different densities. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 132(820), 524-548. Hasegawa, D., Yamazaki, H., Lueck, R., & Seuront, L. (2004). How islands stir and fertilize the upper ocean. Geophysical Research Letters, 31(16). Hazel, P. (1972). Numerical studies of the stability of inviscid stratified shear flows. Journal of Fluid Mechanics, 51(1), 39-61. Hendon, H. (2005). Air-sea interaction. In (pp. 223-246): Springer. Hodges, B. A., & Fratantoni, D. M. (2014). AUV Observations of the Diurnal Surface Layer in the North Atlantic Salinity Maximum. Journal of Physical Oceanography, 44(6), 1595-1604. https://doi.org/10.1175/jpo-d-13-0140.1 Howard, L. N. (1961). Note on a paper of John W. Miles. Journal of Fluid Mechanics, 10(4), 509-512. Hsu, J. Y., Hendon, H., Feng, M., & Zhou, X. (2019). Magnitude and phase of diurnal SST variations in the ACCESS‐S1 model during the suppressed phase of the MJOs. Journal of Geophysical Research: Oceans, 124(12), 9553-9571. Hsu, P.-C., Chang, M.-H., Lin, C.-C., Huang, S.-J., & Ho, C.-R. (2017). Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery. Remote Sensing of Environment, 193, 54-64. Hughes, K. G., Moum, J. N., & Shroyer, E. L. (2020). Evolution of the Velocity Structure in the Diurnal Warm Layer. Journal of Physical Oceanography, 50(3), 615-631. https://doi.org/10.1175/jpo-d-19-0207.1 Hughes, K. G., Moum, J. N., Shroyer, E. L., & Smyth, W. D. (2021). Stratified shear instabilities in diurnal warm layers. Journal of Physical Oceanography. https://doi.org/10.1175/jpo-d-20-0300.1 Jan, S., & Chen, C. T. A. (2009). Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: a case study at the southernmost coast of Taiwan. Journal of Geophysical Research: Oceans, 114(C4). Kawai, Y., & Wada, A. (2007). Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. Journal of oceanography, 63, 721-744. Klein, S. A., Soden, B. J., & Lau, N.-C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of climate, 12(4), 917-932. Kraus, E. B. (1972). Atmosphere-ocean interaction. Press, Clarendon, Oxford, England. Kudryavtsev, V. N., & Soloviev, A. V. (1990). Slippery near-surface layer of the ocean arising due to daytime solar heating. Journal of Physical Oceanography, 20(5), 617-628. Leibovich, S. (1983). The form and dynamics of Langmuir circulations. Annual review of fluid mechanics, 15(1), 391-427. Li, W., Rucong, Y., Hailong, L., & Yongqiang, Y. (2001). Impacts of diurnal cycle of SST on the intraseasonal variation of surface heat flux over the western Pacific warm pool. Advances in Atmospheric Sciences, 18(5), 793-806. Lian, Q., Smyth, W. D., & Liu, Z. (2020). Numerical Computation of Instabilities and Internal Waves from In Situ Measurements via the Viscous Taylor–Goldstein Problem. Journal of Atmospheric and Oceanic Technology, 37(5), 759-776. https://doi.org/10.1175/jtech-d-19-0155.1 Lien, R., D'Asaro, E., & McPhaden, M. (2002). Internal waves and turbulence in the upper central equatorial Pacific: Lagrangian and Eulerian observations. Journal of Physical Oceanography, 32(9), 2619-2639. Liu, C. L., & Chang, M. H. (2018). Numerical Studies of Submesoscale Island Wakes in the Kuroshio. Journal of Geophysical Research: Oceans, 123(8), 5669-5687. https://doi.org/10.1029/2017jc013501 Marmorino, G. O., Smith, G. B., & Lindemann, G. J. (2004). Infrared imagery of ocean internal waves. Geophysical Research Letters, 31(11), n/a-n/a. https://doi.org/10.1029/2004gl020152 Mater, B. D., Venayagamoorthy, S. K., Laurent, L. S., & Moum, J. N. (2015). Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. Journal of Physical Oceanography, 45(10), 2497-2521. Miles, J. W. (1961). On the stability of heterogeneous shear flows. Journal of Fluid Mechanics, 10(4), 496-508. Moulin, A. J., Moum, J. N., & Shroyer, E. L. (2018). Evolution of Turbulence in the Diurnal Warm Layer. Journal of Physical Oceanography, 48(2), 383-396. https://doi.org/10.1175/jpo-d-17-0170.1 Moum, J., Nash, J., & Smyth, W. (2011). Narrowband oscillations in the upper equatorial ocean. Part I: Interpretation as shear instabilities. Journal of Physical Oceanography, 41(3), 397-411. Paulson, C. A., & Simpson, J. J. (1977). Irradiance measurements in the upper ocean. Journal of Physical Oceanography, 7(6), 952-956. Pham, H. T., Sarkar, S., & Winters, K. B. (2012). Near-N oscillations and deep-cycle turbulence in an Upper-Equatorial Undercurrent model. Journal of Physical Oceanography, 42(12), 2169-2184. Polton, J. A., Smith, J. A., MacKinnon, J. A., & Tejada-Martínez, A. E. (2008). Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophysical Research Letters, 35(13). https://doi.org/10.1029/2008gl033856 Price, J. F., Weller, R. A., & Pinkel, R. (1986). Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research, 91(C7). https://doi.org/10.1029/JC091iC07p08411 Schiller, A., & Godfrey, J. (2005). A diagnostic model of the diurnal cycle of sea surface temperature for use in coupled ocean‐atmosphere models. Journal of Geophysical Research: Oceans, 110(C11). Smith, J. A. (1992). Observed growth of Langmuir circulation. Journal of Geophysical Research: Oceans, 97(C4), 5651-5664. Smyth, W., & Moum, J. (2012). Ocean Mixing by Kelvin-Helmholtz Instability. Oceanography, 25(2), 140-149. https://doi.org/10.5670/oceanog.2012.49 Smyth, W., Moum, J., Li, L., & Thorpe, S. (2013). Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. Journal of Physical Oceanography, 43(11), 2432-2455. Smyth, W., Moum, J., & Nash, J. (2011). Narrowband oscillations in the upper equatorial ocean. Part II: Properties of shear instabilities. Journal of Physical Oceanography, 41(3), 412-428. Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media. Sutherland, G., Marié, L., Reverdin, G., Christensen, K. H., Broström, G., & Ward, B. (2016). Enhanced turbulence associated with the diurnal jet in the ocean surface boundary layer. Journal of Physical Oceanography, 46(10), 3051-3067. Sutherland, G., Reverdin, G., Marié, L., & Ward, B. (2014). Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification. Geophysical Research Letters, 41(23), 8469-8476. Taylor, G. I. (1931). Effect of variation in density on the stability of superposed streams of fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 132(820), 499-523. Thomas, L. N., Taylor, J. R., Ferrari, R., & Joyce, T. M. (2013). Symmetric instability in the Gulf Stream. Deep Sea Research Part II: Topical Studies in Oceanography, 91, 96-110. https://doi.org/10.1016/j.dsr2.2013.02.025 Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286(1334), 125-181. Troy, C. D., & Koseff, J. R. (2005). The instability and breaking of long internal waves. Journal of Fluid Mechanics, 543, 107-136. Walsh, E. J., Pinkel, R., Hagan, D. E., Weller, R. A., Fairall, C. W., Rogers, D. P., Burns, S. P., & Baumgartner, M. (1998). Coupling of internal waves on the main thermocline to the diurnal surface layer and sea surface temperature during the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. Journal of Geophysical Research: Oceans, 103(C6), 12613-12628. https://doi.org/10.1029/98jc00894 Wang, X., Han, G., Qi, Y., & Li, W. (2011). Impact of barrier layer on typhoon-induced sea surface cooling. Dynamics of Atmospheres and Oceans, 52(3), 367-385. Wijesekera, H. W., & Dillon, T. M. (1991). Internal waves and mixing in the upper equatorial Pacific Ocean. Journal of Geophysical Research, 96(C4). https://doi.org/10.1029/90jc02727 Wijesekera, H. W., Wang, D. W., & Jarosz, E. (2020). Dynamics of the Diurnal Warm Layer: Surface Jet, High-Frequency Internal Waves, and Mixing. Journal of Physical Oceanography, 50(7), 2053-2070. https://doi.org/10.1175/jpo-d-19-0285.1 Yang, Y., Liu, L., Li, K., Yu, W., & Wang, H. (2020). Diurnal Sea surface temperature response to tropical cyclone Dahlia in the Eastern tropical Indian Ocean in 2017 revealed by the Bailong buoy. Dynamics of Atmospheres and Oceans, 92, 101163. Yang, Y. J., Chang, M.-H., Hsieh, C.-Y., Chang, H.-I., Jan, S., & Wei, C.-L. (2019). The role of enhanced velocity shears in rapid ocean cooling during Super Typhoon Nepartak 2016. Nature Communications, 10(1), 1627. Zeng, X., & Beljaars, A. (2005). A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophysical Research Letters, 32(14). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88666 | - |
