Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 生物多樣性國際碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李承叡zh_TW
dc.contributor.advisorCheng-Ruei Leeen
dc.contributor.authorTerry Carina Leezh_TW
dc.contributor.authorCarina Lee Terryen
dc.date.accessioned2023-08-15T16:48:21Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationAlexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664.
Ali, J. R. (2017). Islands as biological substrates: Classification of the biological assemblage components and the physical island types. Journal of Biogeography, 44(5), 984–994. https://doi.org/10.1111/jbi.12872
Andō, M., & Shiraishi, S. (1993). Gliding Flight in the Japanese Giant Flying Squirrel Petaurista leucogenys. Journal of the Mammalogical Society of Japan, 18(1), 19–32. https://doi.org/10.11238/jmammsocjapan.18.19
Asari, Y., Yanagawa, H., & Oshida, T. (2007). Gliding ability of the Siberian flying squirrel Pteromys volans orii. Mammal Study, 32(4), 151–154. https://doi.org/10.3106/1348- 6160(2007)32[151:GAOTSF]2.0.CO;2
Baba, M., Doi, T., & Ono, Y. (1982). Home Range Utilization and Nocturnal Activity of the Giant Flying Squirrel, Petaurista Leucogenys. Japanese Journal of Ecology, 32(2), 189–198. https://doi.org/10.18960/seitai.32.2_189
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308
Buckley, L. B., & Kingsolver, J. G. (2012). Functional and Phylogenetic Approaches to Forecasting Species’ Responses to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 43(1), 205–226. https://doi.org/10.1146/annurevecolsys-110411-160516
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124–3140. https://doi.org/10.1111/mec.12354
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3 Genes|Genomes|Genetics, 1(3), 171–182. https://doi.org/10.1534/g3.111.000240 Chapman, C. A., Bonnell, T. R., Gogarten, J. F., Lambert, J. E., Omeja, P. A., Twinomugisha, D., Wasserman, M. D., & Rothman, J. M. (2013). Are Primates Ecosystem Engineers? International Journal of Primatology, 34(1), 1–14. https://doi.org/10.1007/s10764- 012-9645-9
Chen, C.-C., Pei, K. J.-C., Lai, Y.-C., & Mortenson, J. A. (2012). Participatory epidemiology to assess sarcoptic mange in serow of Taiwan. Jorunal of Wildlife Diseases, 48(4), 869–875.
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. https://doi.org/10.112/science.1206432
Chen, Y.-Y., Huang, W., Wang, W.-H., Juang, J.-Y., Hong, J.-S., Kato, T., & Luyssaert, S. (2019). Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-40063-1
Dong, X., Yi, W., Zheng, C., Zhu, X., Wang, S., Xue, H., Ye, Z., & Bu, W. (2022). Species delimitation of rice seed bugs complex: Insights from mitochondrial genomes and ddRAD-seq data. Zoologica Scripta, 51(2), 185–198. https://doi.org/10.1111/zsc.12523
Ellis, N., Smith, S. J., & Pitcher, C. R. (2012). Gradient Forests: Calculating importance gradients on physical predictors. Ecology, 93, 156–168.
