請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88629
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張恆華 | zh_TW |
dc.contributor.advisor | Herng-Hua Chang | en |
dc.contributor.author | 羅偉育 | zh_TW |
dc.contributor.author | Wei-Yu Lo | en |
dc.date.accessioned | 2023-08-15T17:08:07Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-17 | - |
dc.identifier.citation | 清華大學生命科學院. 神經系統簡介. Retrieved from https://webmail.life.nthu.edu.tw/~g864264/Neuroscience/neuron/neuron.htm.
謝松蒼. 周邊神經病變須知. Retrieved from https://www.ntuh.gov.tw/neur/ Fpage.action?fid=4262. Chinmay D Deshmukh, Anurekha Jain, and B Nahata. Diabetes mellitus: a review. Int. J. Pure App. Biosci, 3(3):224–230, 2015. ViolainePlanté-BordeneuveandGerardSaid.Familialamyloidpolyneuropathy.The Lancet Neurology, 10(12):1086–1097, 2011. PGanesan,V.Rajini,andR.ImmanuvelRajkumar.Segmentationandedgedetection of color images using cielab color space and edge detectors. In INTERACT-2010, pages 393–397, 2010. Mark Gundlach. Tolerancing in flexo and offset print- ing, 2015. Retrieved from https://www.xrite.com/blog/ tolerancing-in-flexo-and-offset-printing. M. Emre Celebi, Hassan A. Kingravi, and Fatih Celiker. Accelerating color space transformations using numerical approximations. In 2010 IEEE International Con- ference on Image Processing, pages 1349–1352, 2010. LeiHe,ZhigangPeng,BryanEverding,XunWang,ChiaY.Han,KennethL.Weiss, and William G. Wee. A comparative study of deformable contour methods on med- ical image segmentation. Image and Vision Computing, 26(2):141–163, 2008. Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1:321–331, 1988. Laurent D. Cohen. On active contour models and balloons. CVGIP: Image Under- standing, 53(2):211–218, 1991. Hae-Yeoun Lee, Noel C. F. Codella, Matthew D. Cham, Jonathan W. Weinsaft, and Yi Wang. Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac mri. IEEE Transactions on Biomedical Engineering, 57(4):905–913, 2010. Chenyang Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3):359–369, 1998. T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001. Cheng Lu and Mrinal Mandal. Automated segmentation and analysis of the epider- mis area in skin histopathological images. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5355–5359, 2012. WangX.N.DickinsonA.etalHaggerty,J.M.Segmentationofepidermaltissuewith histopathological damage in images of haematoxylin and eosin stained human skin. 2014. HongmingXuandMrinalMandal.Efficientsegmentationofskinepidermisinwhole slide histopathological images. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3855–3858, 2015. Wayne Rasband. Imagej. Retrieved from http://imagej.org/. Rafael C. Gonzalez and Richard E. Woods. Digital image processing 4/e edition.2017. Punam K. Saha. Chapter 10 - characterization of trabecular bone plate–rod micro- architecture using skeletonization and digital topologic and geometric analysis. In Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja, editors, Skele- tonization, pages 287–311. Academic Press, 2017. Movmean. Retrieved from https:// www.mathworks.com/ help/ matlab/ ref/ movmean_zh_CN.html. Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. Ming-Tsung Tseng, Song-Chou Hsieh, Chia-Tung Shun, Kuang-Lun Lee, Chun- Liang Pan, Whei-Min Lin, Yea-Hui Lin, Chia-Li Yu, and Sung-Tsang Hsieh. Skin denervation and cutaneous vasculitis in systemic lupus erythematosus. Brain, 129(4):977–985, 01 2006. M. Haas. The na-k-cl cotransporters. American Journal of Physiology-Cell Physi- ology, 267(4):C869–C885, October 1994. Chi-Chao Chao, Cho-Min Huang, Hao-Hua Chiang, Kai-Ren Luo, Hung-Wei Kan, Naomi Chu-Chiao Yang, Hao Chiang, Whei-Min Lin, Shu-Mei Lai, Ming-Jen Lee, Chia-Tung Shun, and Sung-Tsang Hsieh. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates. Ann. Neurol., 78(2):272– 283, August 2015. Nathalie Van Acker, Michael Ragé, Ellen Sluydts, Michiel W. M. Knaapen, Martine De Bie, Maarten Timmers, Erik Fransen, Carla Duymelinck, Stefanie De Schepper, Praveen Anand, Theo Meert, Léon Plaghki, and Patrick Cras. Automated pgp9.5 immunofluorescence staining: a valuable tool in the assessment of small fiber neu- ropathy? BMC Research Notes, 9(1):280, May 2016. Francesca Diomedi-Camassei, Lucilla Ravà, Evelyne Lerut, Francesco Callea, and Boudewijn Van Damme. Protein gene product 9.5 and ubiquitin are expressed in metabolically active epithelial cells of normal and pathologic human kidney. Nephrology Dialysis Transplantation, 20(12):2714–2719, 09 2005. Hitoshi Osaka, Yu-Lai Wang, Koji Takada, Shuichi Takizawa, Rieko Setsuie, Hang Li, Yae Sato, Kaori Nishikawa, Ying-Jie Sun, Mikako Sakurai, Takayuki Harada, Yoko Hara, Ichiro Kimura, Shigeru Chiba, Kazuhiko Namikawa, Hiroshi Kiyama, Mami Noda, Shunsuke Aoki, and Keiji Wada. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 12(16):1945–1958, 08 2003. Julie G Donaldson. Immunofluorescence staining. Curr. Protoc. Cell Biol., 69(1):4.3.1–4.3.7, December 2015. Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare M C Tempany, Michael R Kaus, Steven J Haker, William M Wells, 3rd, Ferenc A Jolesz, and Ron Kikinis. Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol., 11(2):178–189, February 2004. Amelia Swift, Roberta Heale, and Alison Twycross. What are sensitivity and speci- ficity? Evidence-Based Nursing, 23(1):2–4, 2020. Herng-Hua Chang, Audrey H. Zhuang, Daniel J. Valentino, and Woei-Chyn Chu. Performance measure characterization for evaluating neuroimage segmentation al- gorithms. NeuroImage, 47(1):122–135, 2009. D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images us- ing the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):850–863, 1993. Marker-controlled watershed segmentation. Retrieved from https:// www.mathworks.com/ help/ images/ marker-controlled-watershed- segmentation.htmlWatershedSegmentationExample-4. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88629 | - |
dc.description.abstract | 周邊神經可收集訊息,如冷、熱、痛等之感覺反應,經傳達至中樞神經後,再由中樞神經作決策,下達指令,以完成動作。神經若因病變或其他外來因素,將使神經傳導失去功能,引起身體功能異常。醫生針對神經切片進行診斷與分析是一件費時費力的工作。本研究提出一個自動化表皮組織區域分割演算法,希望可以減輕醫生於臨床診斷以及研究之負擔。本論文利用CIELAB色彩空間、自動門檻化、最大連通分量、骨架化、簡單移動平均線來取得初始輪廓。因為表皮神經組織影像相當巨大,所以將主動輪廓模型分成三個步驟來減少分割時間,最後利用大津演算法修正最終結果。使用的表皮神經組織影像張數為50張,平均戴斯相似度達到 81.55%。在相同的實驗設定下,本論文提出的方法優於其他比較的分割演算法結果。本研究提出之自動表皮區域分割方法,可以輔助醫生進行表皮神經組織相關之研究。 | zh_TW |
dc.description.abstract | Peripheral nerves gather information such as cold, heat, and pain, and transmit to the central nervous system, which then makes decisions and commits commands to perform actions. However, nerve conduction may be lost if there are nerve damage and other external factors, leading to abnormal bodily functions. Examining and analyzing nerve skin slices is a tedious task for physicians. This thesis proposes an automated algorithm that segments the epidermal tissue region to reduce the burden of physicians for clinical diagnosis and research. We employ various techniques, including the CIELAB color space, automatic thresholding, maximum connected component, skeletonization, and simple moving average, to obtain the initial contour. Because the epidermal tissue image is quite large, the proposed active contour model is divided into three stages to reduce the segmentation time. The Otsu method is used to amend the final results. There were 50 experimental epidermis nerve tissue images utilized in this work. The average Dice similarity coefficient was 81.55% by the proposed method, which performed better than other compared segmentation algorithms under the same experimental conditions. The proposed automatic epidermal region segmentation method can assist physicians in conducting research related to epidermal nerve tissue image segmentation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:08:07Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:08:07Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄
致謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xv 第一章緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 3 1.4 論文架構 4 第二章文獻探討 5 2.1 色彩空間模型 5 2.1.1 RGB 色彩空間 5 2.1.2 CIELAB 色彩空間 6 2.2 影像分割演算法 7 2.2.1 可變形模型 8 2.2.1.1 主動輪廓模型 8 2.2.1.2 基於膨脹力的主動輪廓模型 8 2.2.1.3 梯度向量流 9 2.2.1.4 基於水平集的主動輪廓模型 9 2.3 表皮組織影像分割演算法 10 2.4 ImageJ 12 第三章研究方法設計 13 3.1 影像前處理 14 3.1.1 去除綠色神經組織 15 3.1.2 門檻化 15 3.1.3 最大連通分量 16 3.2 找尋初始輪廓 17 3.2.1 骨架化(Skeletonization) 17 3.2.2 簡單移動平均線 18 3.2.3 選定初始輪廓厚度 19 3.3 分割表皮範圍流程 20 3.3.1 主動輪廓模型分割流程 20 3.3.2 大津演算法 23 3.4 影像編輯工具 25 第四章實驗結果與討論 28 4.1 實驗說明 28 4.1.1 實驗環境 28 4.1.2 資料集 28 4.1.2.1 鈉鉀氯共轉運蛋白 28 4.1.2.2 蛋白質基因產物9.5 , PGP9.5 29 4.1.2.3 免疫螢光染色 29 4.2 參數分析 30 4.2.1 自動門檻化參數 30 4.2.1.1 參數St 30 4.2.2 簡單移動平均線參數 30 4.2.2.1 參數k 30 4.2.3 主動輪廓模型參數 33 4.2.3.1 參數α 33 4.2.3.2 參數β 33 4.3 評估標準 35 4.4 表皮組織影像分割結果 37 4.4.1 本研究演算法結果評估 37 4.4.2 與其他方法比較 41 第五章結論56 5.1 結論 56 5.2 未來展望 57 參考文獻58 圖目錄 圖2.1 RGB 座標示意圖 5 圖2.2 CIELAB 示意圖 6 圖2.3 原始snake 和GVF snake 的捕捉範圍 9 圖2.4 GTSA 方法流程圖 10 圖2.5 CET 方法流程圖 11 圖2.6 門檻化和K-means 方法流程圖 11 圖2.7 ImageJ 介面螢幕截圖 12 圖3.1 研究方法流程圖 13 圖3.2 染色後的表皮神經組織影像 14 圖3.3 表皮組織影像之L* 通道、a* 通道與b* 通道 14 圖3.4 移除綠色部分後的L* 通道表皮組織影像 15 圖3.5 門檻化結果圖 16 圖3.6 最大連通分量結果圖 17 圖3.7 骨架化結果圖 18 圖3.8 LS 與LSMA 曲線比較圖 18 圖3.9 在影像的骨架隨機選取5 個點並畫法線示意圖 19 圖3.10 LSMA 每個點法線兩端的點 20 圖3.11 初始輪廓Ci 20 圖3.12 Li 結果圖 21 圖3.13 主動輪廓模型分割流程圖 22 圖3.14 黃金標準與S3 比較圖 22 圖3.15 去除S3 中間區域示例圖 23 圖3.16 最終分割結果圖Lf 24 圖3.17 基於ImageJ 修改的介面示例圖 25 圖3.18 畫ROI 工具示例圖 25 圖3.19 替換原始imageJ 右上工具列示例圖 26 圖3.20 右上功能鍵視窗示例圖 26 圖3.21 平滑黃金標準曲線示例圖 27 圖4.1 編號S2269-2_Control 初始輪廓與原始表皮影像比對圖 31 圖4.2 編號S1565-2_FAP-b 初始輪廓與原始表皮影像比對圖 32 圖4.3 簡單移動平均線不同參數SMA 比較圖 34 圖4.4 分割結果與黃金標準關係圖 35 圖4.5 Ctrl 表皮區域分割結果(黃色) 與黃金標準(紅色) 38 圖4.6 DM 表皮區域分割結果(黃色) 與黃金標準(紅色) 39 圖4.7 FAP 表皮區域分割結果(黃色) 與黃金標準(紅色) 40 圖4.8 編號S1196-2_ctrl-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 45 圖4.9 編號S1401-2_ctrl-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 46 圖4.10 編號S222-2_Ctrl-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 47 圖4.11 編號S1233-2_DM-b 之表皮組織影像各方法分割結果與黃金標準之比較圖 48 圖4.12 編號S1407-2_DM-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 49 圖4.13 編號S817-2_DM-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 50 圖4.14 編號S2847-2_FAP-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 51 圖4.15 編號S2311-2_FAP-b 之表皮組織影像各方法分割結果與黃金標準之比較圖 52 圖4.16 編號S1512-2_FAP-a 之表皮組織影像各方法分割結果與黃金標準之比較圖 53 表目錄 圖4.1 不同α 參數與黃金標準比較結果表 33 圖4.2 不同β 參數與黃金標準比較結果表 33 圖4.3 皮下組織區域分割指標評估表 41 圖4.4 直接使用原始大小與多階段Snake 執行時間表 54 圖4.5 執行時間表 54 圖4.6 表皮組織區域分割與其他方法比較表 55 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於多階段主動輪廓模型之自動表皮組織影像分割 | zh_TW |
dc.title | Automated Segmentation of Epidermis Images Using Multistage Active Contour Models | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 丁肇隆;張瑞益;江明彰 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Lung Ting;Ray-I Chang;Ming-Chang Chiang | en |
dc.subject.keyword | 影像分割,表皮神經組織,主動輪廓模型,大津演算法,門檻化, | zh_TW |
dc.subject.keyword | Image segmentation,epidermis nerve tissue,active contour model,Otsu's method,thresholding, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU202301619 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-18 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 53.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。