請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88620
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂明璋 | zh_TW |
dc.contributor.advisor | Ming-Chang Lu | en |
dc.contributor.author | 王凱譽 | zh_TW |
dc.contributor.author | Kai-Yu Wang | en |
dc.date.accessioned | 2023-08-15T17:05:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-03 | - |
dc.identifier.citation | 1. Huang, L., et al., Experimental study on frost release on fin-and-tube heat exchangers by use of a novel anti-frosting paint. Experimental Thermal and Fluid Science, 2009. 33(7): p. 1049-1054.
2. Tarquini, S., et al., Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades. Cold regions science and technology, 2014. 100: p. 50-58. 3. Lindow, S., The role of bacterial ice nucleation in frost injury to plants. Annual review of phytopathology, 1983. 21(1): p. 363-384. 4. Wei, X., et al., Development of anti-icing coatings applied to insulators in China. IEEE Electrical Insulation Magazine, 2014. 30(2): p. 42-50. 5. Wang, S. and X. Jiang, Progress in research on ice accretions on overhead transmission lines and its influence on mechanical and insulating performance. Frontiers of Electrical and Electronic Engineering, 2012. 7(3): p. 326-336. 6. Andersson, A.K. and L. Chapman, The impact of climate change on winter road maintenance and traffic accidents in West Midlands, UK. Accident Analysis & Prevention, 2011. 43(1): p. 284-289. 7. Marwitz, J., et al., Meteorological conditions associated with the ATR72 aircraft accident near Roselawn, Indiana, on 31 October 1994. Bulletin of the American Meteorological Society, 1997. 78(1): p. 41-52. 8. Lynch, F.T. and A. Khodadoust, Effects of ice accretions on aircraft aerodynamics. Progress in Aerospace Sciences, 2001. 37(8): p. 669-767. 9. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8. 10. Piucco, R.O., et al., A study of frost nucleation on flat surfaces. Experimental Thermal and Fluid Science, 2008. 32(8): p. 1710-1715. 11. Na, B. and R.L. Webb, A fundamental understanding of factors affecting frost nucleation. International Journal of Heat and Mass Transfer, 2003. 46(20): p. 3797-3808. 12. Lafuma, A. and D. Quéré, Superhydrophobic states. Nature materials, 2003. 2(7): p. 457-460. 13. Lau, K.K., et al., Superhydrophobic carbon nanotube forests. Nano letters, 2003. 3(12): p. 1701-1705. 14. Cao, L., et al., Anti-icing superhydrophobic coatings. Langmuir, 2009. 25(21): p. 12444-12448. 15. Maitra, T., et al., On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano letters, 2014. 14(1): p. 172-182. 16. Mishchenko, L., et al., Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS nano, 2010. 4(12): p. 7699-7707. 17. Ramachandran, R., K. Sobolev, and M. Nosonovsky, Dynamics of droplet impact on hydrophobic/icephobic concrete with the potential for superhydrophobicity. Langmuir, 2015. 31(4): p. 1437-1444. 18. Bird, J.C., et al., Reducing the contact time of a bouncing drop. Nature, 2013. 503(7476): p. 385-388. 19. Liu, Y., et al., Pancake bouncing on superhydrophobic surfaces. Nature physics, 2014. 10(7): p. 515-519. 20. Hao, P., C. Lv, and X. Zhang, Freezing of sessile water droplets on surfaces with various roughness and wettability. Applied physics letters, 2014. 104(16): p. 161609. 21. Guo, P., et al., Icephobic/anti‐icing properties of micro/nanostructured surfaces. Advanced Materials, 2012. 24(19): p. 2642-2648. 22. Shen, Y., et al., Superhydrophobic Ti 6 Al 4 V surfaces with regular array patterns for anti-icing applications. RSC Advances, 2015. 5(41): p. 32813-32818. 23. Wen, M., et al., Antifogging and icing-delay properties of composite micro-and nanostructured surfaces. ACS applied materials & interfaces, 2014. 6(6): p. 3963-3968. 24. Kulinich, S. and M. Farzaneh, How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir, 2009. 25(16): p. 8854-8856. 25. Meuler, A.J., et al., Relationships between water wettability and ice adhesion. ACS applied materials & interfaces, 2010. 2(11): p. 3100-3110. 26. He, M., et al., Superhydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter, 2011. 7(8): p. 3993-4000. 27. Huang, L., et al., Effect of contact angle on water droplet freezing process on a cold flat surface. Experimental thermal and fluid science, 2012. 