Elsen, P. R., Monahan, W. B., & Merenlender, A. M. (2020). Topography and human pressure in mountain ranges alter expected species responses to climate change. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-15881-x
Elsen, P. R., & Tingley, M. W. (2015). Global mountain topography and the fate of montane species under climate change. Nature Climate Change, 5(8), Article 8. https://doi.org/10.1038/nclimate2656
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust Demographic Inference from Genomic and SNP Data. PLOS Genetics, 9(10), e1003905. https://doi.org/10.1371/journal.pgen.1003905
Excoffier, L., Marchi, N., Marques, D. A., Matthey-Doret, R., Gouy, A., & Sousa, V. C. (2021). fastsimcoal2: Demographic inference under complex evolutionary scenarios. Bioinformatics, 37(24), 4882–4885. https://doi.org/10.1093/bioinformatics/btab468
Fan, P. C., Chung, W. C., Soh, C. T., & Kosman, M. L. (1992). Eating habits of East Asian people and transmission of taeniasis. Acta Tropica, 50(4), 305–315. https://doi.org/10.1016/0001-706X(92)90065-6
Feng, G., Mao, L., Sandel, B., Swenson, N. G., & Svenning, J.-C. (2016). High plant endemism in China is partially linked to reduced glacial-interglacial climate change. Journal of Biogeography, 43(1), 145–154. https://doi.org/10.1111/jbi.12613
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302– 4315. https://doi.org/10.1002/joc.5086
Fischer, M. C., Rellstab, C., Leuzinger, M., Roumet, M., Gugerli, F., Shimizu, K. K., Holderegger, R., & Widmer, A. (2017). Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics, 18, 69. https://doi.org/10.1186/s12864-016- 3459-7
Flaherty, E. A., Scheibe, J. S., & Goldingay, R. (2008). Locomotor performance in the squirrel glider, Petaurus norfolcensis, and the sugar glider, Petaurus breviceps. Australian Mammalogy, 30(1), 25–35. https://doi.org/10.1071/am08003
GBIF Occurrence Download. (2023a). https://doi.org/10.15468/dl.x2rs4y
GBIF Occurrence Download. (2023b). https://doi.org/10.15468/dl.jq8feb
Gruber, B., Unmack, P. J., Berry, O. F., & Georges, A. (2018). dartr: An r package to facilitate analysis of SNP data generated from reduced epresentation genome
sequencing. Molecular Ecology Resources, 18, 691–699.
Hayssen, V. (2008). Patterns of Body and Tail Length and Body Mass in Sciuridae. Journal of Mammalogy, 89(4), 852–873. https://doi.org/10.1644/07-MAMM-A-217.1
He, J., Gao, Z., Su, Y., Lin, S., & Jiang, H. (2018). Geographical and temporal origins of terrestrial vertebrates endemic to Taiwan. Journal of Biogeography, 45(11), 2458– 2470. https://doi.org/10.1111/jbi.13438
Hijmans, R., Cameron, S., Parra, J., Jones, P., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces of global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276
Hijmans, R. J. (2023). raster: Geographic Data Analysis and Modeling (3.6-20) [R]. https://CRAN.R-project.org/package=raster
Hsu, F.-H., Lin, F.-J., & Lin, Y.-S. (2000). Phylogeographic Variation in Mitochondrial DNA of Formosan White-bellied Rat Niviventer culturatus. Zoological Studies, 9.
Hsu, F.-H., Lin, F.-J., & Lin, Y.-S. (2001). Phylogeographic Structure of the Formosan Wood Mouse, Apodemus semotus Thomas. Zoological Studies, 40(2), 91–102.
Kawamichi, T. (1997). The age of sexual maturity in Japanese giant flying squirrels, Petaurista leucogenys. Mammal Study, 22(1+2), 81–87. https://doi.org/10.3106/mammalstudy.22.81
Knaus, B., & Grünwald, N. (2017). VCFR: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17(1), 44–53.
Koli, V. K., Bhatnagar, C., & Mali, D. (2011). Gliding behaviour of Indian Giant Flying Squirrel Petaurista philippensis Elliot. Current Science, 100(10), 1563–1568. Krishna, M. C., Kumar, A., & Tripathi, O. P. (2016). Gliding performance of the red giant gliding squirrel Petaurista petaurista in the tropical rainforest of Indian eastern Himalaya. Wildlife Biology, 22(1), wlb.00855. https://doi.org/10.2981/wlb.00120
Kuntner, M., Năpăruş, M., Li, D., & Coddington, J. A. (2014). Phylogeny Predicts Future Habitat Shifts Due to Climate Change. PLoS ONE, 9(6), e98907. https://doi.org/10.1371/journal.pone.0098907
Kuo, C.-C., & Lee, L.-L. (2003). Food Availability and Food Habits of Indian Giant Flying Squirrels (Petaurista philippensis) in Taiwan. Journal of Mammalogy, 84(4), 1330– 1340. https://doi.org/10.1644/BOS-039
Lavretsky, P., DaCosta, J. M., Sorenson, M. D., McCracken, K. G., & Peters, J. L. (2019). DdRAD-seq data reveal significant genome-wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Molecular Ecology, 28(10), 2594–2609. https://doi.org/10.1111/mec.15091
Lee, P. F., Progulske, D. R., & Lin, Y. S. (1986). Ecological studies on 2 sympatric Petaurista species in Taiwan. Bulletin of the Institute of Zoology, Academia Sinica, 25(2), 113– 124.
