Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李宇修zh_TW
dc.contributor.advisorYu-Hsiu Leeen
dc.contributor.author劉博嘉zh_TW
dc.contributor.authorPo-Chia Liuen
dc.date.accessioned2023-08-15T17:06:25Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citation[1]Murat, F. J., Poissonnier, L., Pasticier, G., & Gelet, A. (2007). High-intensity focused ultrasound (HIFU) for prostate cancer. Cancer Control, 14(3), 244-249.
[2]James Ross McLaughlan (2008, Sept. 1). Diagram showing liver lesioning using a HIFUtransducer2.png.InWikipedia.https://en.wikipedia.org/wiki/File:Diagram_showing_liver_lesioning_using_a_HIFU_transducer_2.png.
[3]Johansen, P. M., Hansen, P. Y., Mohamed, A. A., Girshfeld, S. J., Feldmann, M., & Lucke-Wold, B. (2023). Focused ultrasound for treatment of peripheral brain tumors. Exploration of drug science, 1(2), 107
[4]Elhelf, I. S., Albahar, H., Shah, U., Oto, A., Cressman, E., & Almekkawy, M. (2018). High intensity focused ultrasound: the fundamentals, clinical applications and research trends. Diagnostic and interventional imaging, 99(6), 349-359.
[5]Manbachi, A., & Cobbold, R. S. (2011). Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound, 19(4), 187-196.
[6]Kennedy, J. E., Ter Haar, G. R., & Cranston, D. (2003). High intensity focused ultrasound: surgery of the future?. The British journal of radiology, 76(909), 590-599.
[7]Chapelon, J. Y., Margonari, J., Vernier, F., Gorry, F., Ecochard, R., & Gelet, A. (1992). In vivo effects of high-intensity ultrasound on prostatic adenocarcinoma Dunning R3327. Cancer research, 52(22), 6353-6357.
[8]De Senneville, B. D., Mougenot, C., & Moonen, C. T. (2007). Real‐time adaptive methods for treatment of mobile organs by MRI‐controlled high‐intensity focused ultrasound. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 57(2), 319-330.
[9]Szabo, T. L., & Lewin, P. A. (2013). Ultrasound transducer selection in clinical imaging practice. Journal of Ultrasound in Medicine, 32(4), 573-582.
[10]Ter Haar, G. (2007). Therapeutic applications of ultrasound. Progress in biophysics and molecular biology, 93(1-3), 111-129.
[11]Maloney, E., & Hwang, J. H. (2015). Emerging HIFU applications in cancer therapy. International Journal of Hyperthermia, 31(3), 302-309.
[12]Gold, M. (2015, August). Microfocused ultrasound: aesthetic medicine-ultrasound. In The Specialist Forum (Vol. 15, No. 7, pp. 7-8). New Media Publishing.
[13]Illing, R. O., Kennedy, J. E., Wu, F., Ter Haar, G. R., Protheroe, A. S., Friend, P. J., ... & Middleton, M. R. (2005). The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. British journal of cancer, 93(8), 890-895.
[14]Lee, K. W. (2021). The Asian perspective on HIFU. International Journal of Hyperthermia, 38(2), 5-8.
[15]N'Djin, W. A., Chapelon, J. Y., & Melodelima, D. (2015). An ultrasound image-based dynamic fusion modeling method for predicting the quantitative impact of in vivo liver motion on intraoperative HIFU therapies: Investigations in a porcine model. PloS one, 10(9), e0137317.
[16]de Senneville, B. D., Moonen, C., & Ries, M. (2016). MRI-guided HIFU methods for the ablation of liver and renal cancers. Therapeutic ultrasound, 43-63.
[17]Li, X., Lee, Y. H., Mikaiel, S., Simonelli, J., Tsao, T. C., & Wu, H. H. (2019). Respiratory motion prediction using fusion-based multi-rate Kalman filtering and real-time golden-angle radial MRI. IEEE Transactions on Biomedical Engineering, 67(6), 1727-1738.
[18]Holbrook, A. B., Ghanouni, P., Santos, J. M., Dumoulin, C., Medan, Y., & Pauly, K. B. (2014). Respiration based steering for high intensity focused ultrasound liver ablation. Magnetic Resonance in Medicine, 71(2), 797-806.
[19]JLS Interactive, LLC Resolution Echocardiography. https://e-echocardiography.com /page/page.php?UID=1429454191
[20]Brandner, E. D., Wu, A., Chen, H., Heron, D., Kalnicki, S., Komanduri, K., ... & Shou, Z. (2006). Abdominal organ motion measured using 4D CT. International Journal of Radiation Oncology* Biology* Physics, 65(2), 554-560.