40: p. 74-80. 28. Hao, Q., et al., Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing. Langmuir, 2014. 30(51): p. 15416-15422. 29. Kim, D., et al., Experimental investigation of frost retardation for superhydrophobic surface using a luminance meter. International Journal of Heat and Mass Transfer, 2015. 87: p. 491-496. 30. Boreyko, J.B. and C.P. Collier, Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS nano, 2013. 7(2): p. 1618-1627. 31. Amer, M. and C.-C. Wang, Review of defrosting methods. Renewable and Sustainable Energy Reviews, 2017. 73: p. 53-74. 32. Kim, P., et al., Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS nano, 2012. 6(8): p. 6569-6577. 33. Zhu, L., et al., Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane. ACS applied materials & interfaces, 2013. 5(10): p. 4053-4062. 34. Chen, J., et al., Anti‐ice coating inspired by ice skating. Small, 2014. 10(22): p. 4693-4699. 35. Shibraen, M.H., et al., Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film. Applied Surface Science, 2016. 370: p. 1-5. 36. Lo, C.-W., J.-X. Li, and M.-C. Lu, Frosting and defrosting on the hydrophilic nylon-6 nanofiber membrane–coated surfaces. Applied Thermal Engineering, 2021. 184: p. 116300. 37. Hayashi, Y., et al., study of frost properties correlating with frost formation types. 1977. 38. Iragorry, J., Y.-X. Tao, and S. Jia, A critical review of properties and models for frost formation analysis. HVAC&R Research, 2004. 10(4): p. 393-420. 39. Song, M. and C. Dang, Review on the measurement and calculation of frost characteristics. International Journal of Heat and Mass Transfer, 2018. 124: p. 586-614. 40. Hu, H. and Z. Jin, An icing physics study by using lifetime-based molecular tagging thermometry technique. International Journal of Multiphase Flow, 2010. 36(8): p. 672-681. 41. Jin, Z. and H. Hu, Quantification of unsteady heat transfer and phase changing process inside small icing water droplets. Review of Scientific Instruments, 2009. 80(5): p. 054902. 42. Tao, Y., Characteristics of frost growth on a flat plate during the early growth period. ASHRAE Transactions, 1993. 43. Wu, X., et al., Visual and theoretical analyses of the early stage of frost formation on cold surfaces. Journal of Enhanced Heat Transfer, 2007. 14(3). 44. Yang, D.-K. and K.-S. Lee, Modeling of frosting behavior on a cold plate. International journal of refrigeration, 2005. 28(3): p. 396-402. 45. Yang, D.-K., K.-S. Lee, and D.-J. Cha, Frost formation on a cold surface under turbulent flow. International journal of refrigeration, 2006. 29(2): p. 164-169. 46. Attinger, D., et al., How to Engineer Surfaces to Control and Optimize Boiling, Condensation and Frost Formation? Encyclopedia of Two-Phase Heat Transfer and Flow III: Macro and Micro Flow Boiling and Numerical Modeling Fundamentals Volume 4: Special Boiling Topics, 2018: p. 63-158. 47. Chien, H.C., et al., Heat Transfer of Semicrystalline Nylon Nanofibers. Acs Nano, 2020. 14(3): p. 2939-2946. 48. Sohrabi, A., P.M. Shaibani, and T. Thundat, The Effect of Applied Electric Field on the Diameter and Size Distribution of Electrospun Nylon6 Nanofibers. Scanning, 2013. 35(3): p. 183-188. 49. Wang, C., et al., How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?-a brief discussion of solution electrospinning process. Journal of Polymer Research, 2011. 18(1): p. 111-123. 50. Yang, K.-S., W. Lu, and Y.-L. Wu, Visualization of patterned modified surfaces in condensation and frosting states. Energies, 2019. 12(23): p. 4471. 51. Work, A. and Y. Lian, A critical review of the measurement of ice adhesion to solid substrates. Progress in Aerospace Sciences, 2018. 98: p. 1-26. 52. Rønneberg, S., J. He, and Z. Zhang, The need for standards in low ice adhesion surface research: a critical review. Journal of adhesion science and technology, 2020. 34(3): p. 319-347. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88620 | - |
dc.description.abstract | 冰的累積會影響許多工業系統,也會造成許多經濟上的困擾及生活中的危害,冰的形成大部分主要為結冰(氣態變為液態再轉為固態)。目前大多抗冰研究表明超疏水表面具有抵抗結冰的效果,關於親水表面的研究較少,由於尼龍六奈米纖維具有重量輕、低成本、及吸水性等特性,本研究提出一結合微米柱陣列與尼龍六奈米纖維薄膜之抗冰表面,此微米柱陣列結合尼龍六奈米纖維薄膜表面可藉由尼龍六薄膜將冰限制在薄膜內而避免表面形成 Wenzel 型式的冰,且微米柱陣列可將奈米纖維薄膜撐起,以此降低熱傳面積,並減少冰的附著力。
本研究首先量測平面矽表面、微米柱陣列表面、與微米柱陣列結合尼龍六奈米纖維薄膜表面之結冰時之熱傳係數,結果顯示,微米柱陣列結合尼龍六奈米纖維薄膜表面具有最低的熱傳係數,此或許是因為尼龍六吸水性將水控制在纖維膜內,使冰以 Cassie 型態附著在表面上,提高整體熱阻也許能抑制冰層的成長,使得表面具有較薄的冰層,達到有效抗冰能力;此外,由於冰在平面矽表面具有良好的接觸,因此平面矽表面有最高的熱傳係數,而微米柱陣列表面的熱傳係數居於兩表面中間。 冰粘附應力是評價表面除冰性能的指標,實驗結果顯示,微米柱陣列結合尼龍六奈米纖維薄膜表面相比於矽表面能大幅度的降低冰冰粘附應力,綜合上述結果,微米柱陣列結合尼龍六奈米纖維薄膜表面有良好的抗冰能力與除冰能力。 | zh_TW |
dc.description.abstract | Ice accumulation affects industrial systems’ operations and may cause economic and life-threatening problems. Most ice formation processes are freezing, which involves the phase transitions from gas to liquid and from liquid to solid. Research on anti-icing indicates that superhydrophobic surfaces have the effect of resisting icing.Nevertheless, less attention has been paid to applying hydrophilic surfaces to resist ice.Nylon-6 nanofiber membranes have the characteristics of low-cost, lightweight, and water-absorbing properties and may be a potential surface applicable for anti-icing. Therefore, a micropillar array coated with the nylon-6 nanofiber membrane was proposed as an anti-icing surface in this study. The nylon-6 nanofiber membrane absorbs the water liquid and can potentially prevent the formation of Wenzel ice on the surface. In the meantime, the micropillar array supports the nanofiber membrane and can also reduce the heat transfer area and decrease the ice adhesion.
The anti-icing performances on a plain Si surface, a micropillar array surface, and the micropillar array coated with the nylon-6 nanofiber membrane were examined. The results show that the micropillar array coated with the nylon-6 nanofiber membrane had the lowest heat transfer coefficient. This might be due to the water-absorbing nylon-6 membrane keeping the water inside the membrane and causing the formation of Cassie ice on the surface. On the other hand, the ice on the plain Si surface had better contact, and therefore the plain Si surface had the highest heat transfer coefficient among the surfaces, and the micropillar array gave a heat transfer coefficient between the two surfaces. The large thermal resistance of the micropillar array coated with the nylon-6 nanofiber membrane inhibits the growth of the ice layer, resulting in a thin ice layer on the surface and giving an effective anti-icing capability. Ice adhesion stress is an indicator for evaluating the deicing property of a surface. A lower ice adhesion stress leads to better deicing performance. The experimental results show that the micropillar array coated with the nylon-6 nanofiber membrane surface significantly reduced the ice adhesion stress from the plain Si surface. Consequently, the micropillar array coated with the nylon-6 membrane surface showed superior anti-icing and deicing capabilities. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:05:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:05:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 符號說明 VIII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 1.4 論文編排 4 第2章 理論介紹 6 2.1 接觸角 6 2.2 成核理論 6 2.2.1 同質成核 7 2.2.2 異質成核 9 2.3 結冰過程 10 第3章 實驗樣品製程 19 3.1 微米柱陣列 19 3.2 Nylon-6 奈米纖維 20 3.2.1 靜電紡織 20 3.2.2 尼龍六纖維膜製備及製作 20 3.3 表面結構影像及接觸角 21 3.3.1 表面結構影像 21 3.3.2 接觸角 21 第4章 實驗系統與實驗方法 29 4.1 熱傳實驗 29 4.1.1 結冰實驗系統 29 4.1.2 熱傳實驗操作步驟 30 4.1.3 熱傳實驗系統數據處理 31 4.1.4 平均液滴密度計算 32 4.2 剪應力實驗 32 4.2.1 摩擦力實驗系統 33 4.2.2 摩擦力實驗操作步驟 33 第5章 結果與討論 41 5.1 結冰熱傳係數 41 5.1.1 Plain表面 41 5.1.2 Pillar表面 43 5.1.3 PillarN6表面 44 5.2 摩擦力實驗 45 第6章 總結與未來計畫 63 6.1 總結 63 6.2 未來工作 63 參考文獻 64 | - |
dc.language.iso | zh_TW | - |
dc.title | 奈米纖維薄膜覆蓋微米柱陣列表面之抗冰與除冰能力 | zh_TW |
dc.title | Anti-icing/Deicing Performances on the Micropillar Array with Nanofiber Membrane Surfaces | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 徐冠倫 | zh_TW |
dc.contributor.coadvisor | Kuan-Lun Hsu | en |
dc.contributor.oralexamcommittee | 羅景文 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Wen Lo | en |
dc.subject.keyword | 尼龍六,奈米纖維,薄膜,微米柱陣列,抗冰,除冰, | zh_TW |
dc.subject.keyword | nylon-6,nanofiber,membrane,micropillar,anti-icing,deicing, | en |
dc.relation.page | 65 | - |
dc.identifier.doi | 10.6342/NTU202301707 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
dc.date.embargo-lift | 2028-07-28 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。