Lee, P.-F., Lin, Y.-S., & Progulske, D. R. (1993). Reproductive Biology of the Red-Giant Flying Squirrel, Petaurista petaurista, in Taiwan. Journal of Mammalogy, 74(4), 982– 989. https://doi.org/10.2307/1382437
Lei, F.-M., Qu, Y.-H., Lu, J.-L., Liu, Y., & Yin, Z.-H. (2003). Conservation on diversity and distribution patterns of endemic birds in China. Biodiversity & Conservation, 12(2), 239–254. https://doi.org/10.1023/A:1021928801558
Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/science.1156831
Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). https://doi.org/10.1029/2004PA001071
Liu, X., & Fu, Y.-X. (2020). Stairway Plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biology, 21(1), 280. https://doi.org/10.1186/s13059-020-02196-9
Loope, L. L., & Giambelluca, T. W. (1998). Vulnerability of Island Tropical Montane Cloud Forests to Climate Change, with Special Reference to East Maui, Hawaii. In A. Markham (Ed.), Potential Impacts of Climate Change on Tropical Forest Ecosystems (pp. 363–377). Springer Netherlands. https://doi.org/10.1007/978-94-017-2730-3_18
Lu, X., & Fu, Y.-X. (2015). Exploring Population Size Changes Using SNP Frequency Spectra. Nature Genetics, 47(5), 555–559.
Macinnis-Ng, C., Mcintosh, A. R., Monks, J. M., Waipara, N., White, R. S., Boudjelas, S., Clark, C. D., Clearwater, M. J., Curran, T. J., Dickinson, K. J., Nelson, N., Perry, G. L., Richardson, S. J., Stanley, M. C., & Peltzer, D. A. (2021). Climate-change impacts exacerbate conservation threats in island systems: New Zealand as a case study. Frontiers in Ecology and the Environment, 19(4), 216–224. https://doi.org/10.1002/fee.2285
Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science (New York, N.Y.), 339(6124), 1198–1201. https://doi.org/10.1126/science.1228026
Mijangos, J. L., Gruber, B., Berry, O., Pacioni, C., & Georges, A. (2022). dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods in Ecology and Evolution, 13(10), 2089–2302.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., Karlén, W., & Lauritzen, S.- E. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433(7026), 613–617. https://doi.org/10.1038/nature03265
Montgelard, C., Zenboudji, S., Ferchaud, A.-L., Arnal, V., & Jansen van Vuuren, B. (2014). Landscape genetics in mammals. Mammalia, 78. https://doi.org/10.1515/mammalia-2012-0142
Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C., & Beissinger, S. R. (2008). Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science, 322(5899), 261–264. https://doi.org/10.1126/science.1163428
Naimi, B., Hamm, N. a. s., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling. Ecography, 37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., ... Weedon, J. (2022). vegan: Community Ecology Package (2.6-4). https://cran.rproject.org/web/packages/vegan/index.html
Oshida, T., Lee, J.-K., Lin, L.-K., & Chen, Y.-J. (2006). Phylogeography of Pallas’s Squirrel in Taiwan: Geographical Isolation in an Arboreal Small Mammal. Journal of Mammology, 87(2), 247–254.
Oshida, T., Lin, L.-K., Chang, S.-W., Chen, Y.-J., & Lin, J.-K. (2011). Phylogeography of two sympatric giant flying squirrel subspecies, Petaurista alborufus lena and P. philippensis grandis (Rodentia: Sciuridae), in Taiwan. Biological Journal of the Linnean Society, 102(2), 404–419.
Paradis, E. (2010). Pegas: An {R} package for population genetics with an integrated— Modular approach. Bioinformatics, 26, 419–420.
Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLOS ONE, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135
Phillips, S. J., Dudík, M., & Schapire, Robert. E. (n.d.). Maxent software for modeling species niches and distributions (3.4.1) [Internet]. http://biodiversityinformatics.amnh.org/open_source/maxent/
Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I., & Bird, C. E. (2014). Demystifying the RAD fad. Molecular Ecology, 23(24), 5937–5942. https://doi.org/10.1111/mec.12965
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ricketts, T. H., Dinerstein, E., Boucher, T., Brooks, T. M., Butchart, S. H. M., Hoffmann, M., Lamoreux, J. F., Morrison, J., Parr, M., Pilgrim, J. D., Rodrigues, A. S. L., Sechrest, W., Wallace, G. E., Berlin, K., Bielby, J., Burgess, N. D., Church, D. R., Cox, N., Knox, D., ... Wikramanayake, E. (2005). Pinpointing and preventing imminent extinctions. Proceedings of the National Academy of Sciences, 102(51), 18497–18501. https://doi.org/10.1073/pnas.0509060102
Scheibe, J. S., & Robins, J. H. (1998). Morphological and performance attributes of gliding mammals. In Ecology and Evolutionary Biology of Tree Squirrels (Vol. 6, pp. 131– 144). Virginia Museum of Natural History.
Schowalter, T. D., Hargrove, W. W., & Crossley, D. A. (1986). Herbivory in Forested Ecosystems. Annual Review of Entomology, 31, 177–196.
Sekercioglu, C. H., Schneider, S. H., Fay, J. P., & Loarie, S. R. (2008). Climate Change, Elevational Range Shifts, and Bird Extinctions. Conservation Biology, 22(1), 140– 150. https://doi.org/10.1111/j.1523-1739.2007.00852.x
Simon, S. (2010). Animals, Ghosts, and Ancestors: Traditional Knowledge of Truku Hunters on Formosa. In D. Kapoor & E. Shizha (Eds.), Indigenous Knowledge and Learning in Asia/Pacific and Africa: Perspectives on Development, Education, and Culture (pp. 81–95). Palgrave Macmillan US. https://doi.org/10.1057/9780230111813_6
Snyder, C. W. (2016). Evolution of global temperature over the past two million years. Nature, 538(7624), 226–228. https://doi.org/10.1038/nature19798
Sun, P.-W. (2022). Genomic-morphological-environmental association studies of Quercus longinux [Master Thesis]. National Taiwan Normal University.
Sun, Y.-H., Huang, Y.-K., Tsai, W.-H., Hong, S.-Y., & Chen, C.-C. (2009). Breeding-Season Diet of the Mountain Hawk-Eagle in Southern Taiwan. Journal of Raptor Research, 43(2), 159–163. https://doi.org/10.3356/JRR-08-86.1
Thorington, R. W., & Heaney, L. R. (1981). Body Proportions and Gliding Adaptations of Flying Squirrels (Petauristinae). Journal of Mammalogy, 62(1), 101–114. https://doi.org/10.2307/1380481
Uchimura, A., Higuchi, M., Minakuchi, Y., Ohno, M., Toyoda, A., Fujiyama, A., Miura, I., Wakana, S., Nishino, J., & Yagi, T. (2015). Germline mutation rates and the long- term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Research, 25(8), 1125–1134. https://doi.org/10.1101/gr.186148.114
Veron, S., Mouchet, M., Govaerts, R., Haevermans, T., & Pellens, R. (2019). Vulnerability to climate change of islands worldwide and its impact on the tree of life. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-51107-x
Wang, Y.-T. (2012). Islands within an island: The genetic structure of Taiwan vole (Microtus kikuchii) among different alpine regions inferred from mitochondrial DNA [Master Thesis]. Donghai University.
Wolf, J. F., Bowman, J., Keobouasone, S., Taylor, R. S., & Wilson, P. J. (2021). A de novo genome assembly and annotation of the southern flying squirrel (Glaucomys volans). G3: Genes|Genomes|Genetics, 12(1), jkab373. https://doi.org/10.1093/g3journal/jkab373
Yu, H.-T. (1995). Patterns of diversification and genetic population structure of small mammals in Taiwan. Biological Journal of the Linnean Society, 55, 69–89.
Yuan, S.-L., Lin, L.-K., & Oshida, T. (2006). Phylogeography of the mole-shrew (Anourosorex yamashinai) in Taiwan: Implications of interglacial refugia in a high- elevation small mammal. Molecular Ecology, 15, 2119–2130.
Zimmerman, S. J., Aldridge, C. L., & Oyler-McCance, S. J. (2020). An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics, 21(1), 382. https://doi.org/10.1186/s12864-020-06783-9
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88552-
dc.description.abstractnonezh_TW
dc.description.abstractDouble digest restriction site associated DNA sequencing (ddRAD-seq) is an increasingly accessible tool for phylogenetic studies, with a broad range of applications, including the characterization of past population dynamics and prediction of future responses to change. However, this tool has yet to be applied to small mammal species of Taiwan, where previous phylogenetic studies have used exclusively mitochondrial DNA. The aim of my research was to assess the potential of genomic SNP data to provide a deeper understanding of small mammal phylogeography in Taiwan. Using ddRAD-seq, I explored the phylogeography of two endemic species of giant flying squirrel: Petaurista lena, the white-faced giant flying squirrel, and Petaurista grandis, the red giant flying squirrel. Contrary to previous findings, both species demonstrated significant population structure along the North-South axis. There was a strong correlation between genetic distance and spatial distance for both species; however, I found no strong relationship between genetic variation and climate or landscape factors. Demographic analyses indicated that P. lena experienced population expansion during the glacial period MIS 6 but has been declining since the early-mid Holocene. P. grandis demonstrated the opposite reaction, experiencing expansion during the climate warming of the early Holocene. These findings tell a different story than previous mitochondrial analyses, providing novel insight into the population structure and demography of Petaurista species in Taiwan. Overall, ddRAD-seq proved effective for detecting and explaining genetic variation across Taiwan; future analyses of small mammal species should consider incorporating genomic SNP data, particularly for species whose phylogeography is not well explained.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:48:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:48:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsIntroduction 1
Methods 6
Results 11
Discussion 15
Conclusions 20
References 21
Figures and Tables 33
-
dc.language.isoen-
dc.subjectnonezh_TW
dc.subjectflying squirrelen
dc.subjectphylogeographyen
dc.subjectpast demographyen
dc.subjectPetauristaen
dc.subjectlandscape geneticsen
dc.subjectglacial cyclesen
dc.title臺灣 Petaurista 屬飛鼠的親緣地理學、族群數量變遷、與環境適應zh_TW
dc.titlePhylogeography, demography, and environmental adaptation of Petaurista flying squirrels in Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor王弘毅zh_TW
dc.contributor.coadvisorHurng-Yi Wangen
dc.contributor.oralexamcommittee裴家騏;廖培鈞;張仕緯zh_TW
dc.contributor.oralexamcommitteeKurtis Jai-Chyi Pei;Pei-Chun Liao;Shih-Wei Changen
dc.subject.keywordnone,zh_TW
dc.subject.keywordPetaurista,flying squirrel,phylogeography,landscape genetics,glacial cycles,past demography,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202302618-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college國際學院-
dc.contributor.author-dept生物多樣性國際碩士學位學程-
顯示於系所單位:生物多樣性國際碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf11.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved