Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周瑞仁zh_TW
dc.contributor.advisorJui-Jen Chouen
dc.contributor.author閻憲廷zh_TW
dc.contributor.authorHsien-Ting Yenen
dc.date.accessioned2023-08-15T17:09:10Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citation交通部民用航空局。2023。無人機管理資訊系統-空域查詢。台北:交通部民用航空局。網址: https://drone.caa.gov.tw/Default/DataList1 上網日期:2022-11-21
全國法規資料庫。2023。遙控無人機管理規則。台北:法務部。網址:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0090083上網日期:2023-5-5。
胡修武。1993。在加速度限制下移動式農業機器人之軌跡規劃。碩士論文。台北:臺灣大學農業機械工程學研究所。
胡家濠。1991。QandA商業立地條件,商業週刊。
洪信煒。2022。基於卷積神經網路發展無人機飛航風險評估系統。碩士論文。台北:臺灣大學生物機電工程學研究所。
國土測繪中心。2023。多維度國家空間資訊服務平臺。台中:內政部國土測繪中心。網址:https://3dmaps.nlsc.gov.tw/?page=%E4%B8%89%E7%B6%AD%E5%BB%BA%E7%89%A9%E7%94%A2%E8%A3%BD%E5%8F%8A%E6%9B%B4%E6%96%B0上網日期:2023-7-10。
梅明德、許御衡、邱玉文、蔡靜慧。2009。運用地理資訊系統輔助連鎖式商店開設位址評選。地理資訊系統季刊3(2): 21-31。
經濟日報。2023。全台逾1.3萬超商,全球密度第二!台灣超商覆蓋率全球第二 超商群雄的下一戰。新北:聯合報股份有限公司。網址:https://money.udn.com/money/story/5612/6608289上網日期:2023-3-11。
Aalmoes, R., Y. S. Cheung, E. Sunil, J. M. Hoekstra, and F. Bussink. 2015. A conceptual third party risk model for personal and unmanned aerial vehicles. International Conference on Unmanned Aircraft Systems. 1301-1309.
Alfakih, M., M. Keche, and H. Benoudnine. 2018. A new Wi-Fi/GPS fusion method for robust positioning in urban environments. Physical Communication. 31: 10-20.
Ahrens, J., B. Geveci, and C. Law. 2005. ParaView: An end-user tool for large-data visualization. In " Visualization handbook", ed. C. R. Johnson, 717. Elesvier.
Blender. 2018. Blender Manual. Ver. 3.6. Amsterdam: Stichting Blender Foundation.
CadQuery. A python parametric CAD scripting. Available at: https://github.com/CadQuery/cadquery. Accessed 8 May 2023.
Dalamagkidis, K., K. P. Valavanis, and L. A. Piegl. 2008. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences. 44(7-8): 503-519.
Davies, L., R. C. Bolam, Vagapov, Y. Vagapov and A. Anuchin. 2018. Review of unmanned aircraft system technologies to enable beyond visual line of sight (BVLOS) operations. International Conference on Electrical Power Drive Systems. 1-6.
Dubins, L. E. 1957. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of mathematics. 79(3): 497-516.
Google Earth Pro. 2008. Ver. 7.3.6.9345. Mountain View, CA: Google LLC.
Google. (n.d.). Google Maps. Available at: www.google.com/maps. Accessed 17 April 2023.
Hu, X., B. Pang, F. Dai, and K. H. Low. 2020. Risk assessment model for UAV cost-effective path planning in urban environments. IEEE Access. 8: 150162-150173.
Kopardekar, P., J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson 2016. Unmanned aircraft system traffic management (UTM) concept of operations. AIAA Aviation and Aeronautics Forum .1-16.
LaValle, S. M., and S. A. Hutchinson. 1998. Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation. 14(6): 912-925.
NASA. 2013. Shuttle Radar Topography Mission Global. OpenTopography. Available at: https://doi.org/10.5069/G9445JDF. Accessed: 18 May 2023..
Primatesta, S., M. Scanavino, G. Guglieri, and A. Rizzo. 2020. A risk-based path planning strategy to compute optimum risk path for unmanned aircraft systems over populated areas. International Conference on Unmanned Aircraft Systems. 641-650.
QGIS. 2009. Geographic Information System API Documentation. Ver. 3.22.9. QGIS Association.
