請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88635完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 倪其焜 | zh_TW |
| dc.contributor.advisor | Chi-Kung Ni | en |
| dc.contributor.author | 劉佳燕 | zh_TW |
| dc.contributor.author | Chia-Yen Liew | en |
| dc.date.accessioned | 2023-08-15T17:09:39Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | References (Chapter 1)
1. Seeberger, P. Monosaccharide Diversity. In Essentials of Glycobiology [Internet]. 4rd Edition, Cold Spring Harbor Laboratory Press, 2022. 2. Davis, B. G.; Fairbanks, A. J. Carbohydrate Chemistry; Oxford University Press, 2006. 3. Prestegard, J. H.; Liu, J.; Widmalm, G. Oligosaccharides and Polysaccharides. In Essentials of Glycobiology [Internet]. 4rd Edition, Cold Spring Harbor Laboratory Press, 2022. 4. Ćirić, D.; Milošević-Jovčić, N.; Ilić, V.; Petrović, S. A Longitudinal Study of the Relationship between Galactosylation Degree of Igg and Rheumatoid Factor Titer and Avidity During Long-Term Immunization of Rabbits with Bsa. Autoimmunity 2005, 38 (6),409-416 5. Nezlin, R. The Immunoglobulins: Structure and Function; Academic Press, 1998. 6. Ruhaak, L. R.; Miyamoto, S.; Lebrilla, C. B. Developments in the Identification of Glycan Biomarkers for the Detection of Cancer. Mol. Cell Proteomics 2013, 12 (4), 846-855 7. Pinho, S. S.; Reis, C. A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer 2015, 15 (9), 540-555 8. Shammala, F. A. Mass Spectrometry-Based Analysis of Glycoproteins and Its Clinical Applications in Cancer Biomarker Discovery. Braz. J. Biol. 2017, 4 (7), 203-215 9. Pezer, M.; Stambuk, J.; Perica, M.; Razdorov, G.; Banic, I.; Vuckovic, F.; Gospic, A. M.; Ugrina, I.; Vecenaj, A.; Bakovic, M. P. Effects of Allergic Diseases and Age on the Composition of Serum Igg Glycome in Children. Sci. Rep. 2016, 6, 1-10 References (Chapter 2) 1. HAKOMORI, S.-I. A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide. J. Biochem. 1964, 55 (2), 205-208 2. Dutton, G. G. Applications of Gas-Liquid Chromatography to Carbohydrates: Part I. In Advances in Carbohydrate Chemistry and Biochemistry, Vol. 28; Elsevier, 1973; pp 11-160. 3. Dutton, G. G. Applications of Gas-Liquid Chromatography to Carbohydrates: Part Ii. In Advances in Carbohydrate Chemistry and Biochemistry, Vol. 30; Elsevier, 1974; pp 9-110. 4. Lonngren, J.; Svensson, S. Adv. Carbohydr. Chem. Biochem. Academic, Press, New York 1974, 39, 98 5. Kobata, A. Structures and Functions of the Sugar Chains of Glycoproteins. In Ejb Reviews, Springer, 1993; pp 207-225. 6. Wiegandt, H. Glycolipids; Elsevier, 2011. 7. Dell, A. Fab-Mass Spectrometry of Carbohydrates. In Advances in Carbohydrate Chemistry and Biochemistry, Vol. 45; Elsevier, 1987; pp 19-72. 8. Egge, H.; Peter‐Katalinić, J. Fast Atom Bombardment Mass Spectrometry for Structural Elucidation of Glycoconjugates. Mass Spectrom. Rev. 1987, 6 (3), 331-393 9. Wong, C.-H. Carbohydrate-Based Drug Discovery, 2 Volume Set; John Wiley & Sons, 2003. 10. Tarentino, A. L.; Trimble, R. B.; Plummer JR, T. H. Enzymatic Approaches for Studying the Structure, Synthesis, and Processing of Glycoproteins. In Methods in Cell Biology, Vol. 32; Elsevier, 1989; pp 111-139. 11. TRETTER, V.; ALTMANN, F.; MÄRZ, L. Peptide‐N4‐(N‐Acetyl‐Β‐Glucosaminyl) Asparagine Amidase F Cannot Release Glycans with Fucose Attached Α1→ 3 to the Asparagine‐Linked N‐Acetylglucosamine Residue. Eur. J. Biochem. 1991, 199 (3), 647-652 12. O'Neill, R. A. Enzymatic Release of Oligosaccharides from Glycoproteins for Chromatographic and Electrophoretic Analysis. J. Chromatogr. A 1996, 720 (1-2), 201-215 13. Yang, S.; Onigman, P.; Wu, W. W.; Sjogren, J.; Nyhlen, H.; Shen, R.-F.; Cipollo, J. Deciphering Protein O-Glycosylation: Solid-Phase Chemoenzymatic Cleavage and Enrichment. Anal. Chem. 2018, 90 (13), 8261-8269 14. Greis, K. D.; Hayes, B. K.; Comer, F. I.; Kirk, M.; Barnes, S.; Lowary, T. L.; Hart, G. W. Selective Detection and Site-Analysis of O-Glcnac-Modified Glycopeptides by Β-Elimination and Tandem Electrospray Mass Spectrometry. Anal. Biochem. 1996, 234 (1), 38-49 15. Balaguer, E.; Demelbauer, U.; Pelzing, M.; Sanz‐Nebot, V.; Barbosa, J.; Neusüß, C. Glycoform Characterization of Erythropoietin Combining Glycan and Intact Protein Analysis by Capillary Electrophoresis–Electrospray–Time‐of‐Flight Mass Spectrometry. Electrophoresis 2006, 27 (13), 2638-2650 16. Jensen, P. H.; Karlsson, N. G.; Kolarich, D.; Packer, N. H. Structural Analysis of N-and OGlycans Released from Glycoproteins. Nat. Protoc. 2012, 7 (7), 1299-1310 17. Huang, Y.; Mechref, Y.; Novotny, M. V. Microscale Nonreductive Release of O-Linked Glycans for Subsequent Analysis through Maldi Mass Spectrometry and Capillary Electrophoresis. Anal. Chem. 2001, 73 (24), 6063-6069 18. Miura, Y.; Kato, K.; Takegawa, Y.; Kurogochi, M.; Furukawa, J.-i.; Shinohara, Y.; Nagahori, N.; Amano, M.; Hinou, H.; Nishimura, S.-I. Glycoblotting-Assisted O-Glycomics: Ammonium Carbamate Allows for Highly Efficient O-Glycan Release from Glycoproteins. Anal. Chem. 2010, 82 (24), 10021-10029 19. Yan, S.; Vanbeselaere, J.; Jin, C.; Blaukopf, M.; Wöls, F.; Wilson, I. B.; Paschinger, K. Core Richness of N-Glycans of Caenorhabditis Elegans: A Case Study on Chemical and Enzymatic Release. Anal. Chem. 2018, 90 (1), 928-935 20. Yuan, J.; Wang, C.; Sun, Y.; Huang, L.; Wang, Z. Nonreductive Chemical Release of Intact N-Glycans for Subsequent Labeling and Analysis by Mass Spectrometry. Anal. Biochem. 2014, 462, 1-9 21. Kozak, R. P.; Royle, L.; Gardner, R. A.; Fernandes, D. L.; Wuhrer, M. Suppression of Peeling During the Release of O-Glycans by Hydrazinolysis. Anal. Biochem. 2012, 423 (1), 119-128 22. Mechref, Y.; Novotny, M. V. Structural Investigations of Glycoconjugates at High Sensitivity. Chem. Rev. 2002, 102 (2), 321-370 23. Geyer, H.; Geyer, R. Strategies for Analysis of Glycoprotein Glycosylation. Biochim. Biophys. Acta 2006, 1764 (12), 1853-1869 24. Song, X.; Smith, D. F.; Cummings, R. D. Nonenzymatic Release of Free Reducing Glycans from Glycosphingolipids. Anal. Biochem. 2012, 429 (1), 82-87 25. Wang, C.; Wen, Y.; Yang, M.; Huang, L.; Wang, Z.; Fan, J. High-Sensitivity Quantification of Glycosphingolipid Glycans by Esi-Ms Utilizing Ozonolysis-Based Release and Isotopic Girard's Reagent Labeling. Anal. Biochem. 2019, 582, 113355-113355 26. Sethi, M. K.; Fanayan, S. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer. Int. J. Mol. Sci. 2015, 16 (12), 29278-29304 27. Ruhaak, L.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A.; Wuhrer, M. Glycan Labeling Strategies and Their Use in Identification and Quantification. Anal. Bioanal. Chem. 2010, 397 (8), 3457-3481 28. Kamerling, J.; Gerwig, G. Strategies for the Structural Analysis of Carbohydrates. 2007, 29. Dell, A.; Reason, A. J.; Khoo, K.-H.; Panico, M.; McDowell, R. A.; Morris, H. R. [8] Mass Spectrometry of Carbohydrate-Containing Biopolymers. In Methods in Enzymology, Vol. 230; Elsevier, 1994; pp 108-132. 30. Ciucanu, I.; Kerek, F. A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohydr. Res. 1984, 131 (2), 209-217 31. Waeghe, T. J.; Darvill, A. G.; McNeil, M.; Albersheim, P. Determination, by Methylation Analysis, of the Glycosyl-Linkage Compositions of Microgram Quantities of Complex Carbohydrates. Carbohydr. Res. 1983, 123 (2), 281-304 32. Fournet, B.; Strecker, G.; Leroy, Y.; Montreuil, J. Gas-Liquid Chromatography and Mass Spectrometry of Methylated and Acetylated Methyl Glycosides. Application to the Structural Analysis of Glycoprotein Glycans. Anal. Biochem. 1981, 116 (2), 489-502 33. Ashline, D.; Singh, S.; Hanneman, A.; Reinhold, V. Congruent Strategies for Carbohydrate Sequencing. 1. Mining Structural Details by Ms N. Anal. Chem. 2005, 77 (19), 6250-6262 34. Pabst, M.; Kolarich, D.; Pöltl, G.; Dalik, T.; Lubec, G.; Hofinger, A.; Altmann, F. Comparison of Fluorescent Labels for Oligosaccharides and Introduction of a New Postlabeling Purification Method. Anal. Biochem. 2009, 384 (2), 263-273 35. Maina, N. H.; Juvonen, M.; Domingues, R. M.; Virkki, L.; Jokela, J.; Tenkanen, M. Structural Analysis of Linear Mixed-Linkage Glucooligosaccharides by Tandem Mass Spectrometry. Food Chem. 2013, 136 (3-4), 1496-1507 36. Chai, W.; Piskarev, V.; Lawson, A. M. Negative-Ion Electrospray Mass Spectrometry of Neutral Underivatized Oligosaccharides. Anal. Chem. 2001, 73 (3), 651-657 37. Ashwood, C.; Lin, C.-H.; Thaysen-Andersen, M.; Packer, N. H. Discrimination of Isomers of Released N-and O-Glycans Using Diagnostic Product Ions in Negative Ion Pgc-Lc-Esi-Ms/Ms. Journal of The American Society for Mass Spectrometry 2018, 29 (6), 1194-1209 38. Harvey, D. J. Fragmentation of Negative Ions from Carbohydrates: Part 1. Use of Nitrate and Other Anionic Adducts for the Production of Negative Ion Electrospray Spectra from N-Linked Carbohydrates. Journal of the American Society for Mass Spectrometry 2005, 16 (5), 622-630 39. Stadlmann, J.; Pabst, M.; Altmann, F. Analytical and Functional Aspects of Antibody Sialylation. J. Clin. Immunol. 2010, 30 (1), 15-19 40. Sethi, M. K.; Thaysen-Andersen, M.; Smith, J. T.; Baker, M. S.; Packer, N. H.; Hancock, W. S.; Fanayan, S. Comparative N-Glycan Profiling of Colorectal Cancer Cell Lines Reveals Unique Bisecting Glcnac and Α-2, 3-Linked Sialic Acid Determinants Are Associated with Membrane Proteins of the More Metastatic/Aggressive Cell Lines. J. Proteome Res. 2014, 13 (1), 277-288 41. Sethi, M. K.; Kim, H.; Park, C. K.; Baker, M. S.; Paik, Y.-K.; Packer, N. H.; Hancock, W.S.; Fanayan, S.; Thaysen-Andersen, M. In-Depth N-Glycome Profiling of Paired Colorectal Cancer and Non-Tumorigenic Tissues Reveals Cancer-, Stage-and Egfr-Specific Protein N-Glycosylation. Glycobiology 2015, 25 (10), 1064-1078 42. Lee, L. Y.; Thaysen-Andersen, M.; Baker, M. S.; Packer, N. H.; Hancock, W. S.; Fanayan, S. Comprehensive N-Glycome Profiling of Cultured Human Epithelial Breast Cells Identifies Unique Secretome N-Glycosylation Signatures Enabling Tumorigenic Subtype Classification. J. Proteome Res. 2014, 13 (11), 4783-4795 43. Chik, J. H.; Zhou, J.; Moh, E. S.; Christopherson, R.; Clarke, S. J.; Molloy, M. P.; Packer, N. H. Comprehensive Glycomics Comparison between Colon Cancer Cell Cultures and Tumours: Implications for Biomarker Studies. J. Proteomics 2014, 108, 146-162 44. Rudd, P. M.; Guile, G. R.; Kuster, B.; Harvey, D. J. Oligosaccharide Sequencing Technology. Nature 1997, 388 (6638), 205 45. Geyer, H.; Schmitt, S.; Wuhrer, M.; Geyer, R. Structural Analysis of Glycoconjugates by on-Target Enzymatic Digestion and Maldi-Tof-Ms. Anal. Chem. 1999, 71 (2), 476-482 46. Royle, L.; Campbell, M. P.; Radcliffe, C. M.; White, D. M.; Harvey, D. J.; Abrahams, J. L.; Kim, Y.-G.; Henry, G. W.; Shadick, N. A.; Weinblatt, M. E. Hplc-Based Analysis of Serum N-Glycans on a 96-Well Plate Platform with Dedicated Database Software. Anal. Biochem. 2008, 376 (1), 1-12 47. Morelle, W.; Michalski, J.-C. Analysis of Protein Glycosylation by Mass Spectrometry. Nat. Protoc. 2007, 2 (7), 1585-1602 48. Dell, A.; Chalabi, S.; Hitchen, P. G.; Jang-Lee, J.; Ledger, V.; North, S. J.; Pang, P.-C.; Parry, S.; Sutton-Smith, M.; Tissot, B. Comprehensive Glycoscience. 49. Jacob, G. S.; Scudder, P. [17] Glycosidases in Structural Analysis. In Methods in Enzymology, Vol. 230; Elsevier, 1994; pp 280-299. 50. Prime, S.; Dearnley, J.; Ventom, A. M.; Parekh, R. B.; Edge, C. J. Oligosaccharide Sequencing Based on Exo-and Endoglycosidase Digestion and Liquid Chromatographic Analysis of the Products. J. Chromatogr. A 1996, 720 (1-2), 263-274 51. McIntosh, L. P.; Griffey, R. H.; Muchmore, D. C.; Nielson, C. P.; Redfield, A. G.; Dahlquist, F. W. Proton Nmr Measurements of Bacteriophage T4 Lysozyme Aided by 15n Isotopic Labeling: Structural and Dynamic Studies of Larger Proteins. Proc. Natl. Acad. Sci. U.S.A. 1987, 84 (5), 1244-1248 52. Dixon, A. M.; Venable, R.; Widmalm, G.; Bull, T.; Pastor, R. W. Application of Nmr, Molecular Simulation, and Hydrodynamics to Conformational Analysis of Trisaccharides. Biopolymers: Original Research on Biomolecules 2003, 69 (4), 448-460 References(Chapter 3) 1. Tsai, S. T.; Chen, J. L.; Ni, C. K. Does Low‐Energy Collision‐Induced Dissociation of Lithiated and Sodiated Carbohydrates Always Occur at Anomeric Carbon of the Reducing End? Rapid Commun. Mass Spectrom. 2017, 31 (21), 1835-1844 2. Chen, J.-L.; Nguan, H. S.; Hsu, P.-J.; Tsai, S.-T.; Liew, C. Y.; Kuo, J.-L.; Hu, W.-P.; Ni,C.-K. Collision-Induced Dissociation of Sodiated Glucose and Identification of Anomeric Configuration. Phys. Chem. Chem. Phys. 2017, 19 (23), 15454-15462 3. Huynh, H. T.; Phan, H. T.; Hsu, P.-J.; Chen, J.-L.; Nguan, H. S.; Tsai, S.-T.; Roongcharoen, T.; Liew, C. Y.; Ni, C.-K.; Kuo, J.-L. Collision-Induced Dissociation of Sodiated Glucose, Galactose, and Mannose, and the Identification of Anomeric Configurations. Phys. Chem. Chem. Phys. 2018, 20 (29), 19614-19624 4. Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in Fab-Ms/Ms Spectra of Glycoconjugates. Glycoconjugate J. 1988, 5 (4), 397-409 5. Nguan, H.-S.; Ni, C.-K. Collision-Induced Dissociation of Α-Isomaltose and Α-Maltose. J. Phys. Chem. A 2022, 126 (47), 8799-8808 References (Chapter 4) 1. Mulloy, B.; Dell, A.; Stanley, P.; Prestegard, J. H. Structural Analysis of Glycans. In Essentials of Glycobiology, 4rd ed, Cold Spring Harbor Laboratory Press, NY, USA, 2022, 639−652. 2. Sassaki, G. L.; Gorin, P. A. J.; Souza, L. M.; Czelusniak, P. A.; Iacomini, M. Rapid Synthesis of Partially O-Methylated Alditol Acetate Standards for GC-MS: Some Ractivities of Hydroxyl Groups of Methyl Glycopyranosides on Purdie Methylation. Carbohydr. Res. 2005, 340, 731–739. 3. Duus, J. O., Gotfredsen, C. H.; Bock, K. Carbohydrate Structural Determination by NMR Spectroscopy: Modern Methods and lLmitations. Chem. Rev. 2000, 100, 4589–4614. 4. Battistel, M. D.; Azurmendi, H. F.; Yu, B.; Freedberg, D. I. NMR of Gycans: Shedding New Light on Old Problems. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 48–68. 5. Dell, A.; Morris, H. R. Glycoprotein Structure Determination by Mass Spectrometry. Science 2001, 291, 2351–2356. 6. Zaia, J. Mass Spectrometry of Oligosaccharides. Mass Spectrom. Rev. 2004, 23, 161–227. 7. Park, Y.; Lebrilla, C. B. Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry to Oligosaccharides. Mass Spectrom. Rev. 2005, 24, 232–264. 8. Hofmeister, G. E.; Zhou, Z.; Leary, J. A. Linkage Position Determination in Lithium-Cationized Disaccharides - Tandem Mass-Spectrometry and Semiempirical Calculations. J. Am. Chem. Soc. 1991, 113, 5964–5970. 9. Asam, M. R.; Glish, G. L. Tandem Mass Spectrometry of Alkali Cationized Polysaccharides in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1997, 8, 987–995. 10. Xue, J. et al. Determination of Linkage Position and Anomeric Configuration in Hex-Fuc Disaccharides Using Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1947–1955. 11. Harvey, D. J. Fragmentation of Negative Ions from Carbohydrates: Part 1. Use of Nitrate and Other Anionic Adducts for the Production of Negative Ion Electrospray Spectra from N-linked Carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 622–630. 12. Harvey, D. J. Fragmentation of Negative Ions from Carbohydrates: Part 2. Fragmentation of High-Mannose N-linked Glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 631–646. 13. Ashline, D.; Singh, S.; Hanneman, A.; Reinhold, V. Congruent Strategies for Carbohydrate Sequencing. 1. Mining Structural Details by MSn. Anal. Chem. 2005, 77, 6250–6262. 14. Zhang, H. L.; Singh, S.; Reinhold, V. N. Congruent Strategies for Carbohydrate Sequencing. 2. FragLib: An MSn Lpectral library. Anal. Chem. 2005, 77, 6263–6270. 15. Zhang, H.; Brokman, S. M.; Fang, N.; Pohl, N. L.; Yeung, E. S. Linkage Position and Residue Identification of Disaccharides by Tandem Mass Spectrometry and Linear Discriminant Analysis. Rapid Commun. Mass Spectrom. 2008, 22, 1579–1586. 16. Costa, E. V. et al. Differentiation of Isomeric Pentose Disaccharides by Electrospray Ionization Tandem Mass Spectrometry and Discriminant Analysis. Rapid Commun. Mass Spectrom. 2012,26, 2897–904. 17. Singh, C.; Zampronio, C.G.; Creese, A. J.; Cooper, H. J. Higher Energy Collision Dissociation (HCD) Product Ion-Triggered Electron Transfer Dissociation (ETD) Mass Spectrometry for the Analysis of N-linked Glycoproteins. J. Proteome. Res. 2011, 11, 4517–4525. 18. Tan, Y.; Polfer, N. C. Linkage and Anomeric Differentiation in Trisaccharides by Sequential Fragmentation and Variable-Wavelength Infrared Photodissociation. J. Am. Soc. Mass Spectrom. 2015, 26, 359–368. 19. Lee, S.; Valentine, S. J.; Reilly, J. P.; Clemmer, D. E. Analyzing a Mixture of Disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 2012, 309, 161–167. 20. Yu, X. et al. Detailed Glycan Structural Characterization by Electronic Excitation Dissociation. Anal. Chem. 2013, 85, 10017–10021. 21. Witze, E. S.; Old, W. M.; Resing, K. A.; Ahn, N. G. Mapping Protein Post-Translational Modifications with Mass Spectrometry. Nat Methods. 2007, 4, 798–806. 22. Zhu, Z. K.; Su, X. M.; Clark, D. F.; Go, E. P.; Desaire, H. Characterizing O-linked Glycopeptides by Electron Transfer Dissociation: Fragmentation Rules and Applications in Data Analysis. Anal. Chem. 2013, 85, 8403–8411. 23. Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Ni, C. K. Simple Approach for De Novo Structural Identification of Mannose Trisaccharides. J. Am. Soc. Mass Spectrom. 2018, 29, 470−480. 24. Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Ni, C. K. Simple Method for De Novo Structural Determination of Underivatised Glucose Oligosaccharides. Sci. Rep. 2018, 8, 5562-5562. 25. Tsai, S.T. et al. Automatically Full Glycan Structural Determination with Logically Derived Sequence TandemMmass Spectrometry. ChemBioChem 2019, 20, 2351−2359. 26. Hsu, H. C.; Huang, S. P.; Liew, C. Y.; Tsai, S. T.; Ni, C. K. De Novo Structural Determination of Mannose Oligosaccharides by Using a Logically Derived Sequence for TandemMmass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 3241–3255. 27. Huang, S. P.; Hsu, H. C.; Liew, C. Y.; Tsai, S. T.; Ni, C. K. Logically Derived Sequence Tandem Mass Spectrometry for Structural Determination of Galactose Oligosaccharides. Glycoconj. J. 2021, 38, 177–189. 28. Ni, C. K.; Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T. Modern Mass Spectrometry Techniques for Oligosaccharide Structure Determination: Logically Derived Sequence Tandem Mass Spectrometry for Automatic Oligosaccharide Structural Determination. In Comprehenisve glycoscience, 2nd edition, edited by Barchi J., Elsevier, Oxford, UK (2021). 29. Liew, C. Y. et al. Structural Identification of N-glycan Isomers Using Logically Derived Sequence Tandem Mass Spectrometry. Commun. Chem. 2021, 4, 92. 30. Liew, C. Y. et al. De Novo Structural Determination of Oligosaccharide Isomers in Glycosphingolipids Using Logically Derived Sequence Tandem Mass Spectrometry. Analyst 2021, 146, 7345–7357. 31. Shen, Y. H.; Tsai, S. T.; Liew, C. Y.; Ni, C. K. Mass Spectrometry-Based Identification of Carbohydrate Anomeric Configuration to Metermine the mechanism of Glycoside Hydrolases. Carbohydr. Res. 2019, 476, 53–59. 32. Chen, J. L. et al. Collision-Induced Dissociation of Sodiated Glucose and Identification of Anomeric Configuration. Phys. Chem. Chem. Phys. 2017, 19, 15454–15462. 33. Huynh, H. T. et al. Collision-Induced Dissociation of Sodiated Glucose, Galactose, and Mannose, and the Identification of Anomeric Configurations. Phys. Chem. Chem. Phys. 2018, 20, 19614–19624. 34. Chiu, C. C. et al. Unexpected Dissociation Mechanism of Sodiated N‑acetylglucosamine and N‑acetylgalactosamine. J. Phys. Chem. A 2019, 123, 3441−3453. 35. Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconj. J. 1988, 5, 397–409. 36. Tsai, S. T.; Chen, J. L.; Ni, C. K. Does Low-Energy Collision-Induced Dissociation of Lithiated and Sodiated Carbohydrates Always Occur at Anomeric Carbon of the Reducing End? Rapid Commun. Mass Spectrom. 2017, 31, 1835–1844. 37. Hsu, H. C.; Tsai, M. T.; Dyakov, Y. A.; Ni, C. K. Energy Transfer of Highly Vibrationally Excited Molecules Studied by Crossed Molecular Beam/Time-Sliced Velocity Map Ion Imaging. Int. Rev. Phys. Chem. 2012, 31, 201−233. 38. Nguan, H. S.; Tsai, S. T.; Ni, C. K. Collision-Induced Dissociation of Cellobiose and Maltose. J. Phys. Chem. A 2022, 126, 1486−1495. 39. Liew C. Y., Hsu H. C., Nguan H.-S., Huang Y.-C., Zhong Y.-Q., Hung S.-C. and Ni C.-K., J. Am. Soc. Mass Spectrom, 2022, 33, 1891-1903. References (Chapter 5) 1. P. Stanley, N.; Taniguchi; Aebi, M. N-Glycans. In Essentials of Glycobiology, 3rd. ed.; A. Varki, R. D. C., J. D. Esko, P. Stanley, G. W. Hart, M., Aebi, A. G. D., T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, P., H. Seeberger Eds.; Cold Spring Harbor Laboratory Press, 2022. 2. Live, D. H.; Kumar, R. A.; Beebe, X.; Danishefsky, S. J. Conformational Influences of Glycosylation of a Peptide: A Possible Model for the Effect of Glycosylation on the Rate of Protein Folding. Proc.Nat. Acad. Sci. 1996, 93 (23), 12759-12761 3. Shental-Bechor, D.; Levy, Y. Effect of Glycosylation on Protein Folding: A Close Look at Thermodynamic Stabilization. Proc.Nat. Acad. Sci. 2008, 105 (24), 8256-8261 4. Elder, J. H.; Alexander, S. "Endo-Beta-N-Acetylglucosaminidase-F – Endoglycosidase from Flavobacterium-Meningosepticum That Cleaves Both High-Mannose and Complex Glycoproteins. Proc.Nat. Acad. Sci. 1982, 79 (15), 4540-4544 5. Fan, J. Q.; Lee, Y. C. Detailed Studies on Substrate Structure Requirements of Glycoamidases a and F. J. Biol. Chem. 1997, 272 (43), 27058-27064 6. Lee, K. J.; Gil, J. Y.; Kim, S. Y.; Kwon, O.; Ko, K.; Kim, D. I.; Kim, D. K.; Kim, H. H.; Oh, D. B. Molecular Characterization of Acidic Peptide:N-Glycanase from the Dimorphic Yeast Yarrowia Lipolytica. J. Biochem. 2015, 157 (1), 35-43 7. Plummer Jr, T.; Tarentino, A. Purification of the Oligosaccharide-Cleaving Enzymes of Flavobacterium Meningosepticum. Glycobiology 1991, 1 (3), 257-263 8. Sun, G. Q.; Yu, X.; Bao, C.; Wang, L.; Li, M.; Gan, J. H.; Qu, D.; Ma, J. B.; Chen, L. Identification and Characterization of a Novel Prokaryotic Peptide N-Glycosidase from Elizabethkingia Meningoseptica. J. Biol. Chem. 2015, 290 (12), 7452-7462 9. Tarentino, A. L.; Gomez, C. M.; Plummer, T. H. Deglycosylation of Asparagine-Linked Glycans by Peptide - N-Glycosidase-F. Biochem. 1985, 24 (17), 4665-4671 10. Tretter, V.; Altmann, F.; Marz, L. Peptide-N4-(N-Acetyl-Beta-Glucosaminyl)Asparagine Amidase-F Cannot Release Glycans with Fucose Attached Alpha-1-]3 to the Asparagine- Linked N-Acetylglucosamine Residue. Eur. J. Biochem. 1991, 199 (3), 647-652 11. van Ree, R.; Cabanes-Macheteau, M.; Akkerdaas, J.; Milazzo, J. P.; Loutelier-Bourhis, C.; Rayon, C.; Villalba, M.; Koppelman, S.; Aalberse, R.; Rodriguez, R.; et al. Beta(1,2)- Xylose and Alpha(1,3)-Fucose Residues Have a Strong Contribution in Ige Binding to Plant Glycoallergens. J. Biol. Chem. 2000, 275 (15), 11451-11458 12. Wang, T.; Cai, Z. P.; Gu, X. Q.; Ma, H. Y.; Du, Y. M.; Huang, K.; Voglmeir, J.; Liu, L. Discovery and Characterization of a Novel Extremely Acidic Bacterial N-Glycanase with Combined Advantages of Pngase F and A. Biosci. Rep. 2014, 34, 673-684 13. Yan, S.; Vanbeselaere, J.; Jin, C. S.; Blaukopf, M.; Wols, F.; Wilson, I. B. H.; Paschinger, K. Core Richness of N-Glycans of Caenorhabditis Elegans: A Case Study on Chemical and Enzymatic Release. Anal. Chem. 2018, 90 (1), 928-935 14. Ashford, D.; Dwek, R. A.; Welply, J. K.; Amatayakul, S.; Homans, S. W.; Lis, H.; Taylor, G. N.; Sharon, N.; Rademacher, T. W. The Beta-1-]2-D-Xylose and Alpha-1-]3-L-Fucose Substituted N-Linked Oligosaccharides from Erythrina-Cristagalli Lectin - Isolation, Characterization and Comparison with Other Legume Lectins. Eur. J. Biochem. 1987, 166 (2), 311-320 15. Huang, Y. P.; Mechref, Y.; Novotny, M. V. Microscale Nonreductive Release of O-Linked Glycans for Subsequent Analysis through Maldi Mass Spectrometry and Capillary Electrophoresis. Anal. Chem. 2001, 73 (24), 6063-6069 16. Likhosherstov, L. M.; Novikova, O. S.; Derevitskaya, V. A.; Kochetkov, N. K. A Selective Method for Sequential Splitting of O-Linked and N-Linked Glycans from N,OGlycoproteins. Carbohydr. Res. 1990, 199 (1), 67-76 17. Mizuochi, T. Microscale Sequencing of N-Linked Oligosaccharides of Glycoproteins Using Hydrazinolysis, Bio-Gel P-4, and Sequential Exoglycosidase Digestion. Methods Mol Biol 1993, 14, 55-68 18. Nakakita, S. I.; Sumiyoshi, W.; Miyanishi, N.; Hirabayashi, J. A Practical Approach to NGlycan Production by Hydrazinolysis Using Hydrazine Monohydrate. Biochem. Biophys. Res. Commun. 2007, 362 (3), 639-645 19. Patel, T.; Bruce, J.; Merry, A.; Bigge, C.; Wormald, M.; Jaques, A.; Parekh, R. Use of Hydrazine to Release in Intact and Unreduced Form Both N-Linked and O-Linked Oligosaccharides from Glycoproteins. Biochem. 1993, 32 (2), 679-693 20. Song, X. Z.; Ju, H.; Lasanajak, Y.; Kudelka, M. R.; Smith, D. F.; Cummings, R. D. Oxidative Release of Natural Glycans for Functional Glycomics. Nat. Methods 2016, 13 (6), 528-+ 21. Triguero, A.; Cabrera, G.; Royle, L.; Harvey, D. J.; Rudd, P. M.; Dwek, R. A.; Bardor, M.; Lerouge, P.; Cremata, J. A. Chemical and Enzymatic N-Glycan Release Comparison for N-Glycan Profiling of Monoclonal Antibodies Expressed in Plants. Anal. Biochem. 2010, 400 (2), 173-183 22. Wang, C. J.; Yang, M. F.; Gao, X.; Li, C.; Zou, Z. H.; Han, J. L.; Huang, L. J.; Wang, Z. The Ammonia-Catalyzed Release of Glycoprotein N-Glycans. Glycoconjugate J. 2018, 35 (4), 411-420 23. Yang, M. F.; Wei, M.; Wang, C. J.; Lu, Y.; Jin, W. J.; Gao, X.; Li, C.; Wang, L. H.; Huang, L. J.; Wang, Z. F. Separation and Preparation of N-Glycans Based on Ammonia-Catalyzed Release Method. Glycoconjugate J. 2020, 37 (2), 165-174 24. Yosizawa, Z.; Sato, T.; Schmid, K. Hydrazinolysis of Alpha1-Acid Glycoprotein. Biochim. Biophys. Acta 1966, 121 (2), 417-420 25. Yuan, J. B.; Wang, C. J.; Sun, Y. J.; Huang, L. J.; Wang, Z. F. Nonreductive Chemical Release of Intact N-Glycans for Subsequent Labeling and Analysis by Mass Spectrometry. Anal. Biochem. 2014, 462, 1-9 26. Zhu, Y. Y.; Yan, M. M.; Lasanajak, Y.; Smith, D. F.; Song, X. Z. Large Scale Preparation of High Mannose and Paucimannose N-Glycans from Soybean Proteins by Oxidative Release of Natural Glycans (Orng). Carbohydr. Res. 2018, 464, 19-27 27. McGrath, R. Protein Measurement by Ninhydrin Determination of Amino-Acids Released by Alkaline-Hydrolysis. Anal. Biochem. 1972, 49 (1), 95-102 28. Gennaro, L. A.; Salas-Solano, O. On-Line Ce-Lif-Ms Technology for the Direct Characterization of N-Linked Glycans from Therapeutic Antibodies. Anal. Chem. 2008, 80 (10), 3838-3845 29. Liu, Y.; Salas-Solano, O.; Gennaro, L. A. Investigation of Sample Preparation Artifacts Formed During the Enzymatic Release of N-Linked Glycans Prior to Analysis by Capillary Electrophoresis. Anal. Chem. 2009, 81 (16), 6823-6829 30. Prien, J. M.; Prater, B. D.; Cockrill, S. L. A Multi-Method Approach toward De Novo Glycan Characterization: A Man-5 Case Study. GLYCOBIOLOGY 2010, 20 (5), 629-647 31. Roden, L.; Jin, J.; Yu, H.; Campbell, P. Tritium Labeling of Amino-Sugars at C-2 by Alkaline Epimerization in Tritiated-Water. GLYCOBIOLOGY 1995, 5 (2), 167-173 32. Roseman, S.; Comb, D. G. The Hexosamine Moiety of N-Acetylneuraminic Acid (Sialic Acid). J. Am. Chem. Soc. 1958, 80 (12), 3166-3167 33. Salo, W. L.; Hamari, M.; Hallcher, L. Preparation of [2-H-2]-2-Acetamido-2-Deoxy-DGlucose by Epimerization of 2-Acetamido-2-Deoxy-D-Mannose in Basic Deuterium- Oxide - and Proposal of a Unifying Type of Mechanism for 2-Epimerization of 2-Acetamido-2-Deoxyhexoses. Carbohydr. Res. 1976, 50 (2), 287-291 34. Toida, T.; Vlahov, I. R.; Smith, A. E.; Hileman, R. E.; Linhardt, R. J. C-2 Epimerization of N-Acetylglucosamine in an Oligosaccharide Derived from Heparan Sulfate. J. Carbohydr. Chem. 1996, 15 (3), 351-360 35. Liew, C. Y.; Yen, C. C.; Chen, J. L.; Tsai, S. T.; Pawar, S.; Wu, C. Y.; Ni, C. K. Structural Identification of N-Glycan Isomers Using Logically Derived Sequence Tandem Mass Spectrometry. Commun. Chem. 2021, 4 (1), 92-92 36. Chiu, C. C.; Tsai, S. T.; Hsu, P. J.; Huynh, H. T.; Chen, J. L.; Phan, H. T.; Huang, S. P.; Lin, H. Y.; Kuo, J. L.; Ni, C. K. Unexpected Dissociation Mechanism of Sodiated NAcetylglucosamine and N-Acetylgalactosamine. J. Phys. Chem. A 2019, 123 (16), 3441-3453 37. Ramnas, O.; Samuelson, O. Separation of Sugars into Anomers by Partition Chromatography on Ion-Exchange Resins. Acta Chem. Scand. B 1974, B 28 (8), 955-959 References (Chapter 6) 1. Hakomori, S. I. Glycosphingolipids in Cellular Interaction, Differentiation, and Oncogenesis. Annu. Rev. Biochem 1981, 50, 733-764 2. Ariga, T.; Yu, R. K. Antiglycolipid Antibodies in Guillain-Barre Syndrome and Related Diseases: Review of Clinical Features and Antibody Specificities. J. Neurosci. Res. 2005, 80 (1), 1-17 3. Hakomori, S. Carbohydrate-to-Carbohydrate Interaction, through Glycosynapse, as a Basis of Cell Recognition and Membrane Organization. Glycoconjugate J. 2004, 21 (3-4), 125-137 4. Iwabuchi, K.; Yamamura, S.; Prinetti, A.; Handa, K.; Hakomori, S. Gm3-Enriched Microdomain Involved in Cell Adhesion and Signal Transduction through Carbohydrate- Carbohydrate Interaction in Mouse Melanoma B16 Cells. J. Biol. Chem. 1998, 273 (15), 9130-9138 5. Yu, R. K.; Bieberich, E.; Xia, T.; Zeng, G. C. Regulation of Ganglioside Biosynthesis in the Nervous System. J. Lipid Res. 2004, 45 (5), 783-793 6. Varki, A. C., R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.;Kinoshita, T.; Packer, N. H.; Prestegard, J. H. Essentials of Glycobiology [internet]. 2022. 7. Yu, R. K. Y., M.; Ariga, T. Glycosphingolipid Structures. In Comprehensive Glycoscience: From Chemistry to Systems Biology, Kamerling, J. P. B., G.-J.; Lee, Y. C.; Suzuki, A.; Taniguchi, N.; Voragen, A. G. J. Ed.; Elsevier science, 2007; pp 73-122. 8. Tsai, S. T.; Chen, J. L.; Ni, C. K. Does Low-Energy Collision-Induced Dissociation of Lithiated and Sodiated Carbohydrates Always Occur at Anomeric Carbon of the Reducing End? Rapid Commun. Mass Spectrom. 2017, 31 (21), 1835-1844 9. Chen, J. L.; Nguan, H. S.; Hsu, P. J.; Tsai, S. T.; Liew, C. Y.; Kuo, J. L.; Hu, W. P.; Ni, C. K. Collision-Induced Dissociation of Sodiated Glucose and Identification of Anomeric Configuration. Phys. Chem. Chem. Phys. 2017, 19 (23), 15454-15462 10. Huynh, H. T.; Phan, H. T.; Hsu, P. J.; Chen, J. L.; Nguan, H. S.; Tsai, S. T.; Roongcharoen, T.; Liew, C. Y.; Ni, C. K.; Kuo, J. L. Collision-Induced Dissociation of Sodiated Glucose, Galactose, and Mannose, and the Identification of Anomeric Configurations. Phys. Chem. Chem. Phys. 2018, 20 (29), 19614-19624 11. Chiu, C. C.; Tsai, S. T.; Hsu, P. J.; Huynh, H. T.; Chen, J. L.; Phan, H. T.; Huang, S. P.; Lin, H. Y.; Kuo, J. L.; Ni, C. K. Unexpected Dissociation Mechanism of Sodiated NAcetylglucosamine and N-Acetylgalactosamine. J. Phys. Chem. A 2019, 123 (16), 3441-3453 12. Chiu, C. C.; Huynh, H. T.; Tsai, S. T.; Lin, H. Y.; Hsu, P. J.; Phan, H. T.; Karumanthra, A.; Thompson, H.; Lee, Y. C.; Kuo, J. L.; et al. Toward Closing the Gap between Hexoses and N-Acetlyhexosamines: Experimental and Computational Studies on the Collision-Induced Dissociation of Hexosamines. J. Phys. Chem. A 2019, 123 (31), 6683-6700 13. Tsai, S. T.; Liew, C. Y.; Hsu, C.; Huang, S. P.; Weng, W. C.; Kuo, Y. H.; Ni, C. K. Automatic Full Glycan Structural Determination through Logically Derived Sequence Tandem Mass 159 doi:10.6342/NTU202302664Spectrometry. Chembiochem 2019, 20 (18), 2351-2359 14. Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Ni, C. K. Simple Method for De Novo Structural Determination of Underivatised Glucose Oligosaccharides. Sci. Rep. 2018, 8 (1), 5562-5562 References (Chapter 7) 1. Shental-Bechor, D.; Levy, Y. Effect of Glycosylation on Protein Folding: A Close Look at Thermodynamic Stabilization. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8256-8261 2. Live, D. H.; Kumar, R. A.; Beebe, X.; Danishefsky, S. J. Conformational Influences of Glycosylation of a Peptide: A Possible Model for the Effect of Glycosylation on the Rate of Protein Folding. Proc Natl Acad Sci U S A 1996, 93 (23), 12759-12761 3. Schachter, H.; Kamerling, J. P. Comprehensive Glycoscience from Chemistry to Systems Biology; 2007. 4. Stanley, P.; Taniguchi, N.; Aebi, M.; Varki, A. Essentials of Glycobiology; 2022. 5. Parodi, A.; Cummings, R. D.; Aebi, M.; Varki, A. Essentials of Glycobiology; 2022. 6. Kornfeld, R.; Kornfeld, S. Assembly of Asparagine-Linked Oligosaccharides. Annu. Rev. Biochem. 1985, 54, 631-664 7. Schenk, B.; Fernandez, F.; Waechter, C. J. The Ins(Ide) and out(Side) of Dolichyl Phosphate Biosynthesis and Recycling in the Endoplasmic Reticulum. Glycobiology 2001, 11 (5), 61R-70R 8. Aebi, M. N-Linked Protein Glycosylation in the Er. Biochim. Biophys. Acta 2013, 1833, 2430-2437 9. Shrimal, S.; Cherepanova, N. A.; Gilmore, R. Cotranslational and Posttranslocational NGlycosylation of Proteins in the Endoplasmic Reticulum. Semin Cell Dev Biol 2015, 41, 71-78 10. Houel, S.; Hilliard, M.; Yu, Y. Q.; McLoughlin, N.; Martin, S. M.; Rudd, P. M.; Williams, J. P.; Chen, W. N- and O-Glycosylation Analysis of Etanercept Using Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry Equipped with Electron-Transfer Dissociation Functionality. Anal Chem 2014, 86 (1), 576-584 11. Song, T.; Aldredge, D.; Lebrilla, C. B. A Method for in-Depth Structural Annotation of Human Serum Glycans That Yields Biological Variations. Anal. Chem. 2015, 87, 7754 12. Harvey, D. J.; Abrahams, J. L. Fragmentation and Ion Mobility Properties of Negative Ions from N-Linked Carbohydrates: Part 7. Reduced Glycans. Rapid Commun Mass Spectrom 2016, 30 (5), 627-634 13. Ashwood, C.; Lin, C. H.; Thaysen-Andersen, M.; Packer, N. H. Discrimination of Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion Pgc-Lc-Esi- Ms/Ms. J Am Soc Mass Spectrom 2018, 29 (6), 1194-1209 14. Morimoto, K.; Nishikaze, T.; Yoshizawa, A. C.; Kajihara, S.; Aoshima, K.; Oda, Y.; Tanaka, K. Glycananalysis Plug-In: A Database Search Tool for N-Glycan Structures Using Mass Spectrometry. Bioinformatics 2015, 31 (13), 2217-2219 15. Klein, J.; Zaia, J. Glypy: An Open Source Glycoinformatics Library. J Proteome Res 2019, 18 (9), 3532-3537 16. Rojas-Macias, M. A.; Mariethoz, J.; Andersson, P.; Jin, C.; Venkatakrishnan, V.; Aoki, N. P.; Shinmachi, D.; Ashwood, C.; Madunic, K.; Zhang, T.; et al. Towards a Standardized Bioinformatics Infrastructure for N- and O-Glycomics. Nat Commun 2019, 10 (1), 3275 17. Prien, J. M.; Ashline, D. J.; Lapadula, A. J.; Zhang, H.; Reinhold, V. N. The High Mannose Glycans from Bovine Ribonuclease B Isomer Characterization by Ion Trap Ms. J Am Soc Mass Spectrom 2009, 20 (4), 539-556 18. Wei, J.; Tang, Y.; Bai, Y.; Zaia, J.; Costello, C. E.; Hong, P.; Lin, C. Toward Automatic and Comprehensive Glycan Characterization by Online Pgc-Lc-Eed Ms/Ms. Anal Chem 2020, 92 (1), 782-791 19. Nwosu, C. C.; Aldredge, D. L.; Lee, H.; Lerno, L. A.; Zivkovic, A. M.; German, J. B.; Lebrilla, C. B. Comparison of the Human and Bovine Milk N-Glycome Via High- Performance Microfluidic Chip Liquid Chromatography and Tandem Mass Spectrometry. J Proteome Res 2012, 11 (5), 2912-2924 20. Dong, X.; Zhou, S.; Mechref, Y. Lc-Ms/Ms Analysis of Permethylated Free Oligosaccharides and N-Glycans Derived from Human, Bovine, and Goat Milk Samples. Electrophoresis 2016, 37 (11), 1532-1548 21. Li, Q.; Xie, Y.; Wong, M.; Barboza, M.; Lebrilla, C. B. Comprehensive Structural Glycomic Characterization of the Glycocalyxes of Cells and Tissues. Nat Protoc 2020, 15 (8), 2668-2704 22. Yang, M.; Wei, M.; Wang, C.; Lu, Y.; Jin, W.; Gao, X.; Li, C.; Wang, L.; Huang, L.; Wang, Z. Separation and Preparation of N-Glycans Based on Ammonia-Catalyzed Release Method. Glycoconj J 2020, 37 (2), 165-174 23. Liew, C. Y.; Chen, J. L.; Ni, C. K. Electrospray Ionization in-Source Decay of N-Glycans and the Effects on N-Glycan Structural Identification. Rapid Commun Mass Spectrom 2022, 36 (18), e9352 24. Liew, C. Y.; Yen, C. C.; Chen, J. L.; Tsai, S. T.; Pawar, S.; Wu, C. Y.; Ni, C. K. Structural Identification of N-Glycan Isomers Using Logically Derived Sequence Tandem Mass Spectrometry. Commun Chem 2021, 4 (1), 92-92 25. Tomiya, N.; Lee, Y. C.; Yoshida, T.; Wada, Y.; Awaya, J.; Kurono, M.; Takahashi, N. Calculated Two-Dimensional Sugar Map of Pyridylaminated Oligosaccharides: Elucidation of the Jack Bean Alpha-Mannosidase Digestion Pathway of Man9glcnac2. Anal Biochem 1991, 193 (1), 90-100 26. Pabst, M.; Bondili, J. S.; Stadlmann, J.; Mach, L.; Altmann, F. Mass + Retention Time = Structure: A Strategy for the Analysis of N-Glycans by Carbon Lc-Esi-Ms and Its Application to Fibrin N-Glycans. Anal Chem 2007, 79 (13), 5051-5057 27. Aldredge, D.; An, H. J.; Tang, N.; Waddell, K.; Lebrilla, C. B. Annotation of a Serum NGlycan Library for Rapid Identification of Structures. J Proteome Res 2012, 11 (3), 1958-1968 28. Pabst, M.; Grass, J.; Toegel, S.; Liebminger, E.; Strasser, R.; Altmann, F. Isomeric Analysis of Oligomannosidic N-Glycans and Their Dolichol-Linked Precursors. Glycobiology 2012, 22 (3), 389-399 29. Abrahams, J. L.; Campbell, M. P.; Packer, N. H. Building a Pgc-Lc-Ms N-Glycan Retention Library and Elution Mapping Resource. Glycoconj J 2018, 35 (1), 15-29 30. Tsai, S. T.; Chen, J. L.; Ni, C. K. Does Low-Energy Collision-Induced Dissociation of Lithiated and Sodiated Carbohydrates Always Occur at Anomeric Carbon of the Reducing End? Rapid Commun. Mass Spectrom. 2017, 31, 1835-1844 31. Chen, J. L.; Nguan, H. S.; Hsu, P. J.; Tsai, S. T.; Liew, C. Y.; Kuo, J. L.; Hu, W. P.; Ni, C. K. Collision-Induced Dissociation of Sodiated Glucose and Identification of Anomeric Configuration. Phys Chem Chem Phys 2017, 19 (23), 15454-15462 32. Huynh, H. T.; Phan, H. T.; Hsu, P. J.; Chen, J. L.; Nguan, H. S.; Tsai, S. T.; Roongcharoen, T.; Liew, C. Y.; Ni, C. K.; Kuo, J. L. Collision-Induced Dissociation of Sodiated Glucose, Galactose, and Mannose, and the Identification of Anomeric Configurations. Phys Chem Chem Phys 2018, 20 (29), 19614-19624 33. Chiu, C. C.; Tsai, S. T.; Hsu, P. J.; Huynh, H. T.; Chen, J. L.; Phan, H. T.; Huang, S. P.; Lin, H. Y.; Kuo, J. L.; Ni, C. K. Unexpected Dissociation Mechanism of Sodiated NAcetylglucosamine and N Acetylgalactosamine. J Phys Chem A 2019, 123 (16), 3441-3453 34. Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Ni, C. K. Simple Approach for De Novo Structural Identification of Mannose Trisaccharides. J Am Soc Mass Spectrom 2018, 29 (3), 470-480 35. Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Ni, C. K. Simple Method for De Novo Structural Determination of Underivatised Glucose Oligosaccharides. Sci Rep 2018, 8 (1), 5562-5562 36. Tsai, S. T.; Liew, C. Y.; Hsu, C.; Huang, S. P.; Weng, W. C.; Kuo, Y. H.; Ni, C. K. Automatically Full Glycan Structural Determination with Logically Derived Sequence Tandem Mass Spectrometry. ChemBioChem. 2019, 20, 2351-2359 37. Hsu, H. C.; Huang, S. P.; Liew, C. Y.; Tsai, S. T.; Ni, C. K. De Novo Structural Determination of Mannose Oligosaccharides by Using a Logically Derived Sequence for Tandem Mass Spectrometry. Anal Bioanal Chem 2019, 411 (15), 3241-3255 38. Ni, C. K.; Hsu, H. C.; Liew, C. Y.; Huang, S. P.; Tsai, S. T.; Barchi, J. Comprehensive Glycoscience from Chemistry to Systems Biology; 2021. 39. Hwa, K. Y.; Khoo, K. H. Structural Analysis of the Asparagine-Linked Glycans from the Procyclic Trypanosoma Brucei and Its Glycosylation Mutants Resistant to Concanavalin a Killing. Mol Biochem Parasitol 2000, 111 (1), 173-184 40. Ohta, M.; Ohnishi, T.; Ioannou, Y. A.; Hodgson, M. E.; Matsuura, F.; Desnick, R. J. Human Alpha-N-Acetylgalactosaminidase: Site Occupancy and Structure of N-Linked Oligosaccharides. Glycobiology 2000, 10 (3), 251-261 41. Kimura, Y.; Miyagi, C.; Kimura, M.; Nitoda, T.; Kawai, N.; Sugimoto, H. Structural Features of N-Glycans Linked to Royal Jelly Glycoproteins: Structures of High-Mannose Type, Hybrid Type, and Biantennary Type Glycans. Biosci Biotechnol Biochem 2000, 64 (10), 2109-2120 42. Tseneklidou-Stoeter, D.; Gerwig, G. J.; Kamerling, J. P.; Spindler, K. D. Characterization of N-Linked Carbohydrate Chains of the Crayfish, Astacus Leptodactylus Hemocyanin. Biol Chem Hoppe Seyler 1995, 376 (9), 531-537 43. Olafson, R. W.; Thomas, J. R.; Ferguson, M. A.; Dwek, R. A.; Chaudhuri, M.; Chang, K. P.; Rademacher, T. W. Structures of the N-Linked Oligosaccharides of Gp63, the Major Surface Glycoprotein, from Leishmania Mexicana Amazonensis. J Biol Chem 1990, 265 (21), 12240-12247 44. Amatayakul-Chantler, S.; Dwek, R. A.; Tennent, G. A.; Pepys, M. B.; Rademacher, T. W. Molecular Characterization of Limulus Polyphemus C-Reactive Protein. Ii. Asparagine-Linked Oligosaccharides. Eur J Biochem 1993, 214 (1), 99-110 45. Prien, J. M.; Prater, B. D.; Cockrill, S. L. A Multi-Method Approach toward De Novo Glycan Characterization: A Man-5 Case Study. Glycobiology 2010, 20 (5), 629-647 References (Chapter 8) 1. Pabst, M.; Bondili, J. S.; Stadlmann, J.; Mach, L.; Altmann, F. Mass + Retention Time = Structure: A Strategy for the Analysis of N-Glycans by Carbon Lc-Esi-Ms and Its Application to Fibrin N-Glycans. Anal Chem 2007, 79 (13), 5051-5057 2. Aldredge, D.; An, H. J.; Tang, N.; Waddell, K.; Lebrilla, C. B. Annotation of a Serum NGlycan Library for Rapid Identification of Structures. J Proteome Res 2012, 11 (3), 1958-1968 3. Pabst, M.; Grass, J.; Toegel, S.; Liebminger, E.; Strasser, R.; Altmann, F. Isomeric Analysis of Oligomannosidic N-Glycans and Their Dolichol-Linked Precursors. Glycobiology 2012, 22 (3), 389-399 4. Abrahams, J. L.; Campbell, M. P.; Packer, N. H. Building a Pgc-Lc-Ms N-Glycan Retention Library and Elution Mapping Resource. Glycoconj J 2018, 35 (1), 15-29 5. Weng, W. C.; Liao, H. E.; Huang, S. P.; Tsai, S. T.; Hsu, H. C.; Liew, C. Y.; Gannedi, V.; Hung, S. C.; Ni, C. K. Unusual Free Oligosaccharides in Human Bovine and Caprine Milk. Sci Rep 2022, 12 (1), 10790 10790 6. Li, Q.; Xie, Y.; Wong, M.; Barboza, M.; Lebrilla, C. B. Comprehensive Structural Glycomic Characterization of the Glycocalyxes of Cells and Tissues. Nat Protoc 2020, 15 (8), 2668-2704 7. Liew, C. Y.; Luo, H. S.; Yang, T. Y.; Hung, A. T.; Magoling, B. J. A.; Lai, C. P.; Ni, C. K. Identification of the High Mannose N-Glycan Isomers Undescribed by Conventional Multicellular Eukaryotic Biosynthetic Pathways. Anal Chem 2023, 95 (23), 8789-8797 8. Yang, M.; Wei, M.; Wang, C.; Lu, Y.; Jin, W.; Gao, X.; Li, C.; Wang, L.; Huang, L.; Wang, Z. Separation and Preparation of N-Glycans Based on Ammonia-Catalyzed Release Method. Glycoconj J 2020, 37 (2), 165-174 9. Liew, C. Y.; Chen, J. L.; Ni, C. K. Electrospray Ionization in-Source Decay of N-Glycans and the Effects on N-Glycan Structural Identification. Rapid Commun Mass Spectrom 2022, 36 (18), e9352 10. Chen, J. L.; Nguan, H. S.; Hsu, P. J.; Tsai, S. T.; Liew, C. Y.; Kuo, J. L.; Hu, W. P.; Ni, C. K. Collision-Induced Dissociation of Sodiated Glucose and Identification of Anomeric Configuration. Phys Chem Chem Phys 2017, 19 (23), 15454-15462 11. Huynh, H. T.; Phan, H. T.; Hsu, P. J.; Chen, J. L.; Nguan, H. S.; Tsai, S. T.; Roongcharoen, T.; Liew, C. Y.; Ni, C. K.; Kuo, J. L. Collision-Induced Dissociation of Sodiated Glucose, Galactose, and Mannose, and the Identification of Anomeric Configurations. Phys Chem Chem Phys 2018, 20 (29), 19614-19624 12. Chiu, C. C.; Tsai, S. T.; Hsu, P. J.; Huynh, H. T.; Chen, J. L.; Phan, H. T.; Huang, S. P.; Lin, H. Y.; Kuo, J. L.; Ni, C. K. Unexpected Dissociation Mechanism of Sodiated NAcetylglucosamine and N-Acetylgalactosamine. J Phys Chem A 2019, 123 (16), 3441-3453 13. Nguan, H. S.; Tsai, S. T.; Ni, C. K. Collision-Induced Dissociation of Cellobiose and Maltose. J Phys Chem A 2022, 126 (9), 1486-1495 14. Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in Fab-Ms/Ms Spectra of Glycoconjugates. Glycoconjugate J. 1988, 5 (4), 397-409 15. Nwosu, C. C.; Aldredge, D. L.; Lee, H.; Lerno, L. A.; Zivkovic, A. M.; German, J. B.; Lebrilla, C. B. Comparison of the Human and Bovine Milk N-Glycome Via High-Performance Microfluidic Chip Liquid Chromatography and Tandem Mass Spectrometry. J Proteome Res 2012, 11 (5), 2912-2924 16. Sriwilaijaroen, N.; Kondo, S.; Yagi, H.; Hiramatsu, H.; Nakakita, S.-i.; Yamada, K.; Ito, H.; Hirabayashi, J.; Narimatsu, H.; Kato, K. Bovine Milk Whey for Preparation of Natural NGlycans: Structural and Quantitative Analysis. Open Glycoscience 2012, 5 (1), 41-50 17. van Leeuwen, S. S.; Schoemaker, R. J.; Timmer, C. J.; Kamerling, J. P.; Dijkhuizen, L. Nand O-Glycosylation of a Commercial Bovine Whey Protein Product. J. Agric. Food. Chem. 2012, 60 (51), 12553-12564 18. Valk-Weeber, R. L.; Deelman-Driessen, C.; Dijkhuizen, L.; Eshuis-de Ruiter, T.; van Leeuwen, S. S. In Depth Analysis of the Contribution of Specific Glycoproteins to the Overall Bovine Whey N-Linked Glycoprofile. J. Agric. Food. Chem. 2020, 68 (24), 6544-6553 19. Kimura, Y.; Ohno, A.; Takagi, S. Structural Analysis of N-Glycans of Storage Glycoproteins in Soybean (Glycine Max. L) Seed. Biosci Biotechnol Biochem 1997, 61 (11), 1866-1871 20. Evers, D. L.; Hung, R. L.; Thomas, V. H.; Rice, K. G. Preparative Purification of a High- Mannose Typen-Glycan from Soy Bean Agglutinin by Hydrazinolysis and TyrosinamideDerivatization. Anal. Biochem. 1998, 265 (2), 313-316 21. Masaoka, H.; Shibata, K.; Yamaguchi, H. Topological and Functional Characterization of the N-Glycans of Soybean (Glycine Max) Agglutinin. J Biochem 1999, 126 (1), 212-217 22. Kimura, Y.; Kitahara, E. Structural Analysis of Free N-Glycans Occurring in Soybean Seedlings and Dry Seeds. Biosci Biotechnol Biochem 2000, 64 (9), 1847-1855 23. Li, L.; Wang, C.; Qiang, S.; Zhao, J.; Song, S.; Jin, W.; Wang, B.; Zhang, Y.; Huang, L.; Wang, Z. Mass Spectrometric Analysis of N-Glycoforms of Soybean Allergenic Glycoproteins Separated by Sds-Page. J. Agric. Food. Chem. 2016, 64 (39), 7367-7376 24. Zhu, Y.; Yan, M.; Lasanajak, Y.; Smith, D. F.; Song, X. Large Scale Preparation of High Mannose and Paucimannose N-Glycans from Soybean Proteins by Oxidative Release of Natural Glycans (Orng). Carbohydr Res 2018, 464, 19-27 25. Goetz, J. A.; Mechref, Y.; Kang, P.; Jeng, M. H.; Novotny, M. V. Glycomic Profiling of Invasive and Non-Invasive Breast Cancer Cells. Glycoconj J 2009, 26 (2), 117-131 26. Liu, X.; Nie, H.; Zhang, Y.; Yao, Y.; Maitikabili, A.; Qu, Y.; Shi, S.; Chen, C.; Li, Y. Cell Surface-Specific N-Glycan Profiling in Breast Cancer. PLoS One 2013, 8 (8), e72704 27. Hua, S.; Saunders, M.; Dimapasoc, L. M.; Jeong, S. H.; Kim, B. J.; Kim, S.; So, M.; Lee, K. S.; Kim, J. H.; Lam, K. S.; et al. Differentiation of Cancer Cell Origin and Molecular Subtype by Plasma Membrane N-Glycan Profiling. J Proteome Res 2014, 13 (2), 961-968 28. De Leoz, M. L.; Young, L. J.; An, H. J.; Kronewitter, S. R.; Kim, J.; Miyamoto, S.; Borowsky, A. D.; Chew, H. K.; Lebrilla, C. B. High-Mannose Glycans Are Elevated During Breast Cancer Progression. Mol Cell Proteomics 2011, 10 (1), 1-9 29. Li, Q.; Li, G.; Zhou, Y.; Zhang, X.; Sun, M.; Jiang, H.; Yu, G. Comprehensive N-Glycome Profiling of Cells and Tissues for Breast Cancer Diagnosis. J Proteome Res 2019, 18 (6), 2559-2570 30. Park, D. D.; Phoomak, C.; Xu, G.; Olney, L. P.; Tran, K. A.; Park, S. S.; Haigh, N. E.; Luxardi, G.; Lert-Itthiporn, W.; Shimoda, M.; et al. Metastasis of Cholangiocarcinoma Is Promoted by Extended High-Mannose Glycans. Proc Natl Acad Sci U S A 2020, 117 (14), 7633-7644 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88635 | - |
| dc.description.abstract | 碳水化合物在生活中具有多種功能,它與蛋白質和去氧核糖核酸等其他生物大分子一樣重要。但是,我們對碳水化合物的瞭解遠遠落後於我們對蛋白質和核酸的瞭解相比。這主要是因為碳水化合物的結構分析是非常具有挑戰性。質譜法是一種高度靈敏的分析工具,適用於分析生物大分子。大多數常用的質譜法涉及碳水化合物的衍生化或僅識別碳水化合物結構的一部分。為了開發一種通用且方便使用的質譜法以用於確定碳水化合物的一級結構,我們開發了一種新的質譜法來識別未衍生化的寡糖的結構。這種方法,稱爲邏輯演繹序列串聯質譜法(LODES/MSn ),可以提供鎖鏈結構,異頭構型,單醣成分和分支位置。LODES/MSn 使用鈉離子加合物的低能量碰撞誘導解離 (CID),從而能夠裂解選擇性化學鍵,這是為後續 CID 識別結構決定性碎片離子的合理解離序列,並且特別是製備了雙醣 CID譜的數據庫。這方法首先應用在各種標準寡糖,以證明方法的準確性。然後應用在從牛蛋白質、大豆蛋白、人乳腺上皮細胞中提取的 N-聚醣和高甘露糖 N-聚醣和人類乳腺癌。 | zh_TW |
| dc.description.abstract | Carbohydrates have various functions in life, they are as important as other classes of macrobiomolecules such as protein and DNA. However, our understanding of carbohydrates is far lagged behind compared to what we have learned protein and DNA. This is mainly because the structural analysis of carbohydrates is challenging. Mass spectrometry is highly sensitive and a robust analytical tool for macro-biomolecule analysis. Most of the commonly used mass spectrometry-based methods involve the derivatization of carbohydrates or only identify part of the carbohydrate structure. With the aim to develop a universal yet user friendly mass spectrometry-based method to determine the primary structure of carbohydrates/glycans, we developed a new method for complete structural identification of underivatized oligosaccharides. This method, logically derived sequence tandem mass spectrometry (LODES/MSn), can provide assignments of linkages, anomeric configurations, monosaccharide constituents, and branch locations. LODES/MSn entails low-energy collision induced dissociation (CID) of sodium ion adducts that enable the cleavage of selective chemical bonds, a logical procedure to identify structurally decisive fragment ions for subsequent CID, and the specially prepared disaccharide CID spectrum databases. This method was first applied to determine the structures of various types of standard oligosaccharides as a proof of concept. Then, we applied LODES/MSn to structural assignment of sialylated oligosaccharides, N-glycans, and high mannose N-glycans extracted from bovine whey proteins, soybean proteins, human mammary epithelial cells, and human breast carcinoma. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:09:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:09:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
Ph.D Thesis Acceptance Certificate i Acknowledgment ii Abstract iii 摘要 iv Table of Figures x Table of Tables xviii Chapter 1 1 Carbohydrates 1 1.1 Introduction 1 1.2 The Structural Complexity of Carbohydrate 2 1.3 Carbohydrate and Life 7 N-glycans 8 1.4 Gaps in Existing Knowledge 9 1.5 Summary 11 1.6 References 13 1.7 Appendix 1 14 Chapter 2 15 Literature Review 15 2.1 Primary Structure Analysis of Glycans 15 2.2 Released Glycans 17 2.2.1 Enzymatic Releases 17 2.2.2 Chemical Release 18 2.3 Methods for the Structural Determination of Glycans 19 2.3.1 Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) 19 2.3.2 Electrospray Ionization Mass Spectrometry (ESI-MS) 20 2.3.3 Monosaccharide Analysis 20 2.3.4 Linkage or Methylation Analysis 22 2.3.5 Negative Ions Mass Spectrometry 25 2.3.6 Reductive aminated glycans 26 2.3.7 Reduced Glycans 27 2.4 Glycan Profiling and Glycan MS Libraries 27 2.5 Enzyme Digestion and MS 28 2.6 Nuclear Magnetic Resonance (NMR) Spectroscopy 30 2.7 References 32 Chapter 3 36 Logically Derived Sequence Tandem Mass spectrometry (LODES/MSn) 36 3.1 Introduction 36 3.2 Experiment Methods and Instruments 37 3.2.1 CID Mechanisms of Carbohydrate with Sodium Ion Adduct 37 3.2.2 Lithium Ion Adducts of Monosaccharide 48 3.3 LODES Scheme in LODES/MSn 50 3.3.1 LODES/MSn for Reducing Hexose trisaccharides 52 3.3.2 LODES/MSn for Reducing Hexose Trisaccharides with Lithium Adducts 57 3.4 Summary 60 3.5 References 62 3.6 Appendix 1 63 Chapter 4 64 The Memories of Carbohydrate Fragments in Collision-Induced Dissociation 64 4.1 About This Chapter 64 4.2 Introduction 65 4.3 Experimental Method 69 4.4 Results and Discussion 71 4.5 Conclusion 96 4.6 References 97 Chapter 5 100 Generation and Characterization of Side-Reaction Products in N-glycan Release by Ammonia-Catalyzed Reaction 100 5.1 About This Chapter 100 5.2 Introduction 101 5.3 Experimental Methods 103 5.4 Results and Discussion 105 5.4.1 N-glycan isomerization in ammonia solution 105 5.4.2 HexNAc at Reducing End of N-glycans After Isomerization is ManNAc 107 5.4.3 A Simple Method to Differentiate GlcNAc and ManNAc at the Reducing End of Nglycans 113 5.5 Conclusion 116 5.6 References 118 Chapter 6 121 Structural Determination of Oligosaccharide Isomers in Glycosphingolipids Using Logically Derived Sequence Tandem Mass Spectrometry 121 6.1 About This Chapter 121 6.2 Introduction 122 6.3 Materials and Methods 123 6.3.1 Source of materials 123 6.3.2 Nanoelectrospray mass spectra 124 6.4 Results and Discussions 124 6.4.1 GM1b 126 6.4.2 GM1a 142 6.4.3 LSTa and LSTc 143 6.5 Discussion 156 6.6 References 158 Chapter 7 160 Identification of the High Mannose N-glycan Isomers Undescribed by Current Multicellular Eukaryotic Biosynthetic Pathways 160 7.1 About This Chapter 160 7.2 Introduction 161 7.3 Experimental Methods 164 7.3.1 Source of materials 164 7.3.2 Extraction of Membrane Proteins from Human Cell Lines 165 7.3.3 Extraction of N-glycans from Various Biological Samples 166 7.3.4 Separation of N-glycan Isomers 166 7.3.5 MSn Mass Spectrometry 167 7.3.6 Enzyme Digestion 168 7.4 Results and Discussions 169 7.4.1 Databases of MannGlcNAc2 (n=5, 6, 7) isomers 169 7.4.2 High Mannose N-glycans of Various Biological Samples 212 7.5 Conclusions 227 7.6 References 228 Chapter 8 232 Chromatograms and Mass Spectra of High Mannose and Paucimannose N-glycans for Rapid Isomer Identification 232 8.1 About This Chapter 232 8.2 Introduction 233 8.3 Experimental Methods 233 8.3.1 Sources of materials 233 8.3.2 N-glycans Released through an Ammonia-Catalyzed Reaction 234 8.3.3 N-glycans Released from Soybean Proteins Using PNGase F 235 8.3.4 N-glycans Released from Human Cell Lines 235 8.3.5 Degradation of Large N-glycan by Enzymes 235 8.3.6 Two-Dimensional HPLC Separation 236 8.3.7 Mass Spectrometry 237 8.4 Results and Discussion 238 8.4.1 Construction of chromatogram and CID MSn mass spectrum database 238 8.4.2 Applications to Determine the High Mannose N-glycans Extracted from Various Biological Samples 268 8.5 Conclusions 274 8.6 References 275 Chapter 9 278 Conclusion and Future Perspective 278 9.1 Conclusion 278 9.2 Limitation of LODES/MSn 281 9.3 Future Perspective 281 | - |
| dc.language.iso | en | - |
| dc.subject | 醣結構鑒定 | zh_TW |
| dc.subject | 質譜 | zh_TW |
| dc.subject | 邏輯演繹序列串聯質譜法 | zh_TW |
| dc.subject | LODES/MSn | en |
| dc.subject | Carbohydrates | en |
| dc.subject | Mass Spectrometry | en |
| dc.subject | Structure Determination | en |
| dc.title | 使用邏輯演繹序列串聯質譜法鑑定碳水化合物的結構 | zh_TW |
| dc.title | Structural Determination of Carbohydrates by Using Logically Derived Sequence Tandem Mass Spectrometry (LODES/MSn) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 邱繼輝;余慈顏;王正中;洪上程;林俊成;方俊民 | zh_TW |
| dc.contributor.oralexamcommittee | Kay-Hooi Khoo;Tsyr-Yan Yu;Cheng-Chung Wang;Shang-Cheng Hung;Chun-Cheng Lin;Jim-Min Fang | en |
| dc.subject.keyword | 醣結構鑒定,質譜,邏輯演繹序列串聯質譜法, | zh_TW |
| dc.subject.keyword | Carbohydrates,Mass Spectrometry,Structure Determination,LODES/MSn, | en |
| dc.relation.page | 282 | - |
| dc.identifier.doi | 10.6342/NTU202302664 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 分子科學與技術國際研究生博士學位學程 | - |
| 顯示於系所單位: | 分子科學與技術國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 35.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
