請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單偉彌 | zh_TW |
| dc.contributor.advisor | Vianney Denis | en |
| dc.contributor.author | 劉家宏 | zh_TW |
| dc.contributor.author | Chia-Hung Liu | en |
| dc.date.accessioned | 2023-08-15T17:00:34Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | Allen, G. R. (2008). Conservation hotspots of biodiversity and endemism for Indo‐Pacific coral reef fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(5), 541-556. https://doi.org/10.1002/aqc.880
Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M., & Watkinson, A. R. (2009). Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences, 276(1669), 3019-3025. https://doi.org/10.1098/rspb.2009.0339 Beijbom, O., Edmunds, P. J., Roelfsema, C., Smith, J., Kline, D. I., Neal, B. P., Dunlap, M. J., Moriarty, V., Fan, T.-Y., Tan, C.-J., Chan, S., Treibitz, T., Gamst, A., Mitchell, B. G., & Kriegman, D. (2015). Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation. PLOS ONE, 10(7), e0130312. https://doi.org/10.1371/journal.pone.0130312 Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. Functional Ecology, 33(6), 948-961. https://doi.org/10.1111/1365-2435.13265 Brandl, S. J., Goatley, C. H. R., Bellwood, D. R., & Tornabene, L. (2018). The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews, 93(4), 1846-1873. https://doi.org/10.1111/brv.12423 Brandl, S. J., Rasher, D. B., Côté, I. M., Casey, J. M., Darling, E. S., Lefcheck, J. S., & Duffy, J. E. (2019). Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Frontiers in Ecology and the Environment, 17(8), 445-454. https://doi.org/10.1002/fee.2088 Brandl, S. J., Tornabene, L., Goatley, C. H., Casey, J. M., Morais, R. A., Côté, I. M., Baldwin, C. C., Parravicini, V., Schiettekatte, N. M., & Bellwood, D. R. (2019). Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science, 364(6446), 1189-1192. https://doi.org/10.1126/science.aav3384 Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Machler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal, 9(2), 378-400. https://doi.org/10.32614/RJ-2017-066 Brown, C., Fulton, E., Hobday, A., Matear, R., Possingham, H., Bulman, C., Christensen, V., Forrest, R., Gehrke, P., & Gribble, N. (2010). Effects of climate‐driven primary production change on marine food webs: implications for fisheries and conservation. Global Change Biology, 16(4), 1194-1212. https://doi.org/10.1111/j.1365-2486.2009.02046.x Ceccarelli, D. M., McLeod, I. M., Boström-Einarsson, L., Bryan, S. E., Chartrand, K. M., Emslie, M. J., Gibbs, M. T., Gonzalez Rivero, M., Hein, M. Y., Heyward, A., Kenyon, T. M., Lewis, B. M., Mattocks, N., Newlands, M., Schläppy, M.-L., Suggett, D. J., & Bay, L. K. (2020). Substrate stabilisation and small structures in coral restoration: State of knowledge, and considerations for management and implementation. PLOS ONE, 15(10), e0240846. https://doi.org/10.1371/journal.pone.0240846 Center for International Earth Science Information Network - CIESIN - Columbia University. (2018). Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4PN93PB Chen, C. A., & Shashank, K. (2009). Taiwan as a connective stepping-stone in the Kuroshio traiangle and the conservation of coral ecosystems under the impacts of climate change. Chen, C. C., Shiah, F. k., Lee, H. J., Li, K. Y., Meng, P. J., Kao, S. J., Tseng, Y. F., & Chung, C. L. (2005). Phytoplankton and bacterioplankton biomass, production and turnover in a semi-enclosed embayment with spring tide induced upwelling. Marine Ecology Progress Series, 304, 91-100. https://doi.org/10.3354/meps304091 Chen, H., Liao, Y.-C., Chen, C.-Y., Tsai, J.-I., Chen, L.-S., & Shao, K.-T. (2015). Long-term monitoring dataset of fish assemblages impinged at nuclear power plants in northern Taiwan. Scientific Data, 2(1), 150071. https://doi.org/10.1038/sdata.2015.71 Chen, Q., Beijbom, O., Chan, S., Bouwmeester, J., & Kriegman, D. (2021). A new deep learning engine for coralnet. Proceedings of the IEEE/CVF International Conference on Computer Vision, Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R., & Graham, N. A. J. (2012). The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages. PLOS ONE, 7(8), e42167. https://doi.org/10.1371/journal.pone.0042167 Dai, C.-F. (2011). Eco-tourism Map of Coral Reefs in Taiwan (1 ed., Vol. 1). Global Views. [In Chinese]. Dang, V. D., Cheung, P.-Y., Fong, C.-L., Mulla, A. J., Shiu, J.-H., Lin, C.-H., & Nozawa, Y. (2020). Sea urchins play an increasingly important role for coral resilience across reefs in Taiwan. Frontiers in Marine Science, 7, 581945. https://doi.org/10.3389/fmars.2020.581945 Darling, E. S., Graham, N. A., Januchowski-Hartley, F. A., Nash, K. L., Pratchett, M. S., & Wilson, S. K. (2017). Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs, 36, 561-575. https://doi.org/10.1007/s00338-017-1539-z Denis, V., Chen, J. W., Chen, Q., Hsieh, Y. E., Lin, Y. V., Wang, C. W., Wang, H. Y., & Sturaro, N. (2019). Biogeography of functional trait diversity in the Taiwanese reef fish fauna. Ecology and evolution, 9(1), 522-532. https://doi.org/10.1002/ece3.4771 Done, T. J. (1992). Phase shifts in coral reef communities and their ecological significance. Hydrobiologia, 247(1-3), 121-132. https://doi.org/10.1007/bf00008211 Edwards, C. B., Friedlander, A. M., Green, A. G., Hardt, M. J., Sala, E., Sweatman, H. P., Williams, I. D., Zgliczynski, B., Sandin, S. A., & Smith, J. E. (2014). Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proceedings of the Royal Society B: Biological Sciences, 281(1774), 20131835. https://doi.org/10.1098/rspb.2013.1835 Fernández, C. G., Paulo, D., Serrão, E., & Engelen, A. (2016). Limited differences in fish and benthic communities and possible cascading effects inside and outside a protected marine area in Sagres (SW Portugal). Marine Environmental Research, 114, 12-23. https://doi.org/10.1016/j.marenvres.2015.12.003 Froese, R., & Pauly, D. (2023). FishBase. www.fishbase.org Gislason, H., Daan, N., Rice, J. C., & Pope, J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11(2), 149-158. https://doi.org/10.1111/j.1467-2979.2009.00350.x Goetze, J. S., Bond, T., McLean, D. L., Saunders, B. J., Langlois, T. J., Lindfield, S., Fullwood, L. A., Driessen, D., Shedrawi, G., & Harvey, E. S. (2019). A field and video analysis guide for diver operated stereo‐video. Methods in Ecology and Evolution, 10(7), 1083-1090. https://doi.org/10.1111/2041-210X.13189 Graham, N. A., & Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32, 315-326. https://doi.org/10.1007/s00338-012-0984-y Gratwicke, B., & Speight, M. (2005). Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology Progress Series, 292, 301-310. https://doi.org/10.3354/meps292301 Halford, A., Cheal, A. J., Ryan, D., & Williams, D. M. (2004). Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology, 85(7), 1892-1905. https://doi.org/10.1890/03-4017 Hamilton, M., Robinson, J. P. W., Benkwitt, C. E., Wilson, S. K., Macneil, M. A., Ebrahim, A., & Graham, N. A. J. (2022). Climate impacts alter fisheries productivity and turnover on coral reefs. Coral Reefs, 41(4), 921-935. https://doi.org/10.1007/s00338-022-02265-4 Hartig, F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. In https://CRAN.R-project.org/package=DHARMa Harvey, E., Fletcher, D., & Shortis, M. (2001). A comparison of the precision and accuracy of estimates of reef-fish lengths determined visually by divers with estimates produced by a stereo-video system. Fishery Bulletin, 99(1), 63-71. Heenan, A., Hoey, A. S., Williams, G. J., & Williams, I. D. (2016). Natural bounds on herbivorous coral reef fishes. Proceedings of the Royal Society B: Biological Sciences, 283(1843), 20161716. https://doi.org/10.1098/rspb.2016.1716 Helder, N. K., Burns, J. H., & Green, S. J. (2022). Intra-habitat structural complexity drives the distribution of fish trait groups on coral reefs. Ecological Indicators, 142, 109266. https://doi.org/10.1016/j.ecolind.2022.109266 Hereu, B. (2006). Depletion of palatable algae by sea urchins and fishes in a Mediterranean subtidal community. Marine Ecology Progress Series, 313, 95-103. https://doi.org/10.3354/meps313095 Hixon, M. A., & Beets, J. P. (1993). Predation, Prey Refuges, and the Structure of Coral-Reef Fish Assemblages. Ecological Monographs, 63(1), 77-101. https://doi.org/10.2307/2937124 Hoeksema, B. W. (2007). Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle. In (pp. 117-178). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6374-9_5 Hsiao, W. V., Lin, Y. V., Lin, H.-T., & Denis, V. (2021). Learning from differences: Abiotic determinism of benthic communities in Northern Taiwan. Marine Environmental Research, 170, 105361. https://doi.org/10.1016/j.marenvres.2021.105361 Huang, Y., Laws, E., Chen, B., & Huang, B. (2019). Stimulation of Heterotrophic and Autotrophic Metabolism in the Mixing Zone of the Kuroshio Current and Northern South China Sea: Implications for Export Production. Journal of Geophysical Research: Biogeosciences, 124(9), 2645-2661. https://doi.org/10.1029/2018jg004833 Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., Moltschaniwskyj, N., Pratchett, M. S., Steneck, R. S., & Willis, B. (2007). Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Current Biology, 17(4), 360-365. https://doi.org/10.1016/j.cub.2006.12.049 Humphries, A. T., McClanahan, T. R., & McQuaid, C. D. (2020). Algal turf consumption by sea urchins and fishes is mediated by fisheries management on coral reefs in Kenya. Coral Reefs, 39(4), 1137-1146. https://doi.org/10.1007/s00338-020-01943-5 Kerry, J. T., & Bellwood, D. R. (2012). The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs, 31(2), 415-424. https://doi.org/10.1007/s00338-011-0859-7 Kingsford, M. J., O'Callaghan, M. D., Liggins, L., & Gerlach, G. (2017). The short-lived neon damsel Pomacentrus coelestis : implications for population dynamics. Journal of Fish Biology, 90(5), 2041-2059. https://doi.org/10.1111/jfb.13288 Lapointe, B. E. (1997). Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnology and Oceanography, 42(5part2), 1119-1131. https://doi.org/10.4319/lo.1997.42.5_part_2.1119 Liang, C., Pauly, D., Christensen, V., Xian, W., & Walters, C. (2023). Recruitment-driven fish production in two regions where fish biomass has drastically declined. ICES Journal of Marine Science, 80(4), 1043-1051. https://doi.org/10.1093/icesjms/fsad029 Liao, Y. C., Chen, L. S., Shao, K. T., & Tu, Y. Y. (2004). Temporal changes in fish assemblage from the impingement data at the second nuclear power plant, northern Taiwan. Journal of Marine Science and Technology, 12(5), 7. https://doi.org/10.51400/2709-6998.2262 Lin, Y. V., & Denis, V. (2019). Acknowledging differences: number, characteristics, and distribution of marine benthic communities along Taiwan coast. Ecosphere, 10(7), e02803. https://doi.org/10.1002/ecs2.2803 Lin, Y. V., Hsiao, W. V., Chen, W. J., & Denis, V. (2022). Habitat change and its consequences on reef fish specialization in biogeographic transition zones. Journal of Biogeography, 49(8), 1549-1561. https://doi.org/10.1111/jbi.14450 Liu, G., Heron, S. F., Eakin, C. M., Muller-Karger, F. E., Vega-Rodriguez, M., Guild, L. S., De La Cour, J. L., Geiger, E. F., Skirving, W. J., & Burgess, T. F. (2014). Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sensing, 6(11), 11579-11606. https://doi.org/10.3390/rs61111579 Liu, P. J., Meng, P. J., Liu, L. L., Wang, J. T., & Leu, M. Y. (2012). Impacts of human activities on coral reef ecosystems of southern Taiwan: a long-term study. Marine pollution bulletin, 64(6), 1129-1135. https://doi.org/10.1016/j.marpolbul.2012.03.031 Liu, P. J., Shao, K. T., Jan, R. Q., Fan, T. Y., Wong, S. L., Hwang, J. S., Chen, J. P., Chen, C. C., & Lin, H. J. (2009). A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environmental Research, 68(3), 106-117. https://doi.org/10.1016/j.marenvres.2009.04.009 Macneil, M. A., Graham, N. A. J., Cinner, J. E., Wilson, S. K., Williams, I. D., Maina, J., Newman, S., Friedlander, A. M., Jupiter, S., Polunin, N. V. C., & McClanahan, T. R. (2015). Recovery potential of the world's coral reef fishes. Nature, 520(7547), 341-344. https://doi.org/10.1038/nature14358 Meng, P. J., Lee, H. J., Wang, J. T., Chen, C. C., Lin, H. J., Tew, K. S., & Hsieh, W. J. (2008). A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environmental Pollution, 156(1), 67-75. https://doi.org/10.1016/j.envpol.2007.12.039 Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological economics, 29(2), 215-233. https://doi.org/10.1016/S0921-8009(99)00009-9 Morais, R. A., & Bellwood, D. R. (2018). Global drivers of reef fish growth. Fish and Fisheries, 19(5), 874-889. https://doi.org/10.1111/faf.12297 Morais, R. A., & Bellwood, D. R. (2019). Pelagic subsidies underpin fish productivity on a degraded coral reef. Current Biology, 29(9), 1521-1527. e1526. https://doi.org/10.1016/j.cub.2019.03.044 Morais, R. A., & Bellwood, D. R. (2020). Principles for estimating fish productivity on coral reefs. Coral Reefs, 39(5), 1221-1231. https://doi.org/10.1007/s00338-020-01969-9 Morais, R. A., Connolly, S. R., & Bellwood, D. R. (2020). Human exploitation shapes productivity–biomass relationships on coral reefs. Global Change Biology, 26(3), 1295-1305. https://doi.org/10.1111/gcb.14941 Morais, R. A., Depczynski, M., Fulton, C., Marnane, M., Narvaez, P., Huertas, V., Brandl, S. J., & Bellwood, D. R. (2020). Severe coral loss shifts energetic dynamics on a coral reef. Functional Ecology, 34(7), 1507-1518. https://doi.org/10.1111/1365-2435.13568 Morais, R. A., Smallhorn-West, P., Connolly, S. R., Ngaluafe, P. F., Malimali, S. a., Halafihi, T. i., & Bellwood, D. R. (2023). Sustained productivity and the persistence of coral reef fisheries. Nature Sustainability, 1-11. https://doi.org/10.1038/s41893-023-01137-1 Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., Chabanet, P., Floeter, S. R., Friedlander, A., & Vigliola, L. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences, 111(38), 13757-13762. https://doi.org/10.1073/pnas.131762511 Munday, P. L., Jones, G. P., Pratchett, M. S., & Williams, A. J. (2008). Climate change and the future for coral reef fishes. Fish and Fisheries, 9(3), 261-285. https://doi.org/10.1111/j.1467-2979.2008.00281.x Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x Ogden, J. C., & Lobel, P. S. (1978). The role of herbivorous fishes and urchins in coral reef communities. Environmental Biology of Fishes, 3(1), 49-63. https://doi.org/10.1007/bf00006308 Price, N. (2010). Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia, 163(3), 747-758. https://doi.org/10.1007/s00442-010-1578-4 R Core Team. (2022). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. https://www.R-project.org/ Ribas-Deulofeu, L., Denis, V., Château, P.-A., & Chen, C. A. (2021). Impacts of heat stress and storm events on the benthic communities of Kenting National Park (Taiwan). PeerJ, 9, e11744. https://doi.org/10.7717/peerj.11744 Ribas-Deulofeu, L., Denis, V., De Palmas, S., Kuo, C.-Y., Hsieh, H. J., & Chen, C. A. (2016). Structure of Benthic Communities along the Taiwan Latitudinal Gradient. PLOS ONE, 11(8), e0160601. https://doi.org/10.1371/journal.pone.0160601 Sassa, C., Konishi, Y., & Mori, K. (2006). Distribution of jack mackerel (Trachurus japonicus) larvae and juveniles in the East China Sea, with special reference to the larval transport by the Kuroshio Current. Fisheries Oceanography, 15(6), 508-518. https://doi.org/10.1111/j.1365-2419.2006.00417.x Seguin, R., Mouillot, D., Cinner, J. E., Stuart Smith, R. D., Maire, E., Graham, N. A., McLean, M., Vigliola, L., & Loiseau, N. (2022). Towards process-oriented management of tropical reefs in the anthropocene. Nature Sustainability, 1-10. https://doi.org/10.1038/s41893-022-00981-x Siqueira, A. C., Muruga, P., & Bellwood, D. R. (2023). On the evolution of fish–coral interactions. Ecology Letters. https://doi.org/10.1111/ele.14245 Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., & Lourie, S. A. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57(7), 573-583. https://doi.org/10.1641/B570707 Stamoulis, K. A., Delevaux, J. M., Williams, I. D., Friedlander, A. M., Reichard, J., Kamikawa, K., & Harvey, E. S. (2020). Incorporating reef fish avoidance behavior improves accuracy of species distribution models. PeerJ, 8, e9246. https://doi.org/10.7717/peerj.9246 Tanner, J. E. (1995). Competition between scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction. Journal of Experimental Marine Biology and Ecology, 190(2), 151-168. https://doi.org/10.1016/0022-0981(95)00027-O Urbina-Barreto, I., Chiroleu, F., Pinel, R., Fréchon, L., Mahamadaly, V., Elise, S., Kulbicki, M., Quod, J.-P., Dutrieux, E., & Garnier, R. (2021). Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: from colonies to reefscapes. Ecological Indicators, 121, 107151. https://doi.org/10.1016/j.ecolind.2020.107151 Voeten, C. C. (2023). buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression. In https://CRAN.R-project.org/package=buildmer Williams, I. D., Baum, J. K., Heenan, A., Hanson, K. M., Nadon, M. O., & Brainard, R. E. (2015). Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages. PLOS ONE, 10(4), e0120516. https://doi.org/10.1371/journal.pone.0120516 Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R. A., Cakacaka, A., & Polunin, N. V. C. (2010). Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 20(2), 442-451. https://doi.org/10.1890/08-2205.1 Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., & Polunin, N. V. C. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biology, 12(11), 2220-2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x Yadav, S., Rathod, P., Alcoverro, T., & Arthur, R. (2016). “Choice” and destiny: the substrate composition and mechanical stability of settlement structures can mediate coral recruit fate in post-bleached reefs. Coral Reefs, 35(1), 211-222. https://doi.org/10.1007/s00338-015-1358-z Yan, H. F., & Bellwood, D. R. (2023). Multi‐decadal stability of fish productivity despite increasing coral reef degradation. Functional Ecology, 37(5), 1245-1255. https://doi.org/10.1111/1365-2435.14319 Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47-56. https://doi.org/10.1002/esp.3290120107 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88600 | - |
| dc.description.abstract | 生態功能意指系統內的能量流動(生物量變化),反映生態系統的健康度。而珊瑚礁魚類在珊瑚礁生態系的生態過程 (ecological process) 中扮演重要角色,且受海洋環境中的生物與非生物因子所影響,為評估珊瑚礁健康度的重要指標。臺灣差異性極大的沿岸環境造就多樣的底棲生物群集,連帶塑造不同的魚類組成,使得台灣成為探究珊瑚礁魚種組成改變及其能量流動變異的理想地點。本研究選定五個區域(墾丁、綠島、蘭嶼、東部和北部區域)橫跨熱帶與亞熱帶。魚類與底棲生物群集分別使用水下立體影像系統及樣框沿著穿越線進行調查。魚類能量流動 (energy flow) 使用三個指標:生物量 (standing biomass) 、生產力 (productivity) 和轉換率 (turnover) 作為代表。底棲生物利用珊瑚網 (CoralNet) 將其分類為不同的形態功能群 (morpho-functional group) 。結構複雜度、底質類型、初級生產量和海面溫度的數據來自底棲調查以及衛星資料。利用廣義線性混合模型分析魚類能量流動的內在(生物性,形態功能群)及外在(非生物性,環境及人為因素)的影響因子。本研究發現魚類的能量流動模式呈現區域性的差異,亞熱帶區域的能量流動具有較高的異質性,而食浮游生物的雀鯛為主要的貢獻者;熱帶及過渡區域的能量流動主要貢獻者為鸚哥魚及刺尾鯛,此外在墾丁和東部的低能量流動指出該區域的珊瑚礁健康度已經下降且所實施保育成效可能有限。珊瑚礁生態系中的五個內在(殼狀珊瑚藻、表覆形石珊瑚、柱形石珊瑚、指形八放珊瑚和大型皮質藻類)及四個外在因子(穩固底質、海水表面溫度、基礎生產力和大尺度側面曲度)被發現會影響魚類能量流動,在維持生態功能中扮演重要的角色。本研究提供台灣五個區域中珊瑚礁魚類能量流動的基線資訊,並奠定未來探討珊瑚礁生態功能變化等相關研究重要的基礎。 | zh_TW |
| dc.description.abstract | Energy flows (change of biomass) reflect the status of ecosystem functioning, which are associated with reef health. Reef fishes are involved in important ecological processes that promote ecosystem functioning and respond rapidly to biotic and abiotic changes, making them ideal indicators for assessing coral reef health. Taiwan, with its diverse benthic communities that thrive in contrasting environments, is an ideal location for studying variations in energy flows associated with changes in fish composition. Fish and benthic communities were surveyed by stereo-video and photo-quadrat transects in five regions spanning tropical and subtropical latitudes (Kenting, Orchid Island, Green Island, East and North Taiwan). Fish assemblages were characterized using three energy flow metrics (standing biomass, productivity, and turnover), which were further compared between regions, fish family, and dietary groups. Benthic communities were assessed for their composition in morpho-functional groups using automatic identification from CoralNET trained on a local dataset. Structural complexity, substrate type, primary production, and sea surface temperature were obtained from benthic surveys at study sites and satellite database. Generalized Linear Mixed Models were used to identify intrinsic (biotic, i.e., morpho-functional groups) and extrinsic (abiotic, i.e., environmental and anthropogenic factors) drivers of fish energy flows. Our results show regional specificities in the patterns of fish energy flows. The subtropical region, where planktivorous damselfish have a major influence, has greater heterogeneity in energy flows. Parrotfishes and surgeonfishes are important contributors to energy flows in the tropical and transitional regions. The unusual weak energy flows observed in Kenting and East Taiwan reveal a deterioration of coral reef health and raise concerns about the effectiveness of marine conservation in these regions. Five intrinsic (crustose coralline algae, corticated macrophyte algae, columnar hard coral, encrusting hard coral, and digitate octocoral) and four extrinsic drivers (stable substrate, rough scale profile curvature, sea surface temperature, and primary production) were associated with fish energy flows, which may provide leverages for maintaining ecosystem functioning. Overall, our study provides baseline information of fish energy flows among coral reefs in Taiwan, which is important to evaluate changes experienced by coral reefs through the Anthropocene. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:00:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:00:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Introduction 1 Materials and Methods 6 Results 16 Discussion 20 Conclusions 30 References 32 Figures 43 Tables 51 Supplementary Information 54 | - |
| dc.language.iso | en | - |
| dc.subject | 生態過程 | zh_TW |
| dc.subject | 生態功能 | zh_TW |
| dc.subject | 外在影響因子 | zh_TW |
| dc.subject | 內在影響因子 | zh_TW |
| dc.subject | 生態保育 | zh_TW |
| dc.subject | 結構複雜度 | zh_TW |
| dc.subject | 魚類區系 | zh_TW |
| dc.subject | ecological conservation | en |
| dc.subject | Ichthyofauna | en |
| dc.subject | structural complexity | en |
| dc.subject | ecological processes | en |
| dc.subject | ecosystem functioning | en |
| dc.subject | extrinsic drivers | en |
| dc.subject | intrinsic drivers | en |
| dc.title | 熱帶與亞熱帶珊瑚礁魚類能量流動模式差異 | zh_TW |
| dc.title | Contrasting energy flow associates with tropical and subtropical reef fish assemblages | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張以杰;劉少倫 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Jay Chang;Shao-Lun Liu | en |
| dc.subject.keyword | 魚類區系,結構複雜度,生態過程,生態功能,外在影響因子,內在影響因子,生態保育, | zh_TW |
| dc.subject.keyword | Ichthyofauna,structural complexity,ecological processes,ecosystem functioning,extrinsic drivers,intrinsic drivers,ecological conservation, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202302752 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2026-07-31 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2026-07-31 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