Rhino3D. 2010. Ver. 7.0. Seattle, WA.: Robert McNeel &, Associates.
Beautiful Soup. 2006. Beautiful soup documentation. Ver. 3. Crummy.
Roberge, V., M. Tarbouchi, and G. Labonté. 2018. Fast genetic algorithm path planner for fixed-wing military UAV using GPU. IEEE Transactions on Aerospace and Electronic Systems. 54(5): 2105-2117.
Ronneberger, O., P. Fischer, and T. Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In "Proc. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention", 234-241. N. Navab J. Hornegger, W. Wells, and A. Frangi, eds. Munich, Germany. Springer International Publishing.
Safety and Risk Assessment. 2015. SCOPING PAPER to AMC RPAS.1309: Safety Assessment of Remotely Piloted Aircraft Systems. Issue 2. Joint Authorities for Rulemaking of Unmanned Systems
SimScale. 2013. SimScale Documentation. Munich, Germany: SimScale GmbH.
Sivakumar, A. K., M. H. C. Man, and K. H. Low. 2022. Preliminary Ground Risk Tiering for Small Unmanned Aerial Vehicles (sUAV) in Metropolitan Environments. International Conference on Unmanned Aircraft Systems.1083-1090.
Shakhatreh. Hazim, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani. 2019. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access. 8: 48572-48634.
Zafar, M. M., M. L. Anjum, and W. Hussain. 2021. LTA*: Local tangent based A* for optimal path planning. Autonomous Robots. 45: 209-227.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88633-
dc.description.abstract本研究旨在協助無人機操作人避免飛航場域風險,提供參考路徑及視距內的操作或觀察點。近年來,無人機使用量急速增加,但也帶來了一些負面影響,如噪音、隱私和人身安全疑慮。現行法規已針對無人機飛航制定規範,但操作人往往難以預判失去視線接觸或進入風險區域。本研究建置了一套系統由操作人輸入飛航任務需求與可接受之風險程度後,系統產出完整任務所需之參考資料,如路徑、操作點、目視觀察點等,操作人可在符合法規下完成任務。除了由系統建議之路徑、操作點、目視觀察點等飛航計畫參數外,操作人也能輸入參數由系統判斷操作人規畫是否在風險可承受範圍內及是否全程維持視線接觸。整體來說本研究主要分為三大部分,包含風險地圖之建置、路徑搜尋、及人機視線分析。風險地圖係以U-Net深度學習建置而成。以Python程式爬取便利商店的人潮資料,取得動態人流密度,結合禁限航區、建物等環境資訊套入前述風險地圖中。根據操作人設定之條件,系統之路徑搜尋演算法自動生成避開風險之參考路徑,人機視線分析輔助操作團隊找到能與無人機保持視線接觸之操作人或目視觀察員之位置與視野。分析生成結果證明,建置之風險地圖反映了實際場域中的風險資訊。系統能夠有效生成飛航路徑避開高風險及非法操作區域。同時本系統建議之飛航任務能夠在操作團隊與無人機保持直接目視接觸下完成。zh_TW
dc.description.abstractThe aim of this research is to assist drone operators in avoiding the risks associated with operation location and provide reference paths along with ground control station and visual observer location which is within visual line of sight. In recent years, the use of unmanned aerial vehicles (UAVs) has increased, which raised many concerns such as noise, privacy issues, and potential safety risks. Regulations have been implemented for UAV flight operations but still, it is challenging for operators to anticipate where they may lose visual contact with the UAV or entering hazardous areas. Therefore, a system has been developed in this study, allowing operators to input basic mission parameters to generate comprehensive information for the mission, including paths, operational points, and visual observation location based on the operators' input which enables operators to complete their missions in accordance with regulations. In addition to the suggested parameters provided by the system, operators can also use the system to determine whether manually designed parameters fall within an acceptable risk range and ensure that visual line of sight can be maintained throughout the entire mission. Overall, this research is mainly divided into three major parts, including the risk map, path planning, and human-drone visual line analysis. The risk map is built using the U-Net architecture, which is a deep learning algorithm. The crowd density in convenience stores is collected through data scraping to estimate dynamic pedestrian density. This data is then combined with environmental information such as no-fly zones and buildings to be integrated into the aforementioned risk map. Based on the operator’s input, the system automatically generates reference paths to avoid risks with the path planning algorithm. The human-drone visual line analysis assists the operating team in identifying ground control station and visual observer location to maintain visual contact with the UAV.Analysis of the results demonstrates that the constructed risk map reflects actual risks in the field. The developed system effectively generates flight paths that can avoid high-risk and restricted location. Furthermore, the flight missions suggested by the system can be successfully completed with maintained visual contact between the operation team and the UAV throughout the mission.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:09:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:09:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents第一章 前言 1
1.1 研究背景 1
1.2研究動機與目的 1
第二章 文獻探討 3
2.1 無人機飛航管理 3
2.2無人機風險考量 4
2.3 無人機之路徑規劃 6
2.4 U-NET 7
第三章 材料與方法 8
3.1 研究架構 8
3.1.1 系統輸入輸出流程 9
3.1.2 不同操作情境 9
3.2 三維環境模型建置 14
3.2.1 建物與地形模型資料 14
3.2.2 地形模型資料前處理 15
3.2.3 建物模型資料前處理 15
3.2.4 建物與地形套疊 19
3.3 風速模擬 20
3.3.1 模擬軟體設定 20
3.3.2 模擬結果資料轉換 22
3.3.3 軟體流程圖 22
3.4 U-NET預測無人機預期偏差 23
3.4.1 模型輸入與輸出 23
3.4.2 路徑偏差公式 24
3.4.3 U-NET模型架構 25
3.4.4 模型之訓練方法 28
3.5 空域風險評估 29
3.5.1 人流資料 31
3.5.2 禁限航區 34
3.5.3 建物30m禁制區 35
3.5.4 風險因子套疊 38
3.6 規劃路徑 38
3.6.1 路徑搜尋演算法 38
3.6.2 路徑仿地飛航 41
3.7 視距內人機相對位置之分析 41
3.7.1 視距內分析材料 42
3.7.2 尋找視距內操作點 43
3.7.3 計算操作點視距內之空域 43
3.7.4 尋找目視觀察點 44
3.8 使用者介面 44
第四章 結果與討論 45
4.1 風險地圖成果 45
4.1.1 經緯度座標 45
4.1.2 建物30 m禁制區 47
4.1.2 預期偏差 48
4.1.3 人流資料 51
4.1.4 禁限航區 55
4.1.5 最終風險地圖 60
4.2 規劃路徑 61
4.2.1 數值地形模型 61
4.2.2 輸入任務點系統生成路徑 62
4.2.3 輸入路徑判斷是否安全 63
4.3 視距內人機相對位置之分析 64
4.3.1 數值地表模型 64
4.3.2 判斷自選操作點之合宜性 66
4.3.3 尋找視距內操作點 66
4.3.4 尋找延伸視距目視觀察點 69
4.3.5 計算視距內之空域 70
4.4 系統操作示範與結果 71
4.4.1 輸入任務點與飛航參數 71
4.4.2 系統規劃路徑 72
4.4.3 尋找視距內操作點 72
4.4.4 尋找目視觀測點 72
4.4.5 調整方案 73
4.5 使用者介面 74
4.5.1 建議操作點 75
4.5.2 街景視野判斷 75
第五章 結論與未來展望 78
5.1 結論 78
5.2未來展望 78
參考文獻 80
-
dc.language.isozh_TW-
dc.subject視線分析zh_TW
dc.subjectU型卷積網路zh_TW
dc.subject路徑規劃zh_TW
dc.subject深度學習zh_TW
dc.subject無人機zh_TW
dc.subjectLine of Sight Analysisen
dc.subjectDeep Learningen
dc.subjectUnmanned Aerial Vehiclesen
dc.subjectU-Neten
dc.subjectPath Planningen
dc.title無人機風險地圖之建置與視距內操作之規劃zh_TW
dc.titleEstablishment of UAV Risk Map and Planning for Line-of-Sight Operationsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張斐章;鍾智昕;王柏東zh_TW
dc.contributor.oralexamcommitteeFi-John Chang;Chih-Hsin Chung;Po-Tong Wangen
dc.subject.keyword無人機,深度學習,視線分析,路徑規劃,U型卷積網路,zh_TW
dc.subject.keywordUnmanned Aerial Vehicles,Deep Learning,Line of Sight Analysis,Path Planning,U-Net,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202302669-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved