Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑zh_TW
dc.contributor.advisorMan-kit Leungen
dc.contributor.author思依達zh_TW
dc.contributor.authorSyeda Zehraen
dc.date.accessioned2023-08-15T16:58:32Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citationReferences (Chapter 1)
(1) Mohajan, H. The first industrial revolution: Creation of a new global human era. 2019.
(2) Mohajan, H. The Second Industrial Revolution has Brought Modern Social and Economic Developments. 2020.
(3) Bryndin, E. Ecological Management and Waste Recycling as an Environmental Quality Factor. Journal of Civil Engineering Research & Technology. SRC/JCERT-130. DOI: doi. org/10.47363/JCERT/2022 (4) 2022, 129, 2-4.
(4) Mosley, S. The environment in world history; Routledge, 2010.
(5) Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 2020, 8, 14. DOI: 10.3389/fpubh.2020.00014 From NLM.
(6) Seadon, J. K. Integrated waste management – Looking beyond the solid waste horizon. Waste Management 2006, 26 (12), 1327-1336. DOI: https://doi.org/10.1016/j.wasman.2006.04.009.
(7) Chandrappa, R.; Das, D. B. Solid waste management: Principles and practice; Springer Science & Business Media, 2012.
(8) Coe, J. M.; Antonelis, G. B.; Moy, K. Taking control of persistent solid waste pollution. Marine Pollution Bulletin 2019, 139, 105-110. DOI: https://doi.org/10.1016/j.marpolbul.2018.12.004.
(9) Iqbal, A.; Liu, X.; Chen, G.-H. Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Science of The Total Environment 2020, 729, 138622. DOI: https://doi.org/10.1016/j.scitotenv.2020.138622.
(10) Abdel-Shafy, H. I.; Mansour, M. S. M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 2018, 27 (4), 1275-1290. DOI: https://doi.org/10.1016/j.ejpe.2018.07.003.
(11) Geyer, R. A Brief History of Plastics. In Mare Plasticum - The Plastic Sea: Combatting Plastic Pollution Through Science and Art, Streit-Bianchi, M., Cimadevila, M., Trettnak, W. Eds.; Springer International Publishing, 2020; pp 31-47.
(12) Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews 2018, 118 (2), 839-885. DOI: 10.1021/acs.chemrev.7b00329. Laldinpuii, Z.; Lalhmangaihzuala, S.; Pachuau, Z.; Vanlaldinpuia, K. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst. Waste Management 2021, 126, 1-10. DOI: https://doi.org/10.1016/j.wasman.2021.02.056.
(13) Cornago, S.; Rovelli, D.; Brondi, C.; Crippa, M.; Morico, B.; Ballarino, A.; Dotelli, G. Stochastic consequential Life Cycle Assessment of technology substitution in the case of a novel PET chemical recycling technology. Journal of Cleaner Production 2021, 311, 127406. DOI: https://doi.org/10.1016/j.jclepro.2021.127406.
(14) MacArthur, E. The New Plastics Economy — Rethinking the future of plastics; 2016. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing.
(15) Foundation, E. M. The New Plastics Economy: Rethinking the Future of plastics and catalysing Actions; Cowes, UK, 2017. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing.
(16) Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry 2017, 19 (20), 4737-4753, 10.1039/C7GC02521A. DOI: 10.1039/C7GC02521A.
(17) Payne, J. M.; Kociok-Köhn, G.; Emanuelsson, E. A. C.; Jones, M. D. Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters. Macromolecules 2021, 54 (18), 8453-8469. DOI: 10.1021/acs.macromol.1c01207.
(18) Crawford, R. J. Plastics Engineering; Elsivier, 2020.
(19) Melito, S. Thermoplastics vs. Thermoset plastics: Material Properties. fictiv, 2022.
(20) Hale, R. C.; Seeley, M. E.; La Guardia, M. J.; Mai, L.; Zeng, E. Y. A Global Perspective on Microplastics. Journal of Geophysical Research: Oceans 2020, 125 (1), e2018JC014719. DOI: https://doi.org/10.1029/2018JC014719.
(21) Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews 2020, 203, 103118. DOI: https://doi.org/10.1016/j.earscirev.2020.103118.
(22) Bucci, K.; Tulio, M.; Rochman, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecological Applications 2020, 30 (2), e02044. DOI: https://doi.org/10.1002/eap.2044.
(23) Vethaak, A. D.; Legler, J. Microplastics and human health. Science 2021, 371 (6530), 672-674. DOI: doi:10.1126/science.abe5041.
(24) Gola, D.; Kumar Tyagi, P.; Arya, A.; Chauhan, N.; Agarwal, M.; Singh, S. K.; Gola, S. The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management 2021, 16, 100552. DOI: https://doi.org/10.1016/j.enmm.2021.100552.
(25) Di, M.; Wang, J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of The Total Environment 2018, 616-617, 1620-1627. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.150.
(26) Mataji, A.; Taleshi, M. S.; Balimoghaddas, E. Distribution and Characterization of Microplastics in Surface Waters and the Southern Caspian Sea Coasts Sediments. Archives of Environmental Contamination and Toxicology 2020, 78 (1), 86-93. DOI: 10.1007/s00244-019-00700-2.
(27) Goswami, P.; Vinithkumar, N. V.; Dharani, G. First evidence of microplastics bioaccumulation by marine organisms in the Port Blair Bay, Andaman Islands. Marine Pollution Bulletin 2020, 155, 111163. DOI: https://doi.org/10.1016/j.marpolbul.2020.111163.
(28) Robin, R. S.; Karthik, R.; Purvaja, R.; Ganguly, D.; Anandavelu, I.; Mugilarasan, M.; Ramesh, R. Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India. Science of The Total Environment 2020, 703, 134947. DOI: https://doi.org/10.1016/j.scitotenv.2019.134947.
(29) Irfan, T.; Khalid, S.; Taneez, M.; Hashmi, M. Z. Plastic driven pollution in Pakistan: the first evidence of environmental exposure to microplastic in sediments and water of Rawal Lake. Environmental Science and Pollution Research 2020, 27 (13), 15083-15092. DOI: 10.1007/s11356-020-07833-1.
(30) Khoironi, A.; Hadiyanto, H.; Anggoro, S.; Sudarno, S. Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Marine Pollution Bulletin 2020, 151, 110868. DOI: https://doi.org/10.1016/j.marpolbul.2019.110868.
(31) Alam, F. C.; Sembiring, E.; Muntalif, B. S.; Suendo, V. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere 2019, 224, 637-645. DOI: https://doi.org/10.1016/j.chemosphere.2019.02.188.
(32) Nie, H.; Wang, J.; Xu, K.; Huang, Y.; Yan, M. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Science of The Total Environment 2019, 696, 134022. DOI: https://doi.org/10.1016/j.scitotenv.2019.134022.
(33) Zhu, J.; Zhang, Q.; Li, Y.; Tan, S.; Kang, Z.; Yu, X.; Lan, W.; Cai, L.; Wang, J.; Shi, H. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Science of The Total Environment 2019, 658, 62-68. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.192.
(34) Leslie, H. A.; van Velzen, M. J. M.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and quantification of plastic particle pollution in human blood. Environment International 2022, 163, 107199. DOI: https://doi.org/10.1016/j.envint.2022.107199.
(35) Bartl, A. Moving from recycling to waste prevention: A review of barriers and enables. Waste Management & Research 2014, 32 (9_suppl), 3-18. DOI: 10.1177/0734242x14541986.
(36) EASAC policy report 39; 2020. https://easac.eu/fileadmin/PDF_s/reports_statements/Plastics/EASAC_Plastics_complete_Web_PDF.pdf.
(37) Sheldon, R. A.; Norton, M. Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chemistry 2020, 22 (19), 6310-6322.