[21]Lee, Y. H., Li, X., Simonelli, J., Lu, D., Wu, H. H., & Tsao, T. C. (2020). Adaptive tracking control of one-dimensional respiration induced moving targets by real-time magnetic resonance imaging feedback. IEEE/ASME Transactions on Mechatronics, 25(4), 1894-1903
[22]Teng, K. T., Chang, K. H., Chen, Y. Y., & Tsao, T. C. (2012, July). Respiration induced liver motion tracking control for high intensity focused ultrasound treatment. In 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 57-62). IEEE.
[23]Orzechowski, P. K., Chen, N. Y., Gibson, J. S., & Tsao, T. C. (2008). Optimal suppression of laser beam jitter by high-order RLS adaptive control. IEEE Transactions on Control Systems Technology, 16(2), 255-267.
[24]Tsao, T. C., & Tomizuka, M. (1989, June). Indirect adaptive feed-forward tracking controllers. In 1989 American Control Conference (pp. 1-6). IEEE..
[25]Falconer, D., & Ljung, L. (1978). Application of fast Kalman estimation to adaptive equalization. IEEE Transactions on Communications, 26(10), 1439-1446.
[26]Ljung, L., Morf, M., & Falconer, D. (1978). Fast calculation of gain matrices for recursive estimation schemes. International Journal of Control, 27(1), 1-19.
[27]Carayannis, G., Manolakis, D., & Kalouptsidis, N. (1983). A fast sequential algorithm for least-squares filtering and prediction. IEEE transactions on acoustics, speech, and signal processing, 31(6), 1394-1402.
[28]Regalia, P. A., & Bellanger, M. G. (1991). On the duality between fast QR methods and lattice methods in least squares adaptive filtering. IEEE Transactions on Signal Processing, 39(4), 879-891.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88623-
dc.description.abstract高強度聚焦超聲波(High-Intensity Focused Ultrasound,HIFU)是一種醫學技術與治療疾病的方法,相比於其他治療方法,高強度聚焦超聲波有著非侵入性、無輻射治療環境與受術者能快速恢復等優勢。其中,以持續呼吸法來實現高強度聚焦超聲波手術最引人入勝,這是因為以持續呼吸法完成的手術能使受術者享有能更低的治療風險與更舒適的治療過程,整體的手術複雜程度也將下降許多,然而,相比於呼吸中止法,採用持續呼吸法來完成的高強度聚焦超聲波手術可能無法提供受術者良好的治療精準度,而本論文就是在致力於解決此問題。希望能以自動控制的角度進行精確地控制、追蹤與預測目標組織在手術中因呼吸運動所產生的位移,來達到精確的定位,讓受術者不僅能享受持續呼吸法所帶來的各項優勢,又不會降低手術精準度、犧牲效率與安全性。
本論文將利用微控制器、馬達驅動器、馬達、編碼器與線性滑軌等硬體設備,實際建構出一維運動平台,來模擬採用持續呼吸法之高強度聚焦超聲波肝臟燒灼手術的真實手術過程,並將以旋轉基底的QR與lattice遞迴最小平方法建構而成的自適應控制器應用於追蹤因呼吸所引起的肝臟運動上,期待自適應控制器的快速收斂、數值強韌與預測波形等等能力,能大幅提升超音波探頭追蹤肝臟運動軌跡的成效,以達成上述所說,藉由自動控制的角度對超聲波探頭進行精確地控制與定位,讓以持續呼吸法實現的高強度聚焦超聲波手術之受術者在不犧牲手術精準度的情況下,能享有持續呼吸法所帶來的各種優勢與好處。
在論文的最後,我們將有自適應控制架構的系統與單純只有比例與積分控制器的基準系統之肝臟運動波形追蹤結果做比較,並說明本論文所採用的自適應運動控制架構確實能有效的追蹤因人體呼吸而產生的肝臟運動,大幅提升以持續呼吸法實現的自動化HIFU手術之精準與有效性,也會討論不同的超音波影像解析度與影像處理時間延遲對於系統所帶來的影響,讓讀者更加理解,這兩因素的好壞程度,將對於系統產生巨大的影響。
zh_TW
dc.description.abstractHigh-Intensity Focused Ultrasound (HIFU) is a medical technique and treatment method that offers several advantages over other treatment modalities, such as non-invasiveness, radiation-free therapeutic environment, and rapid patient recovery. Among all methods, the use of continuous respiration technique in HIFU surgery is particularly intriguing. That is because it provides patients with lower treatment risks, a more comfortable treatment experience, and significantly reducing the overall surgical complexity. However, compared to apnea, HIFU surgery conducted using continuous respiration technique may not provide optimal positioning of ultrasound probe for patients. The purpose of this thesis is to address this issue from the automated control perspective. The aim is to achieve precise positioning by accurately tracking and predicting the displacement of the target tissue caused by respiratory motion during surgery. This approach allows patients to enjoy the benefits of continuous respiration technique without compromising precision, efficiency, and safety.
In this thesis, hardware devices such as microcontrollers, motor drivers, motors, encoders, and linear slides will be utilized to construct a one-dimensional motion platform. This platform will simulate the real surgical process of HIFU liver ablation using continuous respiration technique. An adaptive controller, developed using the rotation-based hybrid lattice-QR RLS algorithm, will be applied to track the liver motion induced by respiration. The rapid convergence, numerical robustness, and predictive waveform capabilities of the adaptive controller are expected to significantly improve the effectiveness of ultrasound probe tracking of liver motion trajectories and achieve the purpose that mention above.
Lastly, in the conclusion, a comparison will be made between the tracking results of the adaptive control architecture system and the reference system with only proportional and integral controllers. It will be demonstrated that the adaptive motion control architecture adopted in this thesis effectively tracks the liver motion caused by human respiration, thereby greatly enhancing the precision and effectiveness of automated HIFU surgery using continuous respiration technique. The impact of different ultrasound image resolutions and image processing time delays on the system will also be discussed to provide readers with a better understanding of how these factors significantly influence the system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:06:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:06:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 2
1.2.1 高強度聚焦超聲波(HIFU)原理簡介 2
1.2.2 高強度聚焦超聲波(HIFU)的應用實例 5
1.2.3 高強度聚焦超聲波(HIFU)的優點與缺點 6
1.2.4 實現高強度聚焦超聲波(HIFU)手術之方法比較 8
1.2.5 肝臟運動軌跡的介紹與控制方法的選擇 11
1.2.6 自適應性控制架構的介紹 13
1.3 研究目標 15
1.4 論文大綱 16
Chapter 2 自適應性控制原理與架構介紹 17
2.1 自適應性前饋控制(Feedforward, FF)架構介紹 17
2.2 自適應性反饋控制(Feedback, FB)架構介紹 19
2.3 自適應性前饋與反饋融合(FF+FB)之架構介紹 21
Chapter 3 實驗基礎架構設計 22
3.1 硬體架構介紹 22
3.2 系統識別(System identification, System ID)與基準控制器之設計 28
3.2.1 閉迴路系統識別法(Closed-loop ID) 28
3.2.2 Integral of the absolute value of the error (IAE)演算法介紹 31
3.2.3 理論與實際系統之比較 33
3.2.4 基準控制器之調整 35
Chapter 4 實驗流程與參數設定 37
4.1 實驗流程 37
4.2 實驗參數設定 39
Chapter 5 實驗結果與討論 42
5.1 Software in the loop (SIL) 42
5.1.1 SIL - PI control 42
5.1.2 SIL - FF架構 43
5.1.3 SIL - FB架構 44
5.1.4 SIL - FF+FB架構 45
5.2 Processor-in-the-loop (PIL) 47
5.3 Hardware-in-the-loop (HIL) 50
5.4 解析度與時間延遲對系統的影響與比較 53
Chapter 6 結論與未來展望 57
6.1 結論 57
6.2 未來展望 58
6.2.1 系統整合 58
6.2.2 追蹤平台的升級 59
6.2.3 更精確的模擬 59
6.2.4 器材的升級 60
參考文獻 61
-
dc.language.isozh_TW-
dc.title一維測試平台上高強度聚焦超聲波探頭的自適應運動控制zh_TW
dc.titleAdaptive Motion Control of High-Intensity Focused Ultrasound Probe on a One-Dimensional Test Platformen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳永耀 ;葉奕良zh_TW
dc.contributor.oralexamcommitteeYung-Yaw Chen;Yi-Liang Yehen
dc.subject.keyword自適應運動控制,超聲波探頭,zh_TW
dc.subject.keywordHigh-Intensity Focused Ultrasound,Adaptive Motion Control,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202302639-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved