請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88636
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝旭亮 | zh_TW |
dc.contributor.advisor | Hsu-Liang Hsieh | en |
dc.contributor.author | 黃子瀚 | zh_TW |
dc.contributor.author | Tzu-Han Huang | en |
dc.date.accessioned | 2023-08-15T17:09:53Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-03 | - |
dc.identifier.citation | Achard, P., Liao, L., Jiang, C., Desnos, T., Bartlett, J., Fu, X., and Harberd, N.P. (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiol. 143: 1163–1172.
Alabadí, D., Gallego-Bartolomé, J., Orlando, L., García-Cárcel, L., Rubio, V., Martínez, C., Frigerio, M., Iglesias-Pedraz, J.M., Espinosa, A., Deng, X.W., and Blázquez, M.A. (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J. 53: 324–335. Bailey, P.C., Martin, C., Toledo-Ortiz, G., Quail, P.H., Huq, E., Heim, M.A., Jakoby, M., Werber, M., and Weisshaar, B. (2003). Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15: 2497–2502. Binder, J.X., Pletscher-Frankild, S., Tsafou, K., Stolte, C., O’Donoghue, S.I., Schneider, R., and Jensen, L.J. (2014). COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database 2014: bau012. Bu, Q., Castillon, A., Chen, F., Zhu, L., and Huq, E. (2011). Dimerization and blue light regulation of PIF1 interacting bHLH proteins in Arabidopsis. Plant Mol Biol 77: 501. Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12: 514–521. Chen, H.-I., Li, P.-F., and Yang, C.-H. (2019). NAC-like gene GIBBERELLIN SUPPRESSING FACTOR regulates the gibberellin metabolic pathway in response to cold and drought stresses in Arabidopsis. Sci. Rep. 9: 19226. Chen, H.J., Chen, C.L., and Hsieh, H.L. (2015). Far-red light-mediated seedling development in Arabidopsis involves FAR- RED INSENSITIVE 219 / JASMONATE RESISTANT 1-dependent and -independent pathways. PLoS One 10: e0132723. Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007). Glutathione S-Transferase interacting with Far-Red Insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol. 143: 1189–1202. Chen, J., Sonobe, K., Ogawa, N., Masuda, S., Nagatani, A., Kobayashi, Y., and Ohta, H. (2013). Inhibition of Arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. J. Plant Res. 126: 161–168. Chen, Y.-H. (2016) Functional studies of transcription factor ELONGATED HYPOCOTYL5 involved in jasmonate signaling pathway in Arabidopsis. 碩士論文,植物科學研究所,台灣大學,台北 Chini, A., Boter, M., and Solano, R. (2009). Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J. 276: 4682–4692. Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671. Chung, H.S., Koo, A.J.K., Gao, X., Jayanty, S., Thines, B., Jones, A.D., and Howe, G.A. (2008). Regulation and function of Arabidopsis JASMONATE ZIM-Domain genes in response to wounding and herbivory. Plant Physiol. 146: 952–964. Cui, H., Qiu, J., Zhou, Y., Bhandari, D.D., Zhao, C., Bautor, J., and Parker, J.E. (2018). Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Mol. Plant 11: 1053–1066. de Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blázquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451: 480–484. Devoto, A., Ellis, C., Magusin, A., Chang, H.-S., Chilcott, C., Zhu, T., and Turner, J.G. (2005). Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol. Biol. 58: 497–513. Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signaling and fertility to the SCF ubiquitin–ligase complex in Arabidopsis. Plant J. 32: 457–466. Dill, A., Jung, H.S., and Sun, T. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl. Acad. Sci. U.S.A 98: 14162–14167. Farmer, E.E. and Ryan, C.A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U.S.A 87: 7713–7716. Feng, S. et al. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451: 475–479. Fernández-Calvo, P. et al. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23: 701–715. Feys, B.J., Moisan, L.J., Newman, M.-A., and Parker, J.E. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 20: 5400–5411. Fornero, C., Rickerd, T., and Kirik, V. (2019). Papillae formation on Arabidopsis leaf trichomes requires the function of Mediator tail subunits 2, 14, 15a, 16, and 25. Planta 249: 1063–1071. Gao, Q.-M., Venugopal, S., Navarre, D., and Kachroo, A. (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 Proteins. Plant Physiol. 155: 464–476. Gangappa, S.N., Prasad, V.B.R., and Chattopadhyay, S. (2010). Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. Plant Physiol. 154: 1210–1219. Gasperini, D., Chételat, A., Acosta, I.F., Goossens, J., Pauwels, L., Goossens, A., Dreos, R., Alfonso, E., and Farmer, E.E. (2015). Multilayered organization of jasmonate signaling in the regulation of root growth. PLoS Genet. 11: e1005300. Gendrel, A.-V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2: 213–218. Genoud, T., Schweizer, F., Tscheuschler, A., Debrieux, D., Casal, J.J., Schäfer, E., Hiltbrunner, A., and Fankhauser, C. (2008). FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLOS Genet. 4: e1000143. Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S.J., Gong, F., Phillips, A.L., Hedden, P., Sun, T., and Thomas, S.G. (2006). Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18: 3399–3414. Guo, Q., Yoshida, Y., Major, I.T., Wang, K., Sugimoto, K., Kapali, G., Havko, N.E., Benning, C., and Howe, G.A. (2018). JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A 115: E10768–E10777. Hazman, M., Sühnel, M., Schäfer, S., Zumsteg, J., Lesot, A., Beltran, F., Marquis, V., Herrgott, L., Miesch, L., Riemann, M., and Heitz, T. (2019). Characterization of jasmonoyl-isoleucine (JA-Ile) hormonal catabolic pathways in rice upon wounding and salt stress. Rice 12: 45. Hedden, P. and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science 5: 523–530. Hedden, P. and Sponsel, V. (2015). A century of gibberellin research. J. Plant Growth Regul. 34: 740–760. Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., and Bailey, P.C. (2003). The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20: 735–747. Heinrich, M., Hettenhausen, C., Lange, T., Wünsche, H., Fang, J., Baldwin, I.T., and Wu, J. (2013). High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J 73: 591–606. Helizon, H., Rösler-Dalton, J., Gasch, P., von Horsten, S., Essen, L.-O., and Zeidler, M. (2018). Arabidopsis phytochrome A nuclear translocation is mediated by a far-red elongated hypocotyl 1–importin complex. Plant J. 96: 1255–1268. Hickman, R. et al. (2017). Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29: 2086–2105. Hiltbrunner, A., Tscheuschler, A., Viczián, A., Kunkel, T., Kircher, S., and Schäfer, E. (2006). FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol. 47: 1023–1034. Hirano, K., Asano, K., Tsuji, H., Kawamura, M., Mori, H., Kitano, H., Ueguchi-Tanaka, M., and Matsuoka, M. (2010). Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22: 2680–2696. Hornitschek, P., Kohnen, M.V., Lorrain, S., Rougemont, J., Ljung, K., López-Vidriero, I., Franco-Zorrilla, J.M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., and Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71: 699–711. Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., and Fankhauser, C. (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28: 3893–3902. Hou, X., Lee, L.Y.C., Xia, K., Yan, Y., and Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Dev. Cell 19: 884–894. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14: 1958–1970. Hu, S., Yang, H., Gao, H., Yan, J., and Xie, D. (2021). Control of seed size by jasmonate. Sci. China Life Sci. 64: 1215–1226. Hu, Y., Dong, Q., and Yu, D. (2012). Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci. 185–186: 288–297. Ishida, T., Hattori, S., Sano, R., Inoue, K., Shirano, Y., Hayashi, H., Shibata, D., Sato, S., Kato, T., Tabata, S., Okada, K., and Wada, T. (2007). Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19: 2531–2543. Jin, G., Qi, J., Zu, H., Liu, S., Gershenzon, J., Lou, Y., Baldwin, I.T., and Li, R. (2023). Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice. Plant Cell: koad191. Jin, H., Choi, S.-M., Kang, M.-J., Yun, S.-H., Kwon, D.-J., Noh, Y.