dc.description.abstract | 在和風(≤8m/s)及晴朗的天候下,上層海洋吸收短波輻射後可形成日暖層(Diurnal Warm Layer, DWL),在大洋中通常深達大約10公尺,日暖層的底部為日暖斜溫層(Diurnal thermocline),在日暖斜溫層之下至混合層底部則稱作餘留層(Remnant layer)。為能更好地了解日暖層,本研究分析了2022年4月在臺灣西南海域及2021年5月在綠島渦流區佈放的船基海氣通量/交換觀測系統(Ship-based Air-sea Flux & Exchange System, SAFE)資料。SAFE搭載1200 kHz都卜勒流剖儀(Acoustic Doppler Current Profiler, ADCP)及約50支溫度計,以0.3-2公尺的高解析度測量上層20公尺海洋的海流和溫度。觀測結果中發現了對稱不穩定性及平流效應等過程,而最值得注意的是兩次實驗中都觀察到日暖層加深階段顯著的等溫線振盪。在小於4 m/s的微弱風速下,綠島迴流(recirculation)中的白天日暖層仍可達到約20公尺,遠超出一般情況約為4公尺內的厚度,分析顯示該處的日暖層加深主要受到迴流內部混合所影響,而非由風應力所驅動,且溫度振盪可能是由近N震盪的內波(Internal waves, IW)所引起,但有些波動具有KH不穩定(Kelvin-Helmholtz instability)的捲成(roll-up)結構。在臺灣西南海域,直接觀測到內波列結構及可能是由風引起的成熟KH波(billow),其特徵是捲成(roll-up)和一些破碎波組合,其為過去文獻中較罕見之觀測結果。上述兩組實驗的波動都滿足KH不穩定的基本定理。本研究探討了日暖層加深的過程,結果顯示,除了多數文獻探討的大氣因素外,內波及KH不穩定都扮演著關鍵的角色。 | zh_TW |
dc.description.abstract | Under moderate wind conditions (≤8 m/s) and clear sky, the penetration of insolation into the upper ocean could form a diurnal warm layer (DWL), which can reach ~10 m in the open ocean. To better understand DWL, this study analyzed the data collected by the Ship-based Air-sea Flux & Exchange System (SAFE) deployed in the Green Island wake in May 2021 and in the southwest of Taiwan in April 2022. SAFE has about 50 temperature sensors and a 1200 kHz Acoustic Doppler Current Profiler (ADCP) to measure currents and temperature variations in the upper 20 m ocean with high resolution. The observations revealed processes such as symmetric instability and advection effects, but the most noteworthy finding was the significant temperature oscillation observed during the deepening stage of the DWL in both experiments. Under wind speed ~2 m/s, the DWL in the Green Island recirculation zone can reach about 20 m, suggesting strong wake flow mixing instead of wind-induced mixing, leading to the deepening of DWL. The temperature oscillation was likely caused by near-N internal waves(IWs), with some fluctuations exhibiting a roll-up structure associated with Kelvin-Helmholtz(KH) instability. In the southwest of Taiwan, we directly observed the internal wave train and the mature KH billow (roll-up and breaking) that was likely caused by wind forcing, which is relatively seldom directly observed in previous studies. Both observations of temperature oscillation satisfy the basic theorem of KH instability. Our observations unveil the detailed processes in response to the DWL deepening – in addition to well-known atmospheric factors, internal waves, and KH instability play pivotal roles. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:17:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:17:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 #
致謝 i 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xi 符號表 xii 第一章 緒論 1 第二章 觀測資料 9 2.1 船基海氣通量/交換觀測系統(Ship-based Air-sea Flux & Exchange System, SAFE) 10 2.2 船載氣象系統 14 2.3水下自主觀測滑翔儀搭載MicroPod紊流系統 15 第三章 研究方法 17 3.1 分層切變流的穩定性 17 3.1.1 線性穩定分析 17 3.1.2 Miles-Howard 準則 19 3.2 Price-Weller-Pinkel 一維混合模式 20 3.2.1 海氣通量邊界條件 20 3.2.2 收支方程式 21 3.2.3 混合過程 22 3.3 Thorpe scale方法 24 第四章 船基海氣通量/交換觀測系統觀測結果 26 4.1臺灣西南海域 26 4.2綠島 31 4.3 兩組觀測資料之異同處 37 第五章 日暖層加深時期的等溫線震盪 39 5.1 從理查森數探索小尺度不穩定現象 39 5.2 從近N震盪推測內波的影響 41 5.3從線性穩定性分析探討不穩定成長率 44 5.4 兩組觀測資料之不穩定性 49 第六章 日暖層中的紊流混合 50 6.1 PWP一維混合模式結果 50 6.2 Thorpe scale計算結果 52 第七章 結論 54 參考文獻 58 | - |
dc.language.iso | zh_TW | - |
dc.title | 和風情況下日暖層物理過程的觀測 | zh_TW |
dc.title | Observations of the physical processes in the diurnal warm layer under moderate wind conditions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 許哲源 | zh_TW |
dc.contributor.coadvisor | Je-Yuan Hsu | en |
dc.contributor.oralexamcommittee | 詹森;曾于恒;鄭宇昕 | zh_TW |
dc.contributor.oralexamcommittee | Sen Jan;Yu-Heng Tseng;Yu-Hsin Cheng | en |
dc.subject.keyword | 日暖層,切變不穩定,內波,綠島渦流, | zh_TW |
dc.subject.keyword | diurnal warm layer,shear instability,internal waves,Green Island wake, | en |
dc.relation.page | 65 | - |
dc.identifier.doi | 10.6342/NTU202302589 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 30.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。