請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88613
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉光勝 | zh_TW |
dc.contributor.advisor | Kuang-Sheng Yeh | en |
dc.contributor.author | 黃圓圓 | zh_TW |
dc.contributor.author | Yuan-Yuan Huang | en |
dc.date.accessioned | 2023-08-15T17:03:53Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-01 | - |
dc.identifier.citation | 1. Zhang XL, Jeza VT, Pan Q. Salmonella typhi: from a human pathogen to a vaccine vector. Cell Mol Immunol. 2008;5(2):91-7; doi: 10.1038/cmi.2008.11.
2. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000;38:2465-7; doi: 10.1128/jcm.38.7.2465-2467.2000. 3. Cheng RA, Eade CR, Wiedmann M. Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal Salmonella as a foodborne pathogen. Front Microbiol. 2019;10:1368; doi: 10.3389/fmicb.2019.01368. 4. Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284-93; doi: 10.1080/21553769.2015.1051243. 5. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8(8):887-900; doi: 10.1089/fpd.2010.0787. 6. European Food Safety Authority [EFSA]. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. Sweden, Stockholm: European Food Safety Authority and European Centre for Disease Prevention and Control; 2018. 7. Griffin AJ, McSorley SJ. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol. 2011;4(4):371-82; doi: 10.1038/mi.2011.2. 8. Hurley D, McCusker MP, Fanning S, Martins M. Salmonella-host interactions - modulation of the host innate immune system. Front Immunol. 2014;5:481; doi: 10.3389/fimmu.2014.00481. 9. Pande VV, Devon RL, Sharma P, McWhorter AR, Chousalkar KK. Study of Salmonella Typhimurium infection in laying hens. Front Microbiol. 2016;7; doi: 10.3389/fmicb.2016.00203. 10. Okamura M, Kamijima Y, Miyamoto T, Tani H, Sasai K, Baba E. Differences among six Salmonella serovars in abilities to colonize reproductive organs and to contaminate eggs in laying hens. Avian Dis. 2001;45(1):61-9; doi: 10.2307/1593012. 11. Miyamoto T, Baba E, Tanaka T, Sasai K, Fukata T, Arakawa A. Salmonella enteritidis contamination of eggs from hens inoculated by vaginal, cloacal, and intravenous routes. Avian Dis. 1997;41(2):296-303; doi: 10.2307/1592181. 12. Messens W, Grijspeerdt K, Herman L. Eggshell penetration by Salmonella: a review. Worlds Poult Sci J. 2005;61(1):71-85; doi: 10.1079/WPS200443. 13. De Reu K, Grijspeerdt K, Messens W, Heyndrickx M, Uyttendaele M, Debevere J, et al. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. Int J Food Microbiol. 2006;112(3):253-60; doi: 10.1016/j.ijfoodmicro.2006.04.011. 14. Dougan G, Baker S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu Rev Microbiol. 2014;68:317-36; doi: 10.1146/annurev-micro-091313-103739. 15. Hiyoshi H, Tiffany CR, Bronner DN, Baumler AJ. Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar. FEMS Microbiol Rev. 2018;42(4):527-41; doi: 10.1093/femsre/fuy024. 16. Connor BA, Schwartz E. Typhoid and paratyphoid fever in travellers. Lancet Infect Dis. 2005;5(10):623-8; doi: 10.1016/S1473-3099(05)70239-5. 17. Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol. 2014;5:391; doi: 10.3389/fmicb.2014.00391. 18. Tiew WT, Janapatla RP, Chang YJ, Chen YC, Yang HP, Su LH, et al. Emergence and spread in Taiwan of multidrug-resistant serotypes of nontyphoidal Salmonella. Infection. 2022;50(2):475-82; doi: 10.1007/s15010-021-01736-0. 19. Hendriksen RS, Bangtrakulnonth A, Pulsrikarn C, Pornruangwong S, Noppornphan G, Emborg HD, et al. Risk factors and epidemiology of the ten most common Salmonella serovars from patients in Thailand: 2002-2007. Foodborne Pathog Dis. 2009;6:1009–19; doi: 10.1089/fpd.2008.0245. 20. Ran L, Wu S, Gao Y, Zhang XL, Feng Z, Wang Z, et al. Laboratory-based surveillance of nontyphoidal Salmonella infections in China. Foodborne Pathog Dis. 2011;8:921–7; doi: 10.1089/fpd.2010.0827. 21. Group OW. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet network, 2011. 2015/08/04 edn; 2015. 22. Centers for Disease Control and Prevention [CDC]. National enteric disease surveillance: Salmonella annual report. Atlanta, GA: Centers for Disease Control and Prevention; 2016. 23. European Food Safety Authority [EFSA] and European Centre for Disease Prevention and Control [ECDC]. The European Union summary report on trends, and sources of zoonoses, zoonotic agents, and food-borne outbreaks in 2016. Sweden, Stockholm: European Food Safety Authority and European Centre for Disease Prevention and Control; 2017. 24. Collaborators GBDN-TSID. The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the global burden of disease study 2017. Lancet Infect Dis. 2019;19(12):1312-24; doi: 10.1016/S1473-3099(19)30418-9. 25. Lee HY, Su LH, Tsai MH, Kim SW, Chang HH, Jung SI, et al. High rate of reduced susceptibility to ciprofloxacin and ceftriaxone among nontyphoid Salmonella clinical isolates in Asia. Antimicrob Agents Chemother. 2009;53(6):2696-9; doi: 10.1128/AAC.01297-08. 26. Foster JW, Hall HK. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol. 1991;173:5129-35; doi: 10.1128/jb.173.16.5129-5135.1991. 27. Santos RL, Baumler AJ. Cell tropism of Salmonella enterica. Int J Med Microbiol. 2004;294(4):225-33; doi: 10.1016/j.ijmm.2004.06.029. 28. Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson DS, Wang D, et al. Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe. 2012;12(5):645-56; doi: 10.1016/j.chom.2012.10.009. 29. Gordon MA. Salmonella infections in immunocompromised adults. J Infect. 2008;56(6):413-22; doi: 10.1016/j.jinf.2008.03.012. 30. McQuiston JR, Parrenas R, Ortiz-Rivera M, Gheesling L, Brenner F, Fields PI. Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J Clin Microbiol. 2004;42(5):1923-32; doi: 10.1128/Jcm.42.5.1923-1932.2004. 31. Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev. 2000;64:694–708.; doi: 10.1128/MMBR.64.4.694-708.2000. 32. Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog. 2015;11(1):e1004483; doi: 10.1371/journal.ppat.1004483. 33. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol. 1998;30(2):285-93; doi: 10.1046/j.1365-2958.1998.01061.x. 34. Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci U S A. 2013;110(14):5624-9; doi: 10.1073/pnas.1219662110. 35. Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem. 2003;72:19-54; doi: 10.1146/annurev.biochem.72.121801.161737. 36. Renault TT, Abraham AO, Bergmiller T, Paradis G, Rainville S, Charpentier E, et al. Bacterial flagella grow through an injection-diffusion mechanism. Elife. 2017;6:e23136; doi: 10.7554/eLife.23136. 37. Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature. 2003;424(6949):643-50; doi: 10.1038/nature01830. 38. Reid SD, Selander RK, Whittam TS. Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. J Bacteriol 1999;181(1):153-60; doi: 10.1128/Jb.181.1.153-160.1999. 39. Popoff MY, Bockemuhl J, Gheesling LL. Supplement 2001 (no. 45) to the Kauffmann-White scheme. Res Microbiol. 2003;154(3):173-4; doi: 10.1016/S0923-2508(03)00025-1. 40. Evans LDB, Poulter S, Terentjev EM, Hughes C, Fraser GM. A chain mechanism for flagellum growth. Nature. 2013;504(7479):287-90; doi: 10.1038/nature12682. 41. Beatson SA, Minamino T, Pallen MJ. Variation in bacterial flagellins: from sequence to structure. Trend Microbiol. 2006;14(4):151-5; doi: 10.1016/j.tim.2006.02.008. 42. McDermott PF, Ciacci-Woolwine F, Snipes JA, Mizel SB. High-affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun. 2000;68(10):5525-9; doi: 10.1128/Iai.68.10.5525-5529.2000. 43. McQuiston JR, Fields PI, Tauxe RV, Logsdon JM. Do Salmonella carry spare tyres? Trends Microbiol 2008;16(4):142-8; doi: 10.1016/j.tim.2008.01.009. 44. Alm RA, Guerry P, Trust TJ. The Campylobacter sigma 54 flab flagellin promoter is subject to environmental regulation. J Bacteriol. 1993;175(14):4448-55; doi: 10.1128/jb.175.14.4448-4455.1993. 45. Silverman M, Zieg J, Hilmen M, Simon M. Phase variation in Salmonella: genetic-analysis of a recombinational switch. Proc Natl Acad Sci U S A. 1979;76(1):391-5; doi: DOI 10.1073/pnas.76.1.391. 46. Smith NH, Selander RK. Molecular genetic-basis for complex flagellar antigen expression in a triphasic serovar of Salmonella. Proc Natl Acad Sci U S A 1991;88(3):956-60; doi: 10.1073/pnas.88.3.956. 47. Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, et al. Divergence of quaternary structures among bacterial flagellar filaments. Science. 2008;320(5874):382-5; doi: 10.1126/science.1155307. 48. Lederberg J, Iino T. Phase Variation in Salmonella. Genetics. 1956;41(5):743-57; doi: 10.1093/genetics/41.5.743. 49. Horstmann JA, Zschieschang E, Truschel T, de Diego J, Lunelli M, Rohde M, et al. Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive Salmonella gut colonisation. Cell Microbiol. 2017;19(8); doi: 10.1111/cmi.12739. 50. Stocker BA, Mcdonough MW, Ambler RP. A gene determining presence or absence of e-N-methyl-lysine in Salmonella flagellar protein. Nature. 1961;189(476):556-8; doi: 10.1038/189556a0. 51. Ambler RP, Rees MW. e-N-methyl-lysine in bacterial flagellar protein. Nature. 1959;184(4679):56-7; doi: 10.1038/184056b0. 52. Tronick SR, Martinez RJ. Methylation of flagellin of Salmonella typhimurium. J Bacteriol. 1971;105(1):211-9; doi: 10.1128/Jb.105.1.211-219.1971. 53. Horstmann JA, Lunelli M, Cazzola H, Heidemann J, Kuhne C, Steffen P, et al. Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat Commun. 2020;11(1):2013; doi: 10.1038/s41467-020-15738-3. 54. Duguid JP, Smith IW, Dempster G, Edmunds PN. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J Pathol Bacteriol. 1955;70(2):335-48; doi: 10.1002/path.1700700210. 55. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413(6858):852-6; doi: 10.1038/35101614. 56. Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, et al. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol. 2003;48(5):1357-76; doi: 10.1046/j.1365-2958.2003.03507.x. 57. Duguid JP, Gillies RR. Fimbriae and adhesive properties in dysentery bacilli. J Pathol Bacteriol. 1957;74(2):397-411; doi: 10.1002/path.1700740218. 58. Old DC, Duguid JP. Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol. 1970:447-56; doi: 10.1128/jb.103.2.447-456.1970. 59. Baumler AJ, Tsolis RM, Heffron F. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect Immun 1996;64(5):1862-5; doi: 10.1128/iai.64.5.1862-1865.1996. 60. Sukupolvi S, Lorenz RG, Gordon JI, Bian Z, Pfeifer JD, Normark SJ, et al. Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect Immun 1997;65(12):5320-5; doi: 10.1128/iai.65.12.5320-5325.1997. 61. Austin JW, Sanders G, Kay WW, Collinson SK. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 1998;162(2):295-301; doi: 10.1111/j.1574-6968.1998.tb13012.x. 62. Waksman G, Hultgren SJ. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol. 2009;7(11):765-74; doi: 10.1038/nrmicro2220. 63. Werneburg GT, Thanassi DG. Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella. EcoSal Plus. 2018;8(1); doi: 10.1128/ecosalplus.ESP-0007-2017. 64. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Haner M, et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol. 2002;323(5):845-57; doi: 10.1016/S0022-2836(02)01005-7. 65. Kukkonen M, Raunio T, Virkola R, Lahteenmaki K, Makela PH, Klemm P, et al. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol. 1993;7(2):229-37; doi: 10.1111/j.1365-2958.1993.tb01114.x. 66. Baumler AJ, Tsolis RM, Heffron F. Fimbrial adhesins of Salmonella typhimurium. Role in bacterial interactions with epithelial cells. Adv Exp Med Biol. 1997;412:149-58; doi: 10.1007/978-1-4899-1828-4_23. 67. Rossolini GM, Muscas P, Chiesurin A, Satta G. Analysis of the Salmonella fim gene cluster: identification of a new gene (fimI) encoding a fimbrin-like protein and located downstream from the fimA gene. FEMS Microbiol Lett. 1993;114(3):259-65; doi: 10.1111/j.1574-6968.1993.tb06583.x. 68. Remaut H, Rose RJ, Hannan TJ, Hultgren SJ, Radford SE, Ashcroft AE, et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol Cell. 2006;22(6):831-42; doi: 10.1016/j.molcel.2006.05.033. 69. Tinker JK, Clegg S. Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun. 2000;68(6):3305-13; doi: 10.1128/iai.68.6.3305-3313.2000. 70. Yeh KS, Hancox LS, Clegg S. Construction and characterization of a fimZ mutant of Salmonella typhimurium. J Bacteriol. 1995;177(23):6861-5; doi: 10.1128/jb.177.23.6861-6865.1995. 71. Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS. FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res. 2014;169(7-8):496-503; doi: 10.1016/j.micres.2013.12.006. 72. Yeh KS, Tinker JK, Clegg S. FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol. 2002;46(1):1-10; doi: 10.1111/j.1348-0421.2002.tb02670.x. 73. Tinker JK, Hancox LS, Clegg S. FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol. 2001;183(2):435-42; doi: 10.1128/Jb.183.2.435-442.2001. 74. Tinker JK, Clegg S. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol. 2001;40(3):757-68; doi: 10.1046/j.1365-2958.2001.02430.x. 75. Wang KC, Hsu YH, Huang YN, Yeh KS. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol. 2012;12:111; doi: 10.1186/1471-2180-12-111. 76. Saini S, Pearl JA, Rao CV. Role of FimW, FimY, and FimZ in regulating the expression of type 1 fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol. 2009;191(9):3003-10; doi: 10.1128/Jb.01694-08. 77. Zeiner SA, Dwyer BE, Clegg S. FimY does not interfere with FimZ-FimW Interaction during Type 1 Fimbria production by Salmonella enterica serovar Typhimurium. Infect Immun. 2013;81(12):4453-60; doi: 10.1128/Iai.00795-13. 78. Nasser W, Reverchon S. New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem 2007;387(2):381-90; doi: 10.1007/s00216-006-0702-0. 79. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC. Quorum-sensing in gram-negative bacteria. FEMS Microb Rev 2001;25(4):365-404; doi: 10.1016/S0168-6445(01)00059-6. 80. Venkatesh GR, Koungni FCK, Paukner A, Stratmann T, Blissenbach B, Schnetz K. BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS. J Bacteriol. 2010;192(24):6456-64; doi: 10.1128/Jb.00807-10. 81. McFarland KA, Lucchini S, Hinton JCD, Dorman CJ. The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar Typhimurium via the fimZ regulatory gene. J Bacteriol. 2008;190(2):602-12; doi: 10.1128/Jb.01388-07. 82. Clegg S, Hughes KT. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol. 2002;184(4):1209-13; doi: 10.1128/jb.184.4.1209-1213.2002. 83. Baxter MA, Jones BD. The fimYZ genes regulate Salmonella enterica serovar Typhimurium invasion in addition to type 1 fimbrial expression and bacterial motility. Infect Immun 2005;73(3):1377-85; doi: 10.1128/Iai.73.3.1377-1385.2005. 84. Galán JE, Curtiss 3rd R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A. 1989;86:6383-7; doi: 10.1073/pnas.86.16.6383. 85. Ochman H, Soncini FC, Solomon F, Groisman EA. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A. 1996;93:7800-4; doi: 10.1073/pnas.93.15.7800. 86. Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1996;93:2593-7; doi: 10.1073/pnas.93.6.2593. 87. Blanc-Potard AB, Groisman EA. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. Embo J. 1997;16:5376–85; doi: 10.1093/emboj/16.17.5376. 88. Wong KK, McClelland M, Stillwell LC, Sisk EC, Thurston SJ, Saffer JD. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar typhimurium LT2. Infect Immun. 1998;66:3365–71; doi: 10.1128/IAI.66.7.3365-3371.1998. 89. Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, Galyov EE. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol. 1998;29(3):883-91; doi: 10.1046/j.1365-2958.1998.00984.x. 90. van Asten AJ, van Dijk JE. Distribution of "classic" virulence factors among Salmonella spp. FEMS Immunol Med Microbiol. 2005;44(3):251-9; doi: 10.1016/j.femsim.2005.02.002. 91. Fabrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26(2):308-41; doi: 10.1128/CMR.00066-12. 92. Yin Y, Zhou D. Organoid and enteroid modeling of Salmonella infection. Front Cell Infect Microbiol. 2018;8:102; doi: 10.3389/fcimb.2018.00102. 93. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell. 2000;100:221-8; doi: 10.1016/s0092-8674(00)81560-3. 94. Garcia-del. Portillo F, Finlay BB. Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infect Immun 1994;62:4641-5; doi: 10.1128/iai.62.10.4641-4645.1994. 95. Hensel M, Shea JE, Raupach B, Monack D, Falkow S, Gleeson C, et al. Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2. Mol Microbiol. 1997;24(1):155-67; doi: 10.1046/j.1365-2958.1997.3271699.x. 96. Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol. 1998;30(1):163-74; doi: 10.1046/j.1365-2958.1998.01047.x. 97. Hansen-Wester I, Chakravortty D, Hensel M. Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli. Infect Immun. 2004;72(5):2879-88; doi: 10.1128/IAI.72.5.2879-2888.2004. 98. Hensel M, Nikolaus T, Egelseer C. Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol. 1999;31(2):489-98; doi: 10.1046/j.1365-2958.1999.01190.x. 99. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426-9; doi: 10.1038/nature09415. 100. Rathman M, Barker LP, Falkow S. The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect Immun. 1997;65:1475–85; doi: 10.1128/iai.65.4.1475-1485.1997. 101. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, et al. Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 2011;7(8):e1002191; doi: 10.1371/journal.ppat.1002191. 102. Hayward MR, Jansen V, Woodward MJ. Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 2013;14:365; doi: 10.1186/1471-2164-14-365. 103. Hayward MR, AbuOun M, La Ragione RM, Tchorzewska MA, Cooley WA, Everest DJ, et al. SPI-23 of S. Derby: role in adherence and invasion of porcine tissues. PLoS One. 2014;9(9):e107857; doi: 10.1371/journal.pone.0107857. 104. Hume PJ, Singh V, Davidson AC, Koronakis V. Swiss army pathogen: The Salmonella entry toolkit. Front Cell Infect Microbiol. 2017;7:348; doi: 10.3389/fcimb.2017.00348. 105. Saini S, Slauch JM, Aldridge PD, Rao CV. Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol. 2010;192(21):5767-77; doi: 10.1128/Jb.00624-10. 106. Kim JC, Yoon JW, Kim CH, Park MS, Cho SH. Repression of flagella motility in enterohemorrhagic Escherichia coli O157:H7 by mucin components. Biochem Biophys Res Comm 2012;423(4):789-92; doi: 10.1016/j.bbrc.2012.06.041. 107. Mccormick BA, Stocker BAD, Laux DC, Cohen PS. Roles of motility, chemotaxis, and penetration through and growth in intestinal mucus in the ability of an avirulent strain of Salmonella typhimurium to colonize the large intestine of streptomycin-treated mice. Infect Immun. 1988;56(9):2209-17; doi: 10.1128/Iai.56.9.2209-2217.1988. 108. Mccormick BA, Laux DC, Cohen PS. Neither motility nor chemotaxis plays a role in the ability of Escherichia coli F-18 to colonize the streptomycin-treated mouse large intestine. Infect Immun. 1990;58(9):2957-61; doi: 10.1128/Iai.58.9.2957-2961.1990. 109. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307(5717):1955-9; doi: 10.1126/science.1109051. 110. Peekhaus N, Conway T. What's for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol. 1998;180(14):3495-502; doi: 10.1128/Jb.180.14.3495-3502.1998. 111. Stecher B, Robbiani R, Walker A, Westendorf A, Barthel M, Kremer M, et al. Salmonella typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007;297:2177–89; doi: 10.1371/journal.pbio.0050244. 112. Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol-Gastroint Liver Physiol. 2012;302(1):G1-G9; doi: 10.1152/ajpgi.00048.2011. 113. Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest. 1999;104(8):1107-14; doi: 10.1172/JCI7712. 114. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662-80; doi: 10.1038/nrd2222. 115. Lopez CA, Winter SE, Rivera-Chavez F, Xavier MN, Poon V, Nuccio SP, et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. mBio 2012;3(3):e00143-12; doi: 10.1128/mBio.00143-12. 116. Calandra T, Bucala R. Macrophage migration inhibitory factor (MIF): A glucocorticoid counter-regulator within the immune system. Crit Rev Immunol. 1997;17(1):77-88; doi: 10.1615/CritRevImmunol.v17.i1.30. 117. Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, et al. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Biochemistry-Us. 1999;38(39):12841-9; doi: 10.1021/bi991352p. 118. Macpherson GG, Jenkins CD, Stein MJ, Edwards C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J Immunol. 1995;154(3):1317-22; doi: 10.1007/BF00824050. 119. Rothkotter HJ, Pabst R, Bailey M. Lymphocyte migration in the intestinal mucosa: entry, transit and emigration of lymphoid cells and the influence of antigen. Vet Immunol Immunopathol. 1999;72(1-2):157-65; doi: 10.1016/S0165-2427(99)00128-2. 120. Westermann J, Puskas Z, Pabst R. Blood transit and recirculation kinetics of lymphocyte subsets in normal rats. Scand J Immunol. 1988;28(2):203-10; doi: 10.1111/j.1365-3083.1988.tb02432.x. 121. Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 1999;401(6755):804-8; doi: 10.1038/44593. 122. Worley MJ, Nieman GS, Geddes K, Heffron F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci U S A. 2006;103:17915–20; doi: 10.1073/pnas.0604054103. 123. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93(5):815-26; doi: 10.1016/S0092-8674(00)81442-7. 124. Hobbie S, Chen LM, Davis RJ, Galan JE. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol. 1997;159(11):5550-9; doi: 10.4049/jimmunol.159.11.5550. 125. Patel JC, Galan JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 2006;175(3):453-63; doi: 10.1083/jcb.200605144. 126. Rajashekar R, Liebl D, Seitz A, Hensel M. Dynamic remodeling of the endosomal system during formation of Salmonella-induced filaments by intracellular Salmonella enterica. Traffic. 2008;9(12):2100-16; doi: 10.1111/j.1600-0854.2008.00821.x. 127. Kuhle V, Hensel M. Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell Mol Life Sci 2004;61(22):2812-26; doi: 10.1007/s00018-004-4248-z. 128. Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA. A Salmonella virulence protein that inhibits cellular trafficking. Embo J. 1999;18(14):3924-33; doi: 10.1093/emboj/18.14.3924. 129. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in Salmonella-infected macrophages. Nat Immunol 2006;7(6):576-82; doi: 10.1038/ni1346. 130. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569-75; doi: 10.1038/ni1344. 131. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Microbiol Mol 2008;67(6):1371-83; doi: 10.1111/j.1365-2958.2008.06134.x. 132. Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N, Danbara H, et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol. 2012;14(4):485-99; doi: 10.1111/j.1462-5822.2011.01733.x. 133. Tukel C, Raffatellu M, Humphries AD, Wilson RP, Andrews-Polymenis HL, Gull T, et al. CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol. 2005;58(1):289-304; doi: 10.1111/j.1365-2958.2005.04825.x. 134. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131-44; doi: 10.1038/nri2707. 135. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001;167(4):1882-5; doi: 10.4049/jimmunol.167.4.1882. 136. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099-103; doi: 10.1038/35074106. 137. Hamilton S, Bongaerts RJM, Mulholland F, Cochrane B, Porter J, Lucchini S, et al. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics. 2009;10:599; doi: 10.1186/1471-2164-10-599. 138. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR, et al. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol. 2005;58(5):1322-39; doi: 10.1111/j.1365-2958.2005.04907.x. 139. Ledeboer NA, Frye JG, McClelland M, Jones BD. Salmonella entetica serovar typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 2006;74(6):3156-69; doi: 10.1128/Iai.01428-05. 140. Boddicker JD, Ledeboer NA, Jagnow J, Jones BD, Clegg S. Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 2002;45(5):1255-65; doi: 10.1046/j.1365-2958.2002.03121.x. 141. Gonzalez-Escobedo G, Marshall JM, Gunn JS. Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol 2011;9(1):9-14; doi: 10.1038/nrmicro2490. 142. Prouty AM, Schwesinger WH, Gunn JS. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 2002;70(5):2640-9; doi: 10.1128/Iai.70.5.2640-2649.2002. 143. Hofmann AF, Hagey LR. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65(16):2461-83; doi: 10.1007/s00018-008-7568-6. 144. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241-59; doi: 10.1194/jlr.R500013-JLR200. 145. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med. 2006;12(6):636-41; doi: 10.1038/nm1407. 146. Philipp B. Bacterial degradation of bile salts. Appl Microbiol Biotechnol. 2011;89(4):903-15; doi: 10.1007/s00253-010-2998-0. 147. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan GL. Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol. 2003;69(7):3809-18; doi: 10.1128/Aem.69.7.3809-3818.2003. 148. Flahaut S, Frere J, Boutibonnes P, Auffray Y. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol. 1996;62(7):2416-20; doi: 10.1128/aem.62.7.2416-2420.1996. 149. Sanyal AJ, Hirsch JI, Moore EW. Premicellar taurocholate enhances calcium uptake from all regions of rat small intestine. Gastroenterology. 1994;106(4):866-74; doi: 10.1016/0016-5085(94)90744-7. 150. Symeonidis A, M. M. Iron and microbial growth. . In: Priti R, editor. Insight and Control of Infectious Disease in Global Scenario. 2012. p. 289–330. 151. Prouty AM, Gunn JS. Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile. Infect Immun. 2000;68(12):6763-9; doi: 10.1128/Iai.68.12.6763-6769.2000. 152. Prouty AM, Van Velkinburgh JC, Gunn JS. Salmonella enterica serovar Typhimurium resistance to bile: Identification and characterization of the tolQRA cluster. J Bacteriol. 2002;184(5):1270-6; doi: 10.1128/Jb.184.5.1270-1276.2002. 153. Lillehoj EP, Yun CH, Lillehoj HS. Vaccines against the avian enteropathogens Eimeria, Cryptosporidium and Salmonella. Anim Health Res Rev. 2000;1(1):47-65; doi: 10.1017/s1466252300000050. 154. Berchieri A, Barrow PA. Further studies on the inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium by pre-colonization with an avirulent mutant. Epidemiol Infect. 1990;104(3):427-41; doi: 10.1017/S0950268800047440. 155. Barrow PA, Tucker JF, Simpson JM. Inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium by gram-negative facultatively anaerobic bacteria. Epidemiol Infect. 1987;98(3):311-22; doi: 10.1017/S0950268800062063. 156. Methner U, Barrow PA, Berndt A. Induction of a homologous and heterologous invasion-inhibition effect after administration of Salmonella strains to newly hatched chicks. Vaccine. 2010;28(43):6958-63; doi: 10.1016/j.vaccine.2010.08.050. 157. Curtiss R, 3rd,, Hassan JO. Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. Vet Immunol Immunopathol. 1996;54:365-72; doi: 10.1016/s0165-2427(96)05683-8. 158. Hassan JO, Curtiss R, 3rd. Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect Immun. 1994;62(5519–5527); doi: 10.1128/iai.62.12.5519-5527.1994. 159. Dórea FC, Cole DJ, Hofacre C, Zamperini K, Mathis D, Doyle MP, et al. Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl Environ Microbiol. 2010;76(23):7820-5; doi: 10.1128/Aem.01320-10. 160. Hoiseth SK, Stocke BAD. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291:238-9; doi: 10.1038/291238a0. 161. Hoiseth SK, Stocker BA. Genes aroA and serC of Salmonella typhimurium constitute an operon. J Bacteriol. 1985;163(1):355–61; doi: 10.1128/jb.163.1.355-361.1985. 162. Cooper GL, Venables LM, Woodward MJ, Hormaeche CE. Vaccination of chickens with strain CVL30, a genetically defined Salmonella enteritidis aroA live oral vaccine candidate. Infect Immun. 1994;62:4747-54; doi: 10.1128/iai.62.11.4747-4754.1994. 163. Cerquetti MC, Gherardi MM, Sordelli DO. Evaluation of different temperature-sensitive mutant phenotypes of Salmonella enteritidis as vaccine potentials. Curr Microbiol. 1990;21:225–8; doi: 10.1007/BF02092160. 164. Methner U, Barrow PA, Berndt A, Rychlik I. Salmonella Enteritidis with double deletion in phoPfliC-A potential live Salmonella vaccine candidate with novel characteristics for use in chickens. Vaccine. 2011;29(17):3248-53; doi: 10.1016/j.vaccine.2011.02.030. 165. Bullas LR, Ryu JI. Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol. 1983;156(1):471-4; doi: 10.1128/jb.156.1.471-474.1983. 166. Wu KH, Wang KC, Lee LW, Huang YN, Yeh KS. A constitutively mannose-sensitive agglutinating Salmonella enterica subsp. enterica serovar typhimurium strain, carrying a transposon in the fimbrial usher gene stbC, exhibits multidrug resistance and flagellated phenotypes. TheScientificWorldJOURNAL. 2012;2012:1-10; doi: 10.1100/2012/280264. 167. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97(12):6640-5; doi: 10.1073/pnas.120163297. 168. Gonzalez-Escobedo G, Gunn JS. Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces. Infect Immun. 2013;81(10):3770-80; doi: 10.1128/IAI.00647-13. 169. Bekir K, Abdallah FB, Ellafi A, Bakhrouf A. Adherence assays and slime production of Staphylococcus aureus strains after their incubation in seawater microcosms. Ann Microbiol. 2011;61(4):819-23; doi: 10.1007/s13213-011-0200-2. 170. Kuzminska-Bajor M, Grzymajlo K, Ugorski M. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion. Front Microbiol. 2015;6:276; doi: 10.3389/fmicb.2015.00276. 171. Firon N, Ofek I, Sharon N. Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydr Res. 1983;120(Aug):235-49; doi: 10.1016/0008-6215(83)88019-7. 172. Firon N, Ofek I, Sharon N. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect Immun. 1984;43(3):1088-90; doi: 10.1128/iai.43.3.1088-1090.1984. 173. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40; doi: 10.1093/bioinformatics/btp616. 174. Hahn MM, Gonzalez JF, Gunn JS. Salmonella biofilms tolerate hydrogen peroxide by a combination of extracellular polymeric substance barrier function and catalase enzymes. Front Cell Infect Microbiol. 2021;11:683081; doi: 10.3389/fcimb.2021.683081. 175. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol. 1999;32(2):275-87; doi: 10.1046/j.1365-2958.1999.01345.x. 176. Harvey PC, Watson M, Hulme S, Jones MA, Lovell M, Berchieri A, Jr., et al. Salmonella enterica serovar Typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun. 2011;79(10):4105-21; doi: 10.1128/IAI.01390-10. 177. Detweiler CS, Monack DM, Brodsky IE, Mathew H, Falkow S. virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 2003;48(2):385-400; doi: 10.1046/j.1365-2958.2003.03455.x. 178. Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;59(1):126-41; doi: 10.1111/j.1365-2958.2005.04940.x. 179. Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 2001;183(6):1835-42; doi: 10.1128/Jb.183.6.1835-1842.2001. 180. Seiple IB, Zhang ZY, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, et al. A platform for the discovery of new macrolide antibiotics. Nature. 2016;533(7603):338-45; doi: 10.1038/nature17967. 181. Sun Y, Liu YH, Zhang BW, Shi SR, Zhang T, Zhao D, et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact Mater. 2021;6(8):2281-90; doi: 10.1016/j.bioactmat.2020.12.027. 182. Appia-Ayme C, Hall A, Patrick E, Rajadurai S, Clarke TA, Rowley G. ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR. Biochem J. 2012;442(1):85-93; doi: 10.1042/BJ20111639. 183. Behlau I, Miller SI. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol. 1993;175(14):4475-84; doi: 10.1128/Jb.175.14.4475-4484.1993. 184. Chen Y: Characterization of the genes that FimY of Samonella Typhimurium may regulate. In., vol. Master thesis. Taipei, Taiwan: National Taiwan University; 2021. 185. Wei BDL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol. 2001;40(1):245-56; doi: 10.1046/j.1365-2958.2001.02380.x. 186. Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C. Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol. 2003;48(6):1633-45; doi: 10.1046/j.1365-2958.2003.03535.x. 187. Altier C, Suyemoto M, Lawhon SD. Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA. Infect Immun. 2000;68(12):6790-7; doi: 10.1128/Iai.68.12.6790-6797.2000. 188. Sterzenbach T, Nguyen KT, Nuccio SP, Winter MG, Vakulskas CA, Clegg S, et al. A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. Embo J. 2013;32(21):2872-83; doi: 10.1038/emboj.2013.206. 189. Oguri T, Kwon Y, Woo JKK, Prehna G, Lee H, Ning M, et al. A family of small intrinsically disordered proteins involved in flagellum-dependent motility in Salmonella enterica. J Bacteriol. 2019;201(2):e00415-18; doi: 10.1128/JB.00415-18. 190. Jesudhasan PR, Cepeda ML, Widmer K, Dowd SE, Soni KA, Hume ME, et al. Transcriptome analysis of genes controlled by luxS/autoinducer-2 in Salmonella enterica serovar Typhimurium. Foodborne Pathog Dis. 2010;7(4):399-410; doi: 10.1089/fpd.2009.0372. 191. Taga ME, Miller ST, Bassler BL. Lsr-mediated transport and processing of Al-2 in Salmonella typhimurium. Mol Microbiol. 2003;50(4):1411-27; doi: 10.1046/j.1365-2958.2003.03781.x. 192. Li S, Sun H, Li J, Zhao Y, Wang R, Xu L, et al. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. Nat Commun. 2022;13(1):6684; doi: 10.1038/s41467-022-34607-9. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88613 | - |
dc.description.abstract | 沙門氏菌是一種食因性與人畜共通傳染疾病病原,屬於腸桿菌科的格蘭氏陰性兼性厭氧桿菌,極易透過環境或畜產品進入食物鏈造成全球性的感染。在感染宿主期間,沙門氏菌會利用其獨特的毒力因子貼附腸上皮細胞或巨噬細胞,除了可以在細胞內繁殖外,也經由巨噬細胞的遷徙導致菌血症、腦膜炎與脊髓炎並造成死亡,沙門氏菌的感染乃是一個重要的公共衛生議題。因此,畜牧產業在預防沙門氏菌上,除了注意環境衛生清理外,疫苗施打也是一個預防疾病的選項。協助沙門氏菌感染宿主的毒力因子中,線毛是類似於毛髮結構的蛋白質,表現於沙門氏菌外膜上,主要功能是為了黏附在細胞上以利後續的入侵作用。在鼠傷寒沙門氏菌中已被發現有13種線毛,其中第一型線毛是最常見的線毛,第一型線毛的產生主要由fimY和fimZ兩正向調控基因進行調控表現。FimY是一種LuxR蛋白質,會和fimZ啟動子上的lux box序列結合。FimZ是一個response regulator,會結合在fimA啟動子上。由於沙門氏菌在入侵細胞的第一步是透過線毛黏附,若同時剔除fimY和fimZ,有可能會讓沙門氏菌的毒力降低,可以評估其作為減毒疫苗候選菌株的可行性。本研究利用allelic exchange的方法建構一株S. Typhimurium LB5010 ΔfimY與ΔfimZ雙基因剔除菌株,並與LB5010 wild type比較其生理功能,測試其對氧化壓力的耐受度、兩者生長曲線差異、細胞膜的安定性、生物膜的形成、黏附與入侵細胞以及細胞內生存之能力。結果顯示,LB5010-ΔfimY-ΔfimZ面對活性氮物質、細胞膜的安定、生物膜形成、入侵及吸附細胞能力都較LB5010 wild type來得差。但在面對活性氧物質及細胞內生存能力,則與LB5010 wild type相似。另外,過去實驗室曾建構fimY和fimZ單獨剔除菌株,藉由轉錄組定序分析,比較LB5010-ΔfimY、LB5010-ΔfimZ與LB5010-ΔfimY-ΔfimZ彼此之間的差異表現基因,推測fimY及fimZ除了調控第一型線毛的表現外,也可能參與調控其他線毛基因,如pef及sti,以及影響其他生理功能基因的表現,但目前研究的結果顯示,沙門氏菌LB5010-ΔfimY-ΔfimZ菌株還須進行其他的試驗,包含動物實驗,才有辦法評估其作為減毒疫苗菌株的可行性。 | zh_TW |
dc.description.abstract | Salmonella is a food-borne and zoonotic pathogen. It is a gram-negative, facultatively anaerobic bacillus that belongs to the family of Enterobacteriaceae. Salmonella can easily enter the food chain via the environment and animal products and cause infections worldwide. During infection, Salmonella attaches to and replicates within intestinal epithelial cells or macrophages using its unique virulence factors. Besides replicating within cells, it can also cause bacteremia, meningitis, and myelitis through macrophage migration, leading to death. Salmonella infection is a significant public health problem. Therefore, in addition to maintaining environmental hygiene, vaccines are also available to prevent Salmonella infection in livestock and poultry. Among the virulence factors that assist Salmonella in infecting hosts, the fimbriae are hair-like protein structures present on the outer membrane of Salmonella. Their primary function is to adhere to cells and facilitate subsequent invasion. Thirteen types of fimbriae have been identified in Salmonella enterica serovar Typhimurium, with type 1 fimbriae being the most common. Type 1 fimbrial production is mainly regulated by two positive regulatory genes, fimY and fimZ. FimY is a LuxR type protein that binds to the lux box sequences in the fimZ promoter region. FimZ is a response regulator that binds to the fimA promoter. Since the initial step of Salmonella invasion involves fimbrial adhesion, simultaneous deletion of fimY and fimZ could potentially reduce the virulence of Salmonella, making it a candidate strain for attenuated vaccines. In this study, we used allelic exchange to construct a strain, S. Typhimurium LB5010-ΔfimY-ΔfimZ, and compared its physiological functions to the LB5010 wild type strain. We tested their tolerance to oxidative stress, growth curve differences, cell membrane stability, biofilm formation, adherence and invasion of cells, and intracellular viability. The results showed that LB5010-ΔfimY-ΔfimZ exhibited inferior performance in terms of reactive nitrogen species resistance, cell membrane stability, biofilm formation, invasion and adhesion to cells compared to LB5010 wild type. However, it showed similarities to LB5010 wild type in terms of resistance to reactive oxygen species and intracellular viability. Additionally, previous studies in our laboratory have constructed strains with individual deletions of fimY and fimZ. By comparing transcriptome sequencing results, we observed differential gene expression between LB5010-ΔfimY, LB5010-ΔfimZ and LB5010-ΔfimY-ΔfimZ, suggesting that fimY and fimZ may not only regulate the expression of type 1 fimbriae but also participate in the regulation of other fimbrial genes, such as pef and sti, as well as affect the expression of other genes involved in physiological functions. Although fimY and fimZ may act as multifactorial regulatory proteins, current research suggests that S. Typhimurium LB5010-ΔfimY-ΔfimZ requires further testing, including animal experiments, to evaluate its feasibility as an attenuated vaccine strain. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:03:53Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:03:53Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 ii
中文摘要 iii Abstract v 表目錄 xii 圖目錄 xiii 第一章 文獻回顧 1 第一節 沙門氏菌 1 1-1 沙門氏菌 1 1-2 沙門氏菌感染宿主方式 2 1-2-1 鞭毛 3 1-2-2 線毛 4 1-2-3 沙門氏菌致病島 7 第二節 宿主與沙門氏菌交互作用 8 第三節 沙門氏菌減毒疫苗及其候選菌株 12 第四節 研究目的 14 第二章 材料方法 15 第一節 菌株及基因重組方法 15 第二節 聚合酶連鎖反應 15 第三節 分子選殖方法 16 第四節 酵母菌凝集試驗 17 第五節 氧化壓力試驗 17 第六節 細菌生長曲線測定 18 第七節 以藥物敏感性試驗評估細菌細胞膜的安定性 18 第八節 膽鹽耐受性試驗 19 第九節 生物膜形成檢測 19 第十節 萃取純化RNA 20 第十一節 生物資訊分析 21 第十二節 細胞解凍與繼代 21 第十三節 細菌細胞黏附與入侵實驗 22 第十四節 細菌細胞內生存實驗 23 第十五節 統計分析方法 23 第三章 結果 24 第一節 建構LB5010-ΔfimY-ΔfimZ突變株 24 第二節 利用酵母菌凝集試驗比較LB5010 wild type與LB5010-ΔfimY-ΔfimZ第一型線毛表現狀態 24 第三節 利用RNI與ROI比較LB5010 wild type與LB5010-ΔfimY-ΔfimZ對於氧化壓力耐受性的程度 25 第四節 比較LB5010 wild type與LB5010-ΔfimY-ΔfimZ兩者在相同培養條件下的生長曲線 26 第五節 以藥物敏感性試驗評估細菌細胞膜的安定性 26 第六節 比較LB5010 wild type與LB5010-ΔfimY-ΔfimZ兩者對膽鹽之耐受性 26 第七節 比較LB5010 wild type與LB5010-ΔfimY-ΔfimZ生物膜的表現 27 第八節 LB5010-ΔfimY-ΔfimZ之轉錄組定序結果與分析 27 第九節 比較LB5010 wild type與LB5010-ΔfimY-ΔfimZ黏附與入侵細胞能力差異 28 第十節 比較LB5010 wild typ與LB5010-ΔfimY-ΔfimZ在細胞內生存能力差異 29 第四章 討論 30 參考文獻 37 附錄 74 | - |
dc.language.iso | zh_TW | - |
dc.title | 建構一株鼠傷寒沙門氏菌fimY與fimZ雙基因剔除菌株並評估其生理功能 | zh_TW |
dc.title | Construction of a Salmonella Typhimurium fimY and fimZ double-deleted strain and evaluation of its physiological functions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 宣詩玲;吳幸潔 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Ling Hsuan;Hsing-Chieh Wu | en |
dc.subject.keyword | 鼠傷寒沙門氏菌,第一型線毛,fimY,fimZ,生理功能, | zh_TW |
dc.subject.keyword | Salmonella Typhimurium,type 1 fimbriae,fimY,fimZ,physiological functions, | en |
dc.relation.page | 79 | - |
dc.identifier.doi | 10.6342/NTU202301851 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-04 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 獸醫學系 | - |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 12.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。