-S., and Noh, B. (2018). Salicylic acid-induced transcriptional reprogramming by the HAC–NPR1–TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Research 46: 11712–11725. Jakoby, M.J., Falkenhan, D., Mader, M.T., Brininstool, G., Wischnitzki, E., Platz, N., Hudson, A., Hülskamp, M., Larkin, J., and Schnittger, A. (2008). Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK nncodes the MIXTA-Like transcriptional regulator MYB106. Plant Physiol. 148: 1583–1602. Jewell, J.B. and Browse, J. (2016). Epidermal jasmonate perception is sufficient for all aspects of jasmonate-mediated male fertility in Arabidopsis. Plant J. 85: 634–647. Jiang, H.-W., Peng, K.-C., Hsu, T.-Y., Chiou, Y.-C., and Hsieh, H.-L. (2023). Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner. PLOS Genet. 19: e1010779. Johnson, C.S., Kolevski, B., and Smyth, D.R. (2002). TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14: 1359–1375. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. U.S.A 105: 7100–7105. Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12: 357–360. Kim, L., Kircher, S., Toth, R., Adam, E., Schäfer, E., and Nagy, F. (2000). Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J.22: 125–133. Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schäfer, E., and Nagy, F. (1999). Light quality–dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445–1456. Koornneef, M. and van der Veen, J.H. (1980). Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. Theor. Appl. Genet. 58: 257–263. Kunkel, B.N. and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5: 325–331. Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19: 731–749. Leon-Reyes, A., Van der Does, D., De Lange, E.S., Delker, C., Wasternack, C., Van Wees, S.C.M., Ritsema, T., and Pieterse, C.M.J. (2010). Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232: 1423–1432. Li, J., Brader, G., and Palva, E.T. (2004). The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16: 319–331. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923–930. Liu, B., Seong, K., Pang, S., Song, J., Gao, H., Wang, C., Zhai, J., Zhang, Y., Gao, S., Li, X., Qi, T., and Song, S. (2021). Functional specificity, diversity, and redundancy of Arabidopsis JAZ family repressors in jasmonate and COI1-regulated growth, development, and defense. New Phytol. 231: 1525–1545. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550. Lu, X.-D., Zhou, C.-M., Xu, P.-B., Luo, Q., Lian, H.-L., and Yang, H.-Q. (2015). Red-light-dependent interaction of phyB with SPA1 promotes COP1–SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8: 467–478. Machanick, P. and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27: 1696–1697. Manners, J.M., Penninckx, I.A.M.A., Vermaere, K., Kazan, K., Brown, R.L., Morgan, A., Maclean, D.J., Curtis, M.D., Cammue, B.P.A., and Broekaert, W.F. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38: 1071–1080. Massari, M.E. and Murre, C. (2000). Helix-Loop-Helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell Biol. 20: 429–440. Mitchum, M.G., Yamaguchi, S., Hanada, A., Kuwahara, A., Yoshioka, Y., Kato, T., Tabata, S., Kamiya, Y., and Sun, T. (2006). Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45: 804–818. Murase, K., Hirano, Y., Sun, T., and Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459–463. Navarro, L., Bari, R., Achard, P., Lisón, P., Nemri, A., Harberd, N.P., and Jones, J.D.G. (2008). DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18: 650–655. Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.-S., Sun, T., Kamiya, Y., and Choi, G. (2007). PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19: 1192–1208. Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.-I., and Choi, G. (2006). Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 47: 124–139. Ortigosa, A., Fonseca, S., Franco-Zorrilla, J.M., Fernández-Calvo, P., Zander, M., Lewsey, M.G., García-Casado, G., Fernández-Barbero, G., Ecker, J.R., and Solano, R. (2020). The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant J. 102: 138–152. Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462–466. Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11: 2983–2995. Payne, C.T., Zhang, F., and Lloyd, A.M. (2000). GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156: 1349–1362. Peng, K.C., Siao, W., and Hsieh, H.L. (2023). FAR-RED INSENSITIVE 219 and phytochrome B co-repress shade avoidance via modulating nuclear speckle formation. Plant Physiol. 00: 1-17. Plackett, A.R.G. et al. (2012). Analysis of the developmental roles of the Arabidopsis Gibberellin 20-Oxidases demonstrates that GA20ox1, -2, and -3 Are the dominant Paralogs. Plant Cell 24: 941–960. Qi, T., Huang, H., Wu, D., Yan, J., Qi, Y., Song, S., and Xie, D. (2014). Arabidopsis DELLA and JAZ proteins bind the WD-Repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26: 1118–1133. Reid, J.B., Botwright, N.A., Smith, J.J., O’Neill, D.P., and Kerckhoffs, L.H.J. (2002). Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol. 128: 734–741. Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S.J., Gong, F., Linhartova, T., Eriksson, S., Nilsson, O., Thomas, S.G., Phillips, A.L., and Hedden, P. (2008). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53: 488–504. Robson, F., Okamoto, H., Patrick, E., Harris, S.R., Wasternack, C., Brearley, C., and Turner, J.G. (2010). Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability. Plant Cell 22: 1143–1160. Ross, J.J., O’Neill, D.P., Wolbang, C.M., Symons, G.M., and Reid, J.B. (2001). Auxin-gibberellin interactions and their role in plant growth. J. Plant Growth Regul. 20: 346–353. Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. Schomburg, F.M., Bizzell, C.M., Lee, D.J., Zeevaart, J.A.D., and Amasino, R.M. (2003). Overexpression of a novel class of Gibberellin 2-Oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15: 151–163. Sheerin, D.J., Menon, C., zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., Schleifenbaum, F., Stierhof, Y.-D., Huq, E., and Hiltbrunner, A. (2015). Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27: 189–201. Shen, H., Zhu, L., Castillon, A., Majee, M., Downie, B., and Huq, E. (2008). Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20: 1586–1602. Shi, H., Zhong, S., Mo, X., Liu, N., Nezames, C.D., and Deng, X.W. (2013). HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25: 3770–3784. Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li, C., Qi, T., and Xie, D. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis. Plant Cell 26: 263–279. Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U.S.A 89: 6837–6840. Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405–1415. Stintzi, A. and Browse, J. (2000). The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. U.S.A 97: 10625–10630. Swain, S., Jiang, H.-W., and Hsieh, H.-L. (2017). FAR-RED INSENSITIVE 219/JAR1 contributes to shade avoidance responses of Arabidopsis seedlings by modulating key shade signaling components. Front. Plant Sci. 8: 1901. Tamogami, S., Rakwal, R., and Agrawal, G.K. (2008). Interplant communication: Airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem. Biophys. Res. Commun. 376: 723–727. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling. Nature 448: 661–665. Ting, S.-F. (2023) Functional studies of bHLH51 and FIN219 interaction in the regulation of far-red light and jasmonate signaling in Arabidopsis. 碩士論文,植物科學研究所,台灣大學,台北 Toledo-Ortiz, G., Huq, E., and Quail, P.H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15: 1749–1770. Traw, M.B. and Bergelson, J. (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 133: 1367–1375. Tsai, M.-C. (2013) Functional studies of GASA4 in light and the integration of hormone signalings in Arabidopsis. 碩士論文,植物科學研究所,台灣大學,台北 Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R., and Sun, T. (2004). DELLA proteins and gibberellin-regulated seed germination and floral Development in Arabidopsis. Plant Physiol. 135: 1008–1019. Utsugi, S., Sakamoto, W., Murata, M., and Motoyoshi, F. (1998). Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue-specific expression. Plant Mol. Biol. 38: 565–576. Wang, J.G., Chen, C.H., Chien, C.T., and Hsieh, H.L. (2011). FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol. 156: 631–646. Wang, W., Zhang, J., Qin, Q., Yue, J., Huang, B., Xu, X., Yan, L., and Hou, S. (2014). The six conserved serine/threonine sites of REPRESSOR OF ga1-3 protein are important for its functionality and stability in gibberellin signaling in Arabidopsis. Planta 240: 763–779. Weller, J.L., Hecht, V., Vander Schoor, J.K., Davidson, S.E., and Ross, J.J. (2009). Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21: 800–813. Wild, M., Davière, J.-M., Cheminant, S., Regnault, T., Baumberger, N., Heintz, D., Baltz, R., Genschik, P., and Achard, P. (2012). The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24: 3307–3319. Wingler, A., Tijero, V., Müller, M., Yuan, B., and Munné-Bosch, S. (2020). Interactions between sucrose and jasmonate signalling in the response to cold stress. BMC Plant Biol. 20: 176. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919–1935. Xu, X., Chen, C., Fan, B., and Chen, Z. (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310–1326. Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., Nan, F., Wang, Z., and Xie, D. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21: 2220–2236. Yang, D.L. et al. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U.S.A 109: 1192–1200. Yang, S.-L. (2018) Functional studies of SOMBRERO/ANAC033 acting as an extragenic suppressor of FIN219 and regulating hypocotyl elongation of Arabidopsis seedlings in far-red light and jasmonate signaling. 碩士論文,植物科學研究所,台灣大學,台北 Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16: 284–287. Zhang, N., Zhou, S., Yang, D., and Fan, Z. (2020). Revealing shared and distinct genes responding to JA and SA signaling in Arabidopsis by meta-analysis. Front Plant Sci. 11: 908. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9: R137. Zhu, L.J., Gazin, C., Lawson, N.D., Pagès, H., Lin, S.M., Lapointe, D.S., and Green, M.R. (2010). ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 11: 237. Zhu, L.J., Gazin, C., Lawson, N.D., Pagès, H., Lin, S.M., Lapointe, D.S., and Green, M.R. (2010). ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 11: 237. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88636 | - |
dc.description.abstract | 植物荷爾蒙中茉莉酸 (jasmonates; JAs) 和吉貝素 (gibberellin; GA) 在植物防禦與生長的過程扮演重要角色,兩者相互拮抗,以調控它們之間的交互作用。吉貝素所引發的生長反應受到DELLA的抑制,而吉貝素的存在則能造成DELLA的降解,進而促進植物生長;這樣的調控機制則會受到茉莉酸的影響,造成DELLA的累積而抑制生長。本論文的研究顯示bHLH家族的轉錄因子bHLH51參與茉莉酸所介導的生長抑制之中。bHLH51的表達量會受到甲基茉莉酸 (methyl jasmonate; MeJA) 顯著性的誘導表現,並作用於茉莉酸生合成基因- FAR-RED INSENSITIVE 219 (FIN219) 的下游。當大量表達bHLH51,會導致植株矮小。矮小的外表型可能是RGA蛋白質的含量增加所造成,RGA屬於阿拉伯芥DELLA蛋白質的一員。根據實驗結果推測與吉貝素代謝基因的表現量變化相關。其中,bHLH51能直接結合到GA2ox2基因的啟動子區域,促進它的表現。GA2ox2能將具生物活性的吉貝素轉化為不具活性的型態。不僅如此,ChIP-seq和RNA-seq的結果也顯示出bHLH51主要作為轉錄活化子 (transcriptional activator)。此外透過偵測甲基茉莉酸處理下的表現量變化,顯示出bHLH51可能透過調控JAZ1的表達,以影響茉莉酸信息途徑的負回饋機制。有趣的是,bHLH51還造成FIN219的表現量下調,進而造成JA反應的抑制,形成了一個 bHLH51和FIN219間的回饋機制。除此之外,我們也發現bHLH51和FIN219之間存在著直接的交互作用,並推測FIN219可能藉此抑制bHLH51的功能。我們的研究顯示大量表達bHLH51時會引發水楊酸 (salicylic acid; SA) 相關反應,揭示轉錄因子bHLH51參與在水楊酸介導的植物免疫反應中的可能性。綜合以上所述,本研究提出bHLH51在阿拉伯芥中會響應外界的生物或非生物性逆境,進而抑制吉貝素的活性。 | zh_TW |
dc.description.abstract | Jasmonates (JAs) play a critical role in plant defense and development. This phytohormone is antagonistic to the growth-promoting hormone gibberellins (GAs) and inhibits plant growth. JA reduces GA-mediated degradation of DELLA proteins, which are negative regulators of plant growth responses. In this study, we investigated the involvement of basic helix-loop-helix transcription factor 51 (bHLH51) in JA-mediated growth inhibition. We demonstrated that bHLH51 functions in downstream of FAR-RED INSENSITIVE 219 (FIN219), a biosynthetic enzyme of JA-isoleucine (JA-Ile). Exogenous methyl jasmonate (MeJA) treatment can substantially induce bHLH51 expression. Overexpression of bHLH51 causes a dwarf phenotype likely through RGA (one of the DELLA proteins), which correlates with changes in the expression of GA-metabolic genes. We provided evidence that bHLH51 directly up-regulated expression of the GA2ox2 gene, encoding an enzyme that catalyzes the conversion of an active GA into an inactive GA. Further ChIP-seq and RNA-seq analyses also indicated that bHLH51 acted as a transcriptional activator. Moreover, based on the expression level changes under MeJA treatments, we propose that bHLH51 is involved in the regulation of a JA signaling negative feedback through regulating JAZ1. Interestingly, bHLH51 also downregulated FIN219, thereby contributing to a suppression of JA responses, forming a bHLH51-FIN219 feedback loop. Besides, we found a physical interaction between FIN219 and bHLH51, which suggests the inhibition of bHLH51 function by FIN219. Our findings also revealed that salicylic acid (SA) responses were activated in bHLH51 overexpression lines, which suggests the potential role of bHLH51 in SA-mediated plant immunity. In summary, our study demonstrates that bHLH51 may respond to biotic or abiotic stresses while suppressing GA activity in Arabidopsis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:09:53Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:09:53Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract IV Contents V List of Figures VIII List of Tables X Abbreviations XI Introduction 1 Jasmonate signaling pathway 1 The cross-talk between JA and far-red light signaling in photomorphogenesis 2 The cross-talk between JA and Gibberellin signaling 4 bHLH transcription factor family 6 The motivation and purpose of this study 8 Materials and Methods 10 1. Plant materials and growth conditions 10 2. Measurement of hypocotyl and petiole lengths 11 3. Flowering-time measurement 11 4. Analysis of the transcript abundance 12 5. GUS histochemical staining 12 6. Plant protein extraction and Western Blotting assays 13 7. Chromatin immunoprecipitation analyses (ChIP-qPCR and ChIP-seq) 13 8. RNA-seq 15 9. immunoprecipitation followed by mass spectrometry (IP-MS/MS) 16 10. Trichome measurement 16 11. Bimolecular fluorescence complementation assay (BiFC) 17 12. Pull-down assay 17 Results 18 bHLH51 and FIN219 suppress with each other to regulate hypocotyl elongation under far-red light 18 bHLH51 is highly induced by exogenous MeJA treatment 20 Histochemical GUS staining of pbHLH51:GUS reveals that bHLH51 is expressed in multiple tissues 21 Overexpression of bHLH51 in Arabidopsis leads to a dwarf phenotype 21 bHLH51 may play a role by positively regulating the expression of early JA-responsive genes, GA2ox2 and JAZ1, and negatively for their expression at later stage of JA signaling 24 bHLH51 binds directly to the promoter regions of GA2ox2 and JAZ1 in vivo 26 Genome-wide analysis of bHLH51 target sites by ChIP-seq 27 Potential direct-target genes of bHLH51 revealed its regulation of SA-related responses 28 Trichome formation increases in bHLH51 overexpression lines 30 Analysis of the bHLH51 protein-protein interaction network 31 bHLH51 can work without FIN219 to regulate GA2ox2 and JAZ1 transcription 33 Discussion 34 Regulation of growth inhibition of bHLH51 in JA and light signaling 34 Regulation of JAZ1 expression by bHLH51 for negative feedback in JA signaling 37 bHLH51 suppresses JA responses by downregulating FIN219/JAR1 and forms a feedback loop 38 The interaction between bHLH51 and FIN219 39 The activated SA-related responses might be involved in the repression of JA responses in bHLH51 overexpression lines 40 Unveiling the role of bHLH51 in trichome initiation 41 Conclusions 43 Figures 44 Tables 66 References 71 | - |
dc.language.iso | en | - |
dc.title | 阿拉伯芥中bHLH51轉錄因子與FIN219間交互作用對於吉貝素和茉莉酸介導的信息調控之研究 | zh_TW |
dc.title | Studies of transcription factor bHLH51 and FIN219 interaction in regulating the cross-talk between gibberellin- and jasmonate-mediated signaling in Arabidopsis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 涂世隆;劉明容;李金美;鄭梅君 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Long Tu;Ming-Jung Liu;Chin-Mei Lee;Mei-Chun Cheng | en |
dc.subject.keyword | bHLH51,GA2ox2,FIN219,茉莉酸,吉貝素, | zh_TW |
dc.subject.keyword | bHLH51,GA2ox2,FIN219,Jasmonates,Gibberellin, | en |
dc.relation.page | 85 | - |
dc.identifier.doi | 10.6342/NTU202302761 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 植物科學研究所 | - |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-08-03 | 5.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。