(38) Fukushima, K.; Coulembier, O.; Lecuyer, J. M.; Almegren, H. A.; Alabdulrahman, A. M.; Alsewailem, F. D.; Mcneil, M. A.; Dubois, P.; Waymouth, R. M.; Horn, H. W.; et al. Organocatalytic depolymerization of poly(ethylene terephthalate). Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (5), 1273-1281. DOI: https://doi.org/10.1002/pola.24551.
(39) Lee, H. L.; Chiu, C. W.; Lee, T. Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances 2021, 5, 100079. DOI: https://doi.org/10.1016/j.ceja.2020.100079.
(40) https://www.livescience.com/37821-greenhouse-gases.html (accessed.
(41) Abuelgasim, S.; Wang, W.; Abdalazeez, A. A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress. Science of The Total Environment 2021, 764, 142892. DOI: https://doi.org/10.1016/j.scitotenv.2020.142892.
(42) C2ES. Center for climate and energy solutions, https://www.c2es.org (accessed.
(43) Lyngfelt, A.; Brink, A.; Langørgen, Ø.; Mattisson, T.; Rydén, M.; Linderholm, C. 11,000 h of chemical-looping combustion operation—Where are we and where do we want to go? International Journal of Greenhouse Gas Control 2019, 88, 38-56. DOI: https://doi.org/10.1016/j.ijggc.2019.05.023.
(44) Theo, W. L.; Lim, J. S.; Hashim, H.; Mustaffa, A. A.; Ho, W. S. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy 2016, 183, 1633-1663. DOI: https://doi.org/10.1016/j.apenergy.2016.09.103.
(45) Ou, Y.; Roney, C.; Alsalam, J.; Calvin, K.; Creason, J.; Edmonds, J.; Fawcett, A. A.; Kyle, P.; Narayan, K.; O’Rourke, P.; et al. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nature Communications 2021, 12 (1), 6245. DOI: 10.1038/s41467-021-26509-z.
(46) Perathoner, S.; Centi, G. CO2 Recycling: A Key Strategy to Introduce Green Energy in the Chemical Production Chain. ChemSusChem 2014, 7 (5), 1274-1282. DOI: https://doi.org/10.1002/cssc.201300926.
(47) Global Emissions. https://www.c2es.org/content/international-emissions/ (accessed.
(48) Al-Ghussain, L. Global warming: review on driving forces and mitigation. Environmental Progress & Sustainable Energy 2019, 38 (1), 13-21. DOI: https://doi.org/10.1002/ep.13041.
(49) Anderson, T. R.; Hawkins, E.; Jones, P. D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour 2016, 40 (3), 178-187. DOI: https://doi.org/10.1016/j.endeavour.2016.07.002.
(50) Houghton, J. The science of global warming. Interdisciplinary Science Reviews 2001, 26 (4), 247-257. DOI: 10.1179/isr.2001.26.4.247.
(51) Amanda MacMillan, J. T. Everything you wanted to know about our changing climate but were too afraid to ask. In Natural Resources Defense Council, 2021.
(52) Average temperature anomaly, Global. https://ourworldindata.org/grapher/temperature-anomaly?time=earliest..latest&facet=none (accessed.
(53) Key aspects of the Paris Agreement. In United nations climate change, 2022.
(54) IPCC, C. W. T. Climate change 2007: synthesis report. IPCC Geneva, Switzerland: 2007; p 104.
(55) Houssin, D.; Dujardin, T.; Cameron, R.; Tam, C.; Paillere, H.; Baroni, M.; Bromhead, A.; Baritaud, M.; Cometto, M.; Gaghen, R. Technology Road-map-Nuclear Energy; Organisation for Economic Co-Operation and Development, 2015.
(56) Climate, C. f.; Solutions, E. Leveraging natural gas to reduce greenhouse gas emissions. 2013.
(57) Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. Climate Change 2007: Mitigation; Intergovernmental Panel on Climate Change, 2007.
(58) Christensen, J. M.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R.; Usher, E. Changing climates. The role of renewable energy in a carbon-constrained world. 2006.
(59) Ryan, L.; Moarif, S.; Levina, E.; Baron, R. Energy efficieny policy and carbon pricing. 2011.
(60) Zhang, Z.; Moore, J. C.; Huisingh, D.; Zhao, Y. Review of geoengineering approaches to mitigating climate change. Journal of Cleaner Production 2015, 103, 898-907.
(61) Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. Intergovernmental panel on climate change special report on carbon dioxide capture and storage. Cambridge, UK and New York, USA 2005.
(62) Wei, D.; Sang, R.; Moazezbarabadi, A.; Junge, H.; Beller, M. Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System. JACS Au 2022, 2 (5), 1020-1031. DOI: 10.1021/jacsau.1c00489.
(63) Three organisations teaming up to unlock UK’s full carbon capture and storage potential. 2022. https://www.world-energy.org/article/24691.html (accessed.
(64) Challa, P.; Paleti, G.; Madduluri, V. R.; Gadamani, S. B.; Pothu, R.; Burri, D. R.; Boddula, R.; Perugopu, V.; Kamaraju, S. R. R. Trends in Emission and Utilization of CO2: Sustainable Feedstock in the Synthesis of Value-Added Fine Chemicals. Catalysis Surveys from Asia 2022, 26 (2), 80-91. DOI: 10.1007/s10563-021-09352-6.
(65) Kim, H.-G.; Seo, B.; Lim, C.-S. Metal-and halide-free catalysts supported on silica and their applications to CO2 cycloaddition reactions. Journal of Industrial and Engineering Chemistry 2019, 75, 202-210.
(66) Carbon Capture and Utilization. https://en.wikipedia.org/wiki/Carbon_capture_and_utilization (accessed.
(67) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angewandte Chemie International Edition 2011, 50 (37), 8510-8537. DOI: https://doi.org/10.1002/anie.201102010.
(68) Correa, A.; Martín, R. Metal-Catalyzed Carboxylation of Organometallic Reagents with Carbon Dioxide. Angewandte Chemie International Edition 2009, 48 (34), 6201-6204. DOI: https://doi.org/10.1002/anie.200900667.
(69) Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387. DOI: 10.1021/cr068357u.
(70) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nature Communications 2015, 6 (1), 5933. DOI: 10.1038/ncomms6933.
References (Chapter 2)
(1) Laldinpuii, Z.; Lalhmangaihzuala, S.; Pachuau, Z.; Vanlaldinpuia, K. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst. Waste Management 2021, 126, 1-10. DOI: https://doi.org/10.1016/j.wasman.2021.02.056.
(2) Liu, B.; Fu, W.; Lu, X.; Zhou, Q.; Zhang, S. Lewis Acid–Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic Solvent. ACS Sustainable Chemistry & Engineering 2019, 7 (3), 3292-3300. DOI: 10.1021/acssuschemeng.8b05324.
(3) Lee, H. L.; Chiu, C. W.; Lee, T. Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances 2021, 5, 100079. DOI: https://doi.org/10.1016/j.ceja.2020.100079.
(4) Jeya, G.; Dhanalakshmi, R.; Anbarasu, M.; Vinitha, V.; Sivamurugan, V. A short review on latest developments in catalytic depolymerization of Poly (ethylene terephathalate) wastes. Journal of the Indian Chemical Society 2022, 99 (1), 100291. DOI: https://doi.org/10.1016/j.jics.2021.100291.
(5) Payne, J.; Jones, M. D. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. ChemSusChem 2021, 14 (19), 4041-4070, https://doi.org/10.1002/cssc.202100400. DOI: https://doi.org/10.1002/cssc.202100400 (acccessed 2021/10/27).
(6) Park, S. H.; Kim, S. H. Poly (ethylene terephthalate) recycling for high value added textiles. Fashion and Textiles 2014, 1 (1), 1. DOI: 10.1186/s40691-014-0001-x.
(7) Barnard, E.; Rubio Arias, J. J.; Thielemans, W. Chemolytic depolymerisation of PET: a review. Green Chemistry 2021, 10.1039/D1GC00887K. DOI: 10.1039/D1GC00887K.
(8) Sinha, V.; Patel, M. R.; Patel, J. V. Pet Waste Management by Chemical Recycling: A Review. Journal of Polymers and the Environment 2010, 18 (1), 8-25. DOI: 10.1007/s10924-008-0106-7.
(9) Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews 2018, 118 (2), 839-885. DOI: 10.1021/acs.chemrev.7b00329.
(10) Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351 (6278), 1196-1199. DOI: 10.1126/science.aad6359 (acccessed 2021/11/06).
(11) Tournier, V.; Topham, C. M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M. L.; Texier, H.; Gavalda, S.; et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580 (7802), 216-219. DOI: 10.1038/s41586-020-2149-4.
(12) Zhang, L.; Gao, J.; Zou, J.; Yi, F. Hydrolysis of poly(ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts. Journal of Applied Polymer Science 2013, 130 (4), 2790-2795, https://doi.org/10.1002/app.39497. DOI: https://doi.org/10.1002/app.39497 (acccessed 2021/11/06).
(13) Kurokawa, H.; Ohshima, M.-a.; Sugiyama, K.; Miura, H. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polymer Degradation and Stability 2003, 79 (3), 529-533. DOI: https://doi.org/10.1016/S0141-3910(02)00370-1.
(14) Genta, M.; Iwaya, T.; Sasaki, M.; Goto, M.; Hirose, T. Depolymerization Mechanism of Poly(ethylene terephthalate) in Supercritical Methanol. Industrial & Engineering Chemistry Research 2005, 44 (11), 3894-3900. DOI: 10.1021/ie0488187.
(15) Shukla, S. R.; Harad, A. M. Aminolysis of polyethylene terephthalate waste. Polymer Degradation and Stability 2006, 91 (8), 1850-1854. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.11.005.
(16) George, N.; Kurian, T. Recent Developments in the Chemical Recycling of Postconsumer Poly(ethylene terephthalate) Waste. Industrial & Engineering Chemistry Research 2014, 53 (37), 14185-14198. DOI: 10.1021/ie501995m. DeVraj, S. Flakes of ester mixtures and methods for their reproduction. US 9234074B2, 2016.
(17) Bartolome, L.; Imran, M.; Cho, B. G.; Al-Masry, W. A.; Kim, D. H. Recent developments in the chemical recycling of PET. Material recycling-trends and perspectives 2012, 406.
(18) Carné Sánchez, A.; Collinson, S. R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. European Polymer Journal 2011, 47 (10), 1970-1976. DOI: https://doi.org/10.1016/j.eurpolymj.2011.07.013. López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J. I. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polymer Degradation and Stability 2010, 95 (6), 1022-1028. DOI: https://doi.org/10.1016/j.polymdegradstab.2010.03.007. Xi, G.; Lu, M.; Sun, C. Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polymer Degradation and Stability 2005, 87 (1), 117-120. DOI: https://doi.org/10.1016/j.polymdegradstab.2004.07.017.
(19) Shukla, S. R.; Palekar, V.; Pingale, N. Zeolite catalyzed glycolysis of poly(ethylene terephthalate) bottle waste. Journal of Applied Polymer Science 2008, 110 (1), 501-506, https://doi.org/10.1002/app.28656. DOI: https://doi.org/10.1002/app.28656 (acccessed 2021/11/07).
(20) Xue, H. D.; Wang, F. L.; Li, G. L.; Liu, P.; Bai, Y. Q.; Wang, K. Synthesis method and its influence factors of hydrotalcite-like compounds. In Advanced Materials Research, 2013; Trans Tech Publ: Vol. 690, pp 351-354.
(21) Imran, M.; Lee, K. G.; Imtiaz, Q.; Kim, B. K.; Han, M.; Cho, B. G.; Kim, D. H. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate. J Nanosci Nanotechnol 2011, 11 (1), 824-828. DOI: 10.1166/jnn.2011.3201 From NLM.
(22) Wang, H.; Li, Z.; Liu, Y.; Zhang, X.; Zhang, S. Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chemistry 2009, 11 (10), 1568-1575, 10.1039/B906831G. DOI: 10.1039/B906831G.
(23) Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Organocatalysis for depolymerisation. Polymer Chemistry 2019, 10 (2), 172-186.
(24) Khoonkari, M.; Haghighi, A. H.; Sefidbakht, Y.; Shekoohi, K.; Ghaderian, A. Chemical recycling of PET wastes with different catalysts. International Journal of Polymer Science 2015, 2015.
(25) Horn, H. W.; Jones, G. O.; Wei, D. S.; Fukushima, K.; Lecuyer, J. M.; Coady, D. J.; Hedrick, J. L.; Rice, J. E. Mechanisms of Organocatalytic Amidation and Trans-Esterification of Aromatic Esters As a Model for the Depolymerization of Poly(ethylene) Terephthalate. The Journal of Physical Chemistry A 2012, 116 (51), 12389-12398. DOI: 10.1021/jp304212y.
(26) Fukushima, K.; Coulembier, O.; Lecuyer, J. M.; Almegren, H. A.; Alabdulrahman, A. M.; Alsewailem, F. D.; Mcneil, M. A.; Dubois, P.; Waymouth, R. M.; Horn, H. W.; et al. Organocatalytic depolymerization of poly(ethylene terephthalate). Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (5), 1273-1281. DOI: https://doi.org/10.1002/pola.24551.
(27) Jehanno, C.; Flores, I.; Dove, A. P.; Müller, A. J.; Ruipérez, F.; Sardon, H. Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt. Green Chemistry 2018, 20 (6), 1205-1212, 10.1039/C7GC03396F. DOI: 10.1039/C7GC03396F.
(28) Wang, Q.; Yao, X.; Tang, S.; Lu, X.; Zhang, X.; Zhang, S. Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chemistry 2012, 14 (9), 2559-2566, 10.1039/C2GC35696A. DOI: 10.1039/C2GC35696A.
(29) Al-Sabagh, A. M.; Yehia, F. Z.; Eissa, A.-M. M. F.; Moustafa, M. E.; Eshaq, G.; Rabie, A.-R. M.; ElMetwally, A. E. Glycolysis of Poly(ethylene terephthalate) Catalyzed by the Lewis Base Ionic Liquid [Bmim][OAc]. Industrial & Engineering Chemistry Research 2014, 53 (48), 18443-18451. DOI: 10.1021/ie503677w.
(30) Yue, Q. F.; Wang, C. X.; Zhang, L. N.; Ni, Y.; Jin, Y. X. Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts. Polymer Degradation and Stability 2011, 96 (4), 399-403. DOI: https://doi.org/10.1016/j.polymdegradstab.2010.12.020.
(31) Sun, J.; Liu, D.; Young, R. P.; Cruz, A. G.; Isern, N. G.; Schuerg, T.; Cort, J. R.; Simmons, B. A.; Singh, S. Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low-Costing Bifunctional Ionic Liquid. ChemSusChem 2018, 11 (4), 781-792. DOI: https://doi.org/10.1002/cssc.201701798.
(32) Otera, J. Transesterification. Chemical Reviews 1993, 93 (4), 1449-1470. DOI: 10.1021/cr00020a004.
(33) Wang, Q.; Geng, Y.; Lu, X.; Zhang, S. First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly(ethylene terephthalate) (PET). ACS Sustainable Chemistry & Engineering 2015, 3 (2), 340-348. DOI: 10.1021/sc5007522. Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chemistry 2020, 22 (10), 3122-3131, 10.1039/D0GC00327A. DOI: 10.1039/D0GC00327A.
(34) Liu, B.; Lu, X.; Ju, Z.; Sun, P.; Xin, J.; Yao, X.; Zhou, Q.; Zhang, S. Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Industrial & Engineering Chemistry Research 2018, 57 (48), 16239-16245. DOI: 10.1021/acs.iecr.8b03854.
References (Chapter 3)
(1) Aguado, J.; Serrano, D. P.; Clark, J. H. - Feedstock Recycling of Plastic Wastes; 1999. DOI: - 10.1039/9781847550804 m3 - 10.1039/9781847550804.
(2) Kárpáti, L., Szarka, G., Hartman, M., Vargha, V. Oligoester and Polyester Production via Acido-alcoholysis of PET Waste. Periodica Polytechnica Chemical Engineering 2018, 62 (3), 336-344. DOI: https://doi.org/10.3311/PPch.11513.
(3) Barnard, E.; Rubio Arias, J. J.; Thielemans, W. Chemolytic depolymerisation of PET: a review. Green Chemistry 2021, 23 (11), 3765-3789, 10.1039/D1GC00887K. DOI: 10.1039/D1GC00887K.
(4) Awaja, F.; Pavel, D. Recycling of PET. European Polymer Journal 2005, 41 (7), 1453-1477. DOI: https://doi.org/10.1016/j.eurpolymj.2005.02.005.
(5) Chaeichian, S.; Pourmahdian, S.; Afshar Taromi, F. Synthesis of Unsaturated Polyester Resins from PET Wastes: Effect of a Novel Co-catalytic System on Glycolysis and Polyesterification Reactions. Designed Monomers and Polymers 2008, 11 (2), 187-199. DOI: 10.1163/156855508X298080.
(6) Saint-Loup, R.; Jeanmaire, T.; Robin, J.-J.; Boutevin, B. Synthesis of (polyethylene terephthalate/polyϵ-caprolactone) copolyesters. Polymer 2003, 44 (12), 3437-3449. DOI: https://doi.org/10.1016/S0032-3861(03)00257-X.
(7) Roy, P. K.; Mathur, R.; Kumar, D.; Rajagopal, C. Tertiary recycling of poly(ethylene terephthalate) wastes for production of polyurethane–polyisocyanurate foams. Journal of Environmental Chemical Engineering 2013, 1 (4), 1062-1069. DOI: https://doi.org/10.1016/j.jece.2013.08.019.
(8) Dębska, B.; Lichołai, L. A study of the effect of corrosive solutions on selected physical properties of modified epoxy mortars. Construction and Building Materials 2014, 65, 604-611. DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.038. Farahat, M. S. Mechanical characteristics of modified unsaturated polyester resins derived from poly(ethylene terephthalate) waste. Polymer International 2002, 51 (2), 183-189, https://doi.org/10.1002/pi.818. DOI: https://doi.org/10.1002/pi.818 (acccessed 2021/11/08).
(9) Karayannidis, G. P.; Achilias, D. S.; Sideridou, I. D.; Bikiaris, D. N. Alkyd resins derived from glycolized waste poly(ethylene terephthalate). European Polymer Journal 2005, 41 (2), 201-210. DOI: https://doi.org/10.1016/j.eurpolymj.2004.10.001.
(10) Abdelaal, M. Y.; Sobahi, T. R.; Makki, M. S. I. Chemical transformation of pet waste through glycolysis. Construction and Building Materials 2011, 25 (8), 3267-3271. DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.013.
(11) Estrada-Flores, J. D.; García-López, M. C.; Elizondo-Martínez, P.; Pérez-Rodríguez, N. A.; De la Rosa, J. R.; Sánchez-Anguiano, M. G. Alternative Reuse of Oligomers Derived from Poly(ethylene terephthalate) Waste Deposited onto Microspheres and Determination of Adsorbent Properties Toward Toxic Metals. Journal of Polymers and the Environment 2020, 28 (6), 1654-1663. DOI: 10.1007/s10924-020-01715-w.
(12) Carné Sánchez, A.; Collinson, S. R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. European Polymer Journal 2011, 47 (10), 1970-1976. DOI: https://doi.org/10.1016/j.eurpolymj.2011.07.013. López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J. I. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polymer Degradation and Stability 2010, 95 (6), 1022-1028. DOI: https://doi.org/10.1016/j.polymdegradstab.2010.03.007. Xi, G.; Lu, M.; Sun, C. Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polymer Degradation and Stability 2005, 87 (1), 117-120. DOI: https://doi.org/10.1016/j.polymdegradstab.2004.07.017.
(13) Shukla, S. R.; Palekar, V.; Pingale, N. Zeolite catalyzed glycolysis of poly(ethylene terephthalate) bottle waste. Journal of Applied Polymer Science 2008, 110 (1), 501-506, https://doi.org/10.1002/app.28656. DOI: https://doi.org/10.1002/app.28656 (acccessed 2021/11/07).
(14) Xue, H. D.; Wang, F. L.; Li, G. L.; Liu, P.; Bai, Y. Q.; Wang, K. Synthesis method and its influence factors of hydrotalcite-like compounds. In Advanced Materials Research, 2013; Trans Tech Publ: Vol. 690, pp 351-354.
(15) Imran, M.; Lee, K. G.; Imtiaz, Q.; Kim, B. K.; Han, M.; Cho, B. G.; Kim, D. H. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate. J Nanosci Nanotechnol 2011, 11 (1), 824-828. DOI: 10.1166/jnn.2011.3201 From NLM.
(16) Wang, H.; Li, Z.; Liu, Y.; Zhang, X.; Zhang, S. Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chemistry 2009, 11 (10), 1568-1575, 10.1039/B906831G. DOI: 10.1039/B906831G.
(17) Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Organocatalysis for depolymerisation. Polymer Chemistry 2019, 10 (2), 172-186.
(18) Lee, H. L.; Chiu, C. W.; Lee, T. Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances 2021, 5, 100079. DOI: https://doi.org/10.1016/j.ceja.2020.100079.
(19) Laldinpuii, Z.; Lalhmangaihzuala, S.; Pachuau, Z.; Vanlaldinpuia, K. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst. Waste Management 2021, 126, 1-10. DOI: https://doi.org/10.1016/j.wasman.2021.02.056.
(20) Zahedi, A. R.; Rafizadeh, M.; Taromi, F. A. Optimizing synthesis of PET oligomers end capped with phthalic/maleic anhydride via recycling of off grade PET using design of experiments. Journal of Thermoplastic Composite Materials 2013, 27 (9), 1256-1277. DOI: 10.1177/0892705712470266 (acccessed 2021/10/26).
(21) Kárpáti, L.; Fogarassy, F.; Kovácsik, D.; Vargha, V. One-Pot Depolymerization and Polycondensation of PET Based Random Oligo- and Polyesters. Journal of Polymers and the Environment 2019, 27 (10), 2167-2181. DOI: 10.1007/s10924-019-01490-3.
(22) Al-Sabagh, A. M.; Yehia, F. Z.; Eissa, A.-M. M. F.; Moustafa, M. E.; Eshaq, G.; Rabie, A.-R. M.; ElMetwally, A. E. Glycolysis of Poly(ethylene terephthalate) Catalyzed by the Lewis Base Ionic Liquid [Bmim][OAc]. Industrial & Engineering Chemistry Research 2014, 53 (48), 18443-18451. DOI: 10.1021/ie503677w.
(23) Yoshioka, T.; Motoki, T.; Okuwaki, A. Kinetics of Hydrolysis of Poly(ethylene terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research 2001, 40 (1), 75-79. DOI: 10.1021/ie000592u.
(24) Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Perejón, A.; Criado, J. M. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability 2010, 95 (5), 733-739. DOI: https://doi.org/10.1016/j.polymdegradstab.2010.02.017.
(25) Park, J. Y.; Levenspiel, O. The crackling core model for the reaction of solid particles. Chemical Engineering Science 1975, 30 (10), 1207-1214. DOI: https://doi.org/10.1016/0009-2509(75)85041-X.
(26) Zahedi, A. R.; Rafizadeh, M.; Taromi, F. A. Optimizing synthesis of PET oligomers end capped with phthalic/maleic anhydride via recycling of off grade PET using design of experiments. Journal of Thermoplastic Composite Materials 2014, 27 (9), 1256-1277. DOI: 10.1177/0892705712470266.
(27) Fang, P.; Lu, X.; Zhou, Q.; Yan, D.; Xin, J.; Xu, J.; Shi, C.; Zhou, Y.; Xia, S. Controlled alcoholysis of PET to obtain oligomers for the preparation of PET-PLA copolymer. Chemical Engineering Journal 2023, 451, 138988. DOI: https://doi.org/10.1016/j.cej.2022.138988.
(28) DeVraj, S. Flakes of ester mixtures and methods for their reproduction. US 9234074B2, 2016.
(29) Chen, W.; Li, M.; Gu, X.; Jin, L.; Chen, W.; Chen, S. Efficient glycolysis of recycling poly(ethylene terephthalate) via combination of organocatalyst and metal salt. Polymer Degradation and Stability 2022, 206, 110168. DOI: https://doi.org/10.1016/j.polymdegradstab.2022.110168.
(30) Chen, X.; Hou, G.; Chen, Y.; Yang, K.; Dong, Y.; Zhou, H. Effect of molecular weight on crystallization, melting behavior and morphology of poly(trimethylene terephalate). Polymer Testing 2007, 26 (2), 144-153. DOI: https://doi.org/10.1016/j.polymertesting.2006.08.011. Vilanova, P. C.; Ribas, S. M.; Guzman, G. M. Isothermal crystallization of poly(ethylene-terephthalate) of low molecular weight by differential scanning calorimetry: 1. Crystallization kinetics. Polymer 1985, 26 (3), 423-428. DOI: https://doi.org/10.1016/0032-3861(85)90205-8. Jabarin, S. A. Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. Journal of Applied Polymer Science 1987, 34 (1), 85-96, https://doi.org/10.1002/app.1987.070340107. DOI: https://doi.org/10.1002/app.1987.070340107 (acccessed 2022/11/16).
(31) Otera, J. Transesterification. Chemical Reviews 1993, 93 (4), 1449-1470. DOI: 10.1021/cr00020a004.
(32) Liu, B.; Fu, W.; Lu, X.; Zhou, Q.; Zhang, S. Lewis Acid–Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc)2 Deep Eutectic Solvent. ACS Sustainable Chemistry & Engineering 2019, 7 (3), 3292-3300. DOI: 10.1021/acssuschemeng.8b05324.
(33) Wang, D.-C.; Chen, L.-W.; Chiu, W.-Y. Kinetic study on depolymerization by glycolysis of poly(ethylene terephthalate) with bisphenol A. Die Angewandte Makromolekulare Chemie 1995, 230 (1), 47-71. DOI: https://doi.org/10.1002/apmc.1995.052300103.
(34) Liu, B.; Lu, X.; Ju, Z.; Sun, P.; Xin, J.; Yao, X.; Zhou, Q.; Zhang, S. Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Industrial & Engineering Chemistry Research 2018, 57 (48), 16239-16245. DOI: 10.1021/acs.iecr.8b03854.
(35) Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chemistry 2020, 22 (10), 3122-3131, 10.1039/D0GC00327A. DOI: 10.1039/D0GC00327A.
(36) Kim, B. K.; Hwang, G. C.; Bae, S. Y.; Yi, S. C.; Kumazawa, H. Depolymerization of polyethyleneterephthalate in supercritical methanol. Journal of Applied Polymer Science 2001, 81 (9), 2102-2108, https://doi.org/10.1002/app.1645. DOI: https://doi.org/10.1002/app.1645 (acccessed 2021/10/14).
(37) Abraham, M. H. Relationship between solution entropies and gas phase entropies of nonelectrolytes. Journal of the American Chemical Society 1981, 103 (22), 6742-6744. DOI: 10.1021/ja00412a036. Wertz, D. H. Relationship between the gas-phase entropies of molecules and their entropies of solvation in water and 1-octanol. Journal of the American Chemical Society 1980, 102 (16), 5316-5322. DOI: 10.1021/ja00536a033.
(38) Martin, R. L.; Hay, P. J.; Pratt, L. R. Hydrolysis of Ferric Ion in Water and Conformational Equilibrium. The Journal of Physical Chemistry A 1998, 102 (20), 3565-3573. DOI: 10.1021/jp980229p. González-Fabra, J.; Castro-Gómez, F.; Sameera, W. M. C.; Nyman, G.; Kleij, A. W.; Bo, C. Entropic corrections for the evaluation of the catalytic activity in the Al(iii) catalysed formation of cyclic carbonates from CO2 and epoxides. Catalysis Science & Technology 2019, 9 (19), 5433-5440, 10.1039/C9CY01285K. DOI: 10.1039/C9CY01285K.
(39) Gaussian 09, revision D.01, ; Gaussian, Inc.: Wallingford, CT; 2013. (accessed.
References (Chapter 4)
1. S. R. Turner and Y. Liu, in Polymer Science: A Comprehensive Reference, eds. K. Matyjaszewski and M. Möller, Elsevier, Amsterdam, 2012, DOI: https://doi.org/10.1016/B978-0-444-53349-4.00143-6, pp. 311-331.
2. J. Alberto Lopes, E. D. Tsochatzis, L. Karasek, E. J. Hoekstra and H. Emons, Food Chemistry, 2021, 345, 128739.
3. F. Brenz, S. Linke and T. Simat, Food Additives & Contaminants: Part A, 2018, 35, 583-598.
4. T. E. L. John scheirs, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons, Ltd., 2004.
5. N. G. Kulkarni, C. V. Avadhani and S. Sivaram, Journal of Applied Polymer Science, 2004, 91, 3720-3729.
6. P. J. Darda, J. A. Hogendoorn, G. F. Versteeg and F. Souren, AIChE Journal, 2005, 51, 622-630.
References (Chapter 5)
1. J. Payne and M. D. Jones, ChemSusChem, 2021, 14, 4041-4070.
2. M. Rabnawaz, I. Wyman, R. Auras and S. Cheng, Green Chemistry, 2017, 19, 4737-4753.
3. J. M. Payne, G. Kociok-Köhn, E. A. C. Emanuelsson and M. D. Jones, Macromolecules, 2021, 54, 8453-8469.
4. L. A. Román-Ramírez, P. McKeown, M. D. Jones and J. Wood, ACS Catalysis, 2019, 9, 409-416.
5. M. Nazareth, M. R. C. Marques, M. C. A. Leite and Í. B. Castro, Journal of Hazardous Materials, 2019, 366, 714-722.
6. P. McKeown and M. D. Jones, Sustainable Chemistry, 2020, 1, 1-22.
7. V. Piemonte, S. Sabatini and F. Gironi, Journal of Polymers and the Environment, 2013, 21, 640-647.
8. W. A. Herrera-Kao, M. I. Loría-Bastarrachea, Y. Pérez-Padilla, J. V. Cauich-Rodríguez, H. Vázquez-Torres and J. M. Cervantes-Uc, Polymer Bulletin, 2018, 75, 4191-4205.
9. L. Liu, M. R. Zachariah, S. I. Stoliarov and J. Li, RSC Advances, 2015, 5, 101745-101750.
10. H. Nishida, Y. Fan, T. Mori, N. Oyagi, Y. Shirai and T. Endo, Industrial & Engineering Chemistry Research, 2005, 44, 1433-1437.
11. I. C. McNeill and H. A. Leiper, Polymer Degradation and Stability, 1985, 11, 267-285.
12. V. Piemonte and F. Gironi, Journal of Polymers and the Environment, 2013, 21, 313-318.
13. A.-F. Mohd-Adnan, H. Nishida and Y. Shirai, Polymer Degradation and Stability, 2008, 93, 1053-1058.
14. H. Tsuji, H. Daimon and K. Fujie, Biomacromolecules, 2003, 4, 835-840.
15. B. Laycock, M. Nikolić, J. M. Colwell, E. Gauthier, P. Halley, S. Bottle and G. George, Progress in Polymer Science, 2017, 71, 144-189.
16. Y. Tokiwa, B. P. Calabia, C. U. Ugwu and S. Aiba, International Journal of Molecular Sciences, 2009, 10.
17. F. Liu, J. Guo, P. Zhao, Y. Gu, J. Gao and M. Liu, Polymer Degradation and Stability, 2019, 167, 124-129.
18. X. Song, X. Zhang, H. Wang, F. Liu, S. Yu and S. Liu, Polymer Degradation and Stability, 2013, 98, 2760-2764.
19. A. Carné Sánchez and S. R. Collinson, European Polymer Journal, 2011, 47, 1970-1976.
20. H. Liu, X. Song, F. Liu, S. Liu and S. Yu, Journal of Polymer Research, 2015, 22, 135.
21. C. Alberti, N. Damps, R. R. R. Meißner, M. Hofmann, D. Rijono and S. Enthaler, Advanced Sustainable Systems, 2020, 4, 1900081.
22. P. McKeown, M. Kamran, M. G. Davidson, M. D. Jones, L. A. Román-Ramírez and J. Wood, Green Chemistry, 2020, 22, 3721-3726.
23. F. Nederberg, E. F. Connor, T. Glausser and J. L. Hedrick, Chemical Communications, 2001, DOI: 10.1039/B106125A, 2066-2067.
24. F. A. Leibfarth, N. Moreno, A. P. Hawker and J. D. Shand, Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50, 4814-4822.
25. C. Alberti, N. Damps, R. R. R. Meißner and S. Enthaler, ChemistrySelect, 2019, 4, 6845-6848.
References (Chapter 6)
(1) Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387. DOI: 10.1021/cr068357u.
(2) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angewandte Chemie International Edition 2011, 50 (37), 8510-8537. DOI: https://doi.org/10.1002/anie.201102010.
(3) Liu, Y.-T.; Cheng, C.-W.; Lu, H.-C.; Chang, T.-Y.; Chen, C.-Y.; Yang, H.-C.; Yu, S.-H.; Zehra, S.; Liu, S.-H.; Leung, M.-K.; et al. One-Pot CuI/DBU-Catalyzed Carboxylative Cyclization toward Oxazolidinones Using Recyclable Molecular Sieves as Efficient Promoters for Fixation of CO2 in Water Medium. The Journal of Organic Chemistry 2020, 85 (21), 13655-13663. DOI: 10.1021/acs.joc.0c01833.
(4) Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design 2011, 89 (9), 1609-1624. DOI: https://doi.org/10.1016/j.cherd.2010.11.005.
(5) Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties. Journal of the American Chemical Society 2009, 131 (11), 3875-3877. DOI: 10.1021/ja809459e.
(6) Cao, C.-S.; Xia, S.-M.; Song, Z.-J.; Xu, H.; Shi, Y.; He, L.-N.; Cheng, P.; Zhao, B. Highly Efficient Conversion of Propargylic Amines and CO2 Catalyzed by Noble-Metal-Free [Zn116] Nanocages. Angewandte Chemie International Edition 2020, 59 (22), 8586-8593. DOI: https://doi.org/10.1002/anie.201914596.
(7) Cazorla-Amorós, D.; Alcañiz-Monge, J.; de la Casa-Lillo, M. A.; Linares-Solano, A. CO2 As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons. Langmuir 1998, 14 (16), 4589-4596. DOI: 10.1021/la980198p.
(8) Shah, A. P.; Sharma, A. S.; Jain, S.; Shimpi, N. G. Microwave assisted one pot three component synthesis of propargylamine, tetra substituted propargylamine and pyrrolo[1,2-a]quinolines using CuNPs@ZnO–PTh as a heterogeneous catalyst. New Journal of Chemistry 2018, 42 (11), 8724-8737, 10.1039/C8NJ00410B. DOI: 10.1039/C8NJ00410B.
(9) Sekine, K.; Kobayashi, R.; Yamada, T. Silver-catalyzed Three-component Reaction of Propargylic Amines, Carbon Dioxide, and N-Iodosuccinimide for Stereoselective Preparation of (E)-Iodovinyloxazolidinones. Chemistry Letters 2015, 44 (10), 1407-1409. DOI: 10.1246/cl.150584.
(10) Mukhtar, T. A.; Wright, G. D. Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. Chemical Reviews 2005, 105 (2), 529-542. DOI: 10.1021/cr030110z.
(11) Barbachyn, M. R.; Ford, C. W. Oxazolidinone Structure–Activity Relationships Leading to Linezolid. Angewandte Chemie International Edition 2003, 42 (18), 2010-2023. DOI: https://doi.org/10.1002/anie.200200528.
(12) Mitsudo, T.-a.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. Ruthenium catalyzed selective synthesis of enol carbamates by fixation of carbon dioxide. Tetrahedron Letters 1987, 28 (38), 4417-4418. DOI: https://doi.org/10.1016/S0040-4039(00)96526-2.
(13) Yu, B.; Cheng, B.-B.; Liu, W.-Q.; Li, W.; Wang, S.-S.; Cao, J.; Hu, C.-W. Atmospheric Pressure of CO2 as Protecting Reagent and Reactant: Efficient Synthesis of Oxazolidin-2-ones with Carbamate Salts, Aldehydes and Alkynes. Advanced Synthesis & Catalysis 2016, 358 (1), 90-97. DOI: https://doi.org/10.1002/adsc.201500921.
(14) Ghosh, S.; Riyajuddin, S.; Sarkar, S.; Ghosh, K.; Islam, S. M. Pd NPs Decorated on POPs as Recyclable Catalysts for the Synthesis of 2-Oxazolidinones from Propargylic Amines via Atmospheric Cyclizative CO2 Incorporation. ChemNanoMat 2020, 6 (1), 160-172. DOI: https://doi.org/10.1002/cnma.201900505.
(15) Yamada, W.; Sugawara, Y.; Cheng, H. M.; Ikeno, T.; Yamada, T. Silver-Catalyzed Incorporation of Carbon Dioxide into Propargylic Alcohols. European Journal of Organic Chemistry 2007, 2007 (16), 2604-2607. DOI: https://doi.org/10.1002/ejoc.200700169.
(16) Shunsuke, Y.; Kosuke, F.; Satoshi, K.; Tohru, Y. Silver-catalyzed Preparation of Oxazolidinones from Carbon Dioxide and Propargylic Amines. Chemistry Letters 2009, 38 (8), 786-787. DOI: 10.1246/cl.2009.786.
(17) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. Catalytic Production of Dimethylformamide from Supercritical Carbon Dioxide. Journal of the American Chemical Society 1994, 116 (19), 8851-8852. DOI: 10.1021/ja00098a072.
(18) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Transformation of Atmospheric CO2 Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2-Oxazolidinones. Angewandte Chemie International Edition 2015, 54 (18), 5399-5403. DOI: https://doi.org/10.1002/anie.201411969.
(19) Wang, M.-Y.; Song, Q.-W.; Ma, R.; Xie, J.-N.; He, L.-N. Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(ii)-substituted polyoxometalate-based ionic liquids. Green Chemistry 2016, 18 (1), 282-287, 10.1039/C5GC02311D. DOI: 10.1039/C5GC02311D.
(20) Zhang, Z.; Gao, H.; Wu, H.; Qian, Y.; Chen, L.; Chen, J. Chemical Fixation of CO2 by Using Carbon Material-Grafted N-Heterocyclic Carbene Silver and Copper Complexes. ACS Applied Nano Materials 2018, 1 (11), 6463-6476. DOI: 10.1021/acsanm.8b01679.
(21) Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. Valorization of CO2: Preparation of 2-Oxazolidinones by Metal–Ligand Cooperative Catalysis with SCS Indenediide Pd Complexes. ACS Catalysis 2017, 7 (4), 2652-2660. DOI: 10.1021/acscatal.7b00209.
(22) Fiorani, G.; Guo, W.; Kleij, A. W. Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chemistry 2015, 17 (3), 1375-1389, 10.1039/C4GC01959H. DOI: 10.1039/C4GC01959H.
(23) Fanjul-Mosteirín, N.; Jehanno, C.; Ruipérez, F.; Sardon, H.; Dove, A. P. Rational Study of DBU Salts for the CO2 Insertion into Epoxides for the Synthesis of Cyclic Carbonates. ACS Sustainable Chemistry & Engineering 2019, 7 (12), 10633-10640. DOI: 10.1021/acssuschemeng.9b01300.
(24) Kim, N.-K.; Sogawa, H.; Yamamoto, K.; Hayashi, Y.; Kawauchi, S.; Takata, T. DBU-mediated Highly Efficient CO2-fixation to Propargylamines and Polypropargylamine. Chemistry Letters 2018, 47 (8), 1063-1066. DOI: 10.1246/cl.180477.
(25) Yu, D.; Zhang, Y. Copper-Catalyzed Three-Component Coupling of Terminal Alkyne, Dihalomethane and Amine to Propargylic Amines. Advanced Synthesis & Catalysis 2011, 353 (1), 163-169. DOI: https://doi.org/10.1002/adsc.201000691.
(26) Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Li, B.; Yu, B. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy & Environmental Science 2011, 4 (10), 3971-3975, 10.1039/C1EE02156G. DOI: 10.1039/C1EE02156G.
(27) Yoo, W.-J.; Li, C.-J. Copper-Catalyzed Four-Component Coupling between Aldehydes, Amines, Alkynes, and Carbon Dioxide. Advanced Synthesis & Catalysis 2008, 350 (10), 1503-1506. DOI: https://doi.org/10.1002/adsc.200800232.
(28) Dong, F.; Lou, H.; Goto, M.; Hirose, T. A new PSA process as an extension of the Petlyuk distillation concept. Separation and Purification Technology 1999, 15 (1), 31-40. DOI: https://doi.org/10.1016/S1383-5866(98)00081-1.
(29) Cansado, I. P. P.; Carrott, M. R.; Carrott, P. J. M. Influence of Degassing Temperature on the Performance of Carbon Molecular Sieves for Separations Involving O2, N2, CO2, and CH4. Energy & Fuels 2006, 20 (2), 766-770. DOI: 10.1021/ef050374j.
(30) Morishige, K. Adsorption and Separation of CO2/CH4 on Amorphous Silica Molecular Sieve. The Journal of Physical Chemistry C 2011, 115 (19), 9713-9718. DOI: 10.1021/jp202572w.
(31) Siriwardane, R. V.; Shen, M.-S.; Fisher, E. P.; Poston, J. A. Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy & Fuels 2001, 15 (2), 279-284. DOI: 10.1021/ef000241s.
(32) Kar, S.; Goeppert, A.; Prakash, G. K. S. Integrated CO2 Capture and Conversion to Formate and Methanol: Connecting Two Threads. Accounts of Chemical Research 2019, 52 (10), 2892-2903. DOI: 10.1021/acs.accounts.9b00324.
(33) Borch, R. F.; Bernstein, M. D.; Durst, H. D. Cyanohydridoborate anion as a selective reducing agent. Journal of the American Chemical Society 1971, 93 (12), 2897-2904. DOI: 10.1021/ja00741a013.
(34) Chen, Q.; Fu, L.; Nishihara, Y. Palladium/copper-cocatalyzed decarbonylative alkynylation of acyl fluorides with alkynylsilanes: synthesis of unsymmetrical diarylethynes. Chemical Communications 2020, 56 (57), 7977-7980, 10.1039/D0CC03309J. DOI: 10.1039/D0CC03309J 
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88592-
dc.description.abstract摘要
聚對苯二甲酸乙二醇酯(PET)是日常生活的重要組成部分。 然而,由於PET不易自然降解,生態系統中的大量生命在廢棄塑料中游泳,造成了嚴重的環境災難。 通過醣酵解(一種化學回收方法),PET 大部分被回收為對苯二甲酸雙(2-羥乙基)酯 (BHET) 單體。 BHET 聚合回預聚物 (~25-35 DPn),然後縮聚以獲得更高的分子量,因此是一種能源密集型且成本低效的方法。 這項研究表明,在溫和的反應條件下,使用氨基醇 (AmOH) 進行 rPET 醣酵解,可生成 DPn 值約為 30 的低聚對苯二甲酸乙二醇酯 (OET),收率高達 98%; 180℃溫度,常壓,具有可回收性。 通過從生成的 OET 中製備 rPET 來結束 PET 到 PET 的循環。 對苯甲酸甲酯(EG)的比較模型研究揭示了 AmOH 相對於 Hünig 鹼的效率; N,N-乙基二異丙胺 (DIPEA) 儘管鹼性更強。 同樣,N-丁基-N-甲基丁烷-1-胺 (MDBA) 的 PET 轉化速度比甲基二乙醇胺 (MDEA) AmOH 慢。 儘管 MDEA 等 AmOH 也充當親核試劑並添加到聚合物鏈中,但令我們驚訝的是,我們的 NMR 研究表明沒有 AmOH 插入的跡象,表明 AmOH 可能起到催化劑的作用。 在不同反應條件下進行的形態學研究揭示了OET的生成方法。 計算研究和動力學同位素研究解釋了 AmOH 羥基在降解過程中的促進作用。 根據收縮核心模型,計算出的降解活化能估計為 45.4 kJ mol-1。
此外,更大規模地進行了rPET酯交換成聚對苯二甲酸丁二醇酯(PBT)的反應。 合成的PBT預聚物的收率為94%。
氨基醇也被認為是降解聚乳酸(PLA)的潛在有機催化劑。 該反應在不使用任何有害溶解溶劑的情況下進行。 使用乙二醇作為酯交換反應促進劑,解聚反應在 130℃、90 分鐘的反應時間內在溫和的反應條件下產生乳酸酯。 隨着反應溫度的降低,乳酸酯的收率保持在~80%。
在 2-惡唑烷酮一鍋法合成中利用分子篩 (MS) 促進二氧化碳 (CO2) 的有效方法。 CuI/MS系統以水為反應介質,在1個大氣壓的CO2下進行芳基乙炔、芳基醛和芳基胺之間的環化反應。 4 Å 分子篩促進羧化並改善 CO2 捕獲,從而產生高產率的產品。
zh_TW
dc.description.abstractAbstract
Polyethylene terephthalate (PET) is an essential component of daily life. However, due to PET’s resistance to natural degradation, a plethora of life in the ecosystem is swimming in discarded plastic, causing a serious environmental disaster. Using glycolysis, a chemical recycling method, PET is largely recycled to bis(2-hydroxyethyl) terephthalate (BHET) monomers. BHET is polymerized back to a pre-polymer (~25-35 DPn) followed by polycondensation for higher molecular weight, hence an energy-intensive and cost-inefficient method. This study demonstrates glycolysis of rPET using Amino alcohols (AmOH’s) for generating oligoethylene terephthalate (OET) of DPn value of ~30 in high yields (98%) under mild reaction conditions; 180 °C temperature, atmospheric pressure, with recyclability. PET-to-PET cycle was closed by preparing rPET from generated OETs. A comparative model study on methyl benzoate (in EG) revealed the efficiency of AmOH’s over Hünig’s base; N, N-Ethyldiisopropylamine (DIPEA) despite being more basic. Similarly, N-Butyl-N-methylbutane-1-amine (MDBA) demonstrated slower rPET conversion than Methyl diethanolamine (MDEA) AmOH. Although AmOH’s such as MDEA also act as nucleophile and add to the polymer chain, to our surprise, our NMR studies revealed that there is no sign of insertion of AmOH’s indicating that the AmOH’s may function as catalysts. Morphological studies conducted under different reaction conditions unveiled the method of OET generation. The computational studies and Kinetic Isotopic studies explained the facilitation of the hydroxy group of AmOH in the degradation. Following the shrinking core model, the calculated activation energy for degradation was estimated to be 45.4 kJ mol-1.
Furthermore, the transesterification of PET into Polybutylene terephthalate (PBT) was conducted at a larger scale. The yield of synthesized PBT pre-polymer was recorded to be 94%.
Amino alcohols are also presented as potential organic catalysts to degrade polylactic acid (PLA). The reactions were employed without using any harmful dissolving solvent. The depolymerization reactions produced lactate esters under mild reaction conditions at 130 °C in 90 minutes of reaction time using ethylene glycol as a transesterification reaction promotor. The yield of lactate ester remained ~80% with the decrease in reaction temperature.
An efficient way of utilizing molecular sieves (MS) to promote carbon dioxide (CO2) in a one-pot synthesis of 2-oxazolidinone. Water as a reaction medium is used in the CuI/MS system for the cyclization reaction between arylacetylene, arylaldehyde, and arylamine under 1 atmospheric pressure of CO2. The 4 Å molecular sieves facilitated the carboxylation and improved CO2 capture to generate products with high yields.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:58:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:58:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsList of Contents
Chapter 1 1
Introduction 1
Background 1
1.1. Solid waste Pollution 2
1.1.1. Plastic pollution 3
a) Thermoplastic Materials 5
b) Thermosetting Plastics 5
1.1.2. Effects of Plastic Pollution on the Environment 6
1.1.3. Recycling of Plastic waste 9
1.2. Air pollution 10
1.2.1. CO2 as a major contributor to air pollution 11
1.2.2. Effect of CO2 Emissions on the Environment 12
1.2.2.1. Global warming 12
1.2.3. Methods to Recycle CO2 16
1.2.3.1. Carbon Capture and Storage 16
1.2.3.2. Carbon capture and utilization (CCU) 17
References 21
Chapter 2 30
Glycolysis of rPET into Bis(2-hydroxyethyl) terephthalate (BHET) and Methyl Benzoate Kinetic model study 30
Abstract 30
Introduction 31
2.1. Recycling methods of PET 31
a) Primary recycling 32
b) Secondary recycling 32
c) Tertiary recycling 32
d) Quaternary recycling 33
e) Biological recycling 33
2.1.1. Mechanical recycling 33
2.1.2. Chemical Recycling 35
2.1.2.1. Hydrolysis 35
2.1.2.2. Methanolysis 36
2.1.2.3. Ammonolysis 37
2.1.2.4. Aminolysis 37
2.1.2.5. Glycolysis 38
2.2. Literature review on organic catalysts 39
2.3. Motivation/Objective 43
2.4. Results and Discussion 44
2.4.1. Design of Catalysis 44
2.4.2. Kinetic studies for model transesterification studies 45
2.4.3. Tertiary amine vs amino alcohol 48
2.4.4. Catalytic degradation activity of AmOH’s in the glycolysis of rPET 49
2.4.5. Degradation of rPET to BHET monomer and influence of reaction conditions 52
Optimization of reaction conditions for the conversion of rPET 52
2.4.5.1. Effect of reaction temperature on the conversion of rPET 52
2.4.5.2. The Effect of reaction time on the Conversion of rPET 53
2.4.5.3. Effect of the Catalyst Concentration on the Conversion of rPET 53
2.4.5.4. Effect of the Ethylene Glycol Loading on Yield of Conversion of rPET 55
Influence of reaction conditions on the yield of BHET monomer 56
2.4.5.5. The Effect of Reaction Temperature on the Yield of BHET 56
2.4.5.6. Effect of Reaction Time on the Yield of BHET 56
2.4.5.7. The Effect of catalyst concentration on the Yield of BHET 57
2.4.5.8. Effect of Ethylene Glycol dosage on the yield of BHET 57
2.5. Characterization of the product 59
2.6. Conclusion 60
2.7. Experimental details 60
2.7.1. Methodology for the Glycolysis of rPET for BHET Monomer 62
References 64
Appendices 70
Chapter 3 76
Glycolysis of Polyethylene terephthalate (rPET) into Oligoethylene terephthalates (OETs) 76
Abstract 76
3.1. Introduction 77
3.2. Literature Review 82
3.3. Industrial Approaches for PET oligomers production 86
3.4. Motivation/Objective 89
3.5. Results and Discussion 90
3.5.1. The potency of MDEA as an organo-catalyst for rPET partial degradation 90
3.5.2. Recycling of the residual EG and the Catalyst 95
3.5.3. Bulk polymerization of OET 96
3.5.4. Morphological studies during the degradation process 99
3.5.5. Kinetic model for the degradation of rPET and influence of reaction conditions 103
3.5.6. The molecular weight difference between the outer layer and inner core of rPET after degradation 107
3.5.7. Proposed mechanism 108
3.5.8. Kinetic Isotopic study 109
3.5.9. Computational studies 112
3.6. Conclusion 115
3.7. Experimental details 116
3.7.1. Methodology for OETs production 117
3.7.2. Methodology for Kinetic isotopic experiment 119
3.7.3. Computational details 119
References 121
Appendices 128
Chapter 4 136
Transesterification of rPET into BHBT to produce PBT 136
4.1. Introduction 136
4.2. Motivation/Objective 139
4.3. Results and Discussion 139
4.4. Conclusion 141
4.5. Experimental details 142
4.5.1. Methodology for Glycolysis of rPET for BHBT monomer at 50g scale 142
4.5.2. Bulk polycondensation of BHBT monomer into PBT 143
References 145
Appendices 146
Chapter 5 147
Amino Alcohol as a Catalyst for the Degradation of Polylactic Acid (PLA) 147
Abstract 147
5.1. Introduction 147
5.1.1. Literature Review of organic catalysts 150
5.2. Motivation/Objective 151
5.3. Results and Discussion 152
5.4. Conclusion 153
5.5. Experimental details 154
5.5.1. Methodology 154
References 155
Appendices 157
Chapter 6 158
One pot CuI catalyzed carboxylation cyclization for Oxazolidinones using Molecular sieves as CO2 promoters in water medium 158
Abstract 158
6.1. Introduction 158
6.2. Motivation/Objective 160
6.3. Results and Discussion 160
6.3.1. The method of measurement of CO2 adsorption by molecular sieves 162
6.3.2. Proposed mechanism 164
6.4. Conclusion 165
6.5. Experimental details 166
6.5.1. Methodology 166
References 168
Appendices 173
-
dc.language.isoen-
dc.title利用再生PET、PLA與CO2之化學轉化與催化研究zh_TW
dc.titleChemical conversions and catalytic studies of utilizing recycled Polyethylene terephthalate (PET), Polylactic acid (PLA), and Carbon dioxide (CO2)en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭如忠;江偉宏;胡哲嘉 ;林 江珍 ;林伯勳;邱昱誠;高夢瑤zh_TW
dc.contributor.oralexamcommitteeRJ Jeng;Wei-Hung Chiang ;Chechia Hu;JJ Lin;Po-Hsun Lin;Yu-Cheng Chiu;Mengyao Gaoen
dc.subject.keyword回收,塑料回收,有機催化劑,醣酵解,低聚物,zh_TW
dc.subject.keywordRecycling,Plastic Recycling,Organic Catalyst,Glycolysis,Oligomer,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202302002-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-07-25-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
17.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved