請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88533
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳哲夫 | zh_TW |
dc.contributor.advisor | Jeffrey D. Ward | en |
dc.contributor.author | 劉宇浩 | zh_TW |
dc.contributor.author | Takorn Plengsangsri | en |
dc.date.accessioned | 2023-08-15T16:43:28Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-01 | - |
dc.identifier.citation | 1. Platnieks, O., et al., Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. European Polymer Journal, 2021. 161: p. 110855.
2. Rafiqah, S.A., et al. A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers, 2021. 13, DOI: 10.3390/polym13091436. 3. Bikiaris, D.N. and D.S. Achilias, Synthesis of poly(alkylene succinate) biodegradable polyesters I. Mathematical modelling of the esterification reaction. Polymer, 2006. 47(13): p. 4851-4860. 4. Bikiaris, D.N. and D.S. Achilias, Synthesis of poly(alkylene succinate) biodegradable polyesters, Part II: Mathematical modelling of the polycondensation reaction. Polymer, 2008. 49(17): p. 3677-3685. 5. Redchuk, A., et al. Adoption Case of IIoT and Machine Learning to Improve Energy Consumption at a Process Manufacturing Firm, under Industry 5.0 Model. Big Data and Cognitive Computing, 2023. 7, DOI: 10.3390/bdcc7010042. 6. Shang, C. and F. You, Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era. Engineering, 2019. 5(6): p. 1010-1016. 7. Choi, Y., et al., Data-driven modeling of multimode chemical process: Validation with a real-world distillation column. Chemical Engineering Journal, 2023. 457: p. 141025. 8. Jendoubi, I. and F. Bouffard, Data-driven sustainable distributed energy resources’ control based on multi-agent deep reinforcement learning. Sustainable Energy, Grids and Networks, 2022. 32: p. 100919. 9. Bonvin, D. and G. Francois, Control and Optimization of Batch Chemical Processes. 2017. p. 441-503. 10. Dyson, C., et al. MPC Model-Plant-Mismatch Detection Through Slow Feature Analysis Preprocessing with Industrial Application. in 2022 IEEE International Symposium on Advanced Control of Industrial Processes (AdCONIP). 2022. 11. Cao, Y. and R.B. Gopaluni, Deep Neural Network Approximation of Nonlinear Model Predictive Control. IFAC-PapersOnLine, 2020. 53(2): p. 11319-11324. 12. Gütter, J., et al., Impact of Training Set Size on the Ability of Deep Neural Networks to Deal with Omission Noise. Frontiers in Remote Sensing, 2022. 3: p. 932431. 13. Wang, Y. and S. Boyd, Fast Model Predictive Control Using Online Optimization. Control Systems Technology, IEEE Transactions on, 2010. 18: p. 267-278. 14. Salzmann, T., et al., Real-Time Neural MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms. IEEE Robotics and Automation Letters, 2022. 8: p. 2397-2404. 15. Tokiwa, Y., et al., Biodegradability of Plastics. International journal of molecular sciences, 2009. 10: p. 3722-42. 16. Savitha, K.S., et al., Polybutylene succinate, a potential bio-degradable polymer: synthesis, copolymerization and bio-degradation. Polymer Chemistry, 2022. 13(24): p. 3562-3612. 17. xu, J., et al., Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion. Journal of Polymer Research, 2019. 26. 18. Jin, T.-x., et al., Effect of molecular weight on the properties of poly(butylene succinate). Chinese Journal of Polymer Science, 2014. 32(7): p. 953-960. 19. Jin, H.-J., et al., Chain extension and biodegradation of poly(butylene succinate) with maleic acid units. Journal of Polymer Science Part B: Polymer Physics, 2000. 38(17): p. 2240-2246. 20. Peñas, M.I., et al. A Review on Current Strategies for the Modulation of Thermomechanical, Barrier, and Biodegradation Properties of Poly (Butylene Succinate) (PBS) and Its Random Copolymers. Polymers, 2022. 14, DOI: 10.3390/polym14051025. 21. Zhu, Q.-Y., et al., Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Materials Chemistry and Physics, 2011. 130(3): p. 943-949. 22. Martins, F., Tuning PID controllers using the ITAE criterion. International Journal of Engineering Education, 2005. 21. 23. Jibril, M., et al., Comparison of PID and MPC controllers for continuous stirred tank reactor (CSTR) concentration control. 2020. 02: p. 133-140. 24. Rajalakshmi, M., P. Saranya, and P. Shanmugavadivu. Pattern Recognition-Recognition of Handwritten Document Using Convolutional Neural Networks. in 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). 2019. 25. Sako, K., B.N. Mpinda, and P.C. Rodrigues Neural Networks for Financial Time Series Forecasting. Entropy, 2022. 24, DOI: 10.3390/e24050657. 26. Kamel, A., L. Rahmani, and R. Lebied, New application of artificial neural network-based direct power control for permanent magnet synchronous generator. Electrical Engineering & Electromechanics, 2021: p. 18-24. 27. Fényes, D., et al. Robust Control Design for Autonomous Vehicles Using Neural Network-Based Model-Matching Approach. Energies, 2021. 14, DOI: 10.3390/en14217438. 28. Jiang, B., et al. Neural Network Based Model Predictive Control for a Quadrotor UAV. Aerospace, 2022. 9, DOI: 10.3390/aerospace9080460. 29. Rowell, D. State-Space Representation of LTI Systems. October 2002. 30. Konakom, K., P. Kittisupakorn, and I.M. Mujtaba, Neural network-based controller design of a batch reactive distillation column under uncertainty. Asia-Pacific Journal of Chemical Engineering, 2012. 7(3): p. 361-377. 31. Arpornwichanop, A., P. Kittisupakorn, and M.A. Hussain, Model-based control strategies for a chemical batch reactor with exothermic reactions. Korean Journal of Chemical Engineering, 2002. 19(2): p. 221-226. 32. Antão, R., et al. Model Predictive Control of Non-Linear Systems Using Tensor Flow-Based Models. Applied Sciences, 2020. 10, DOI: 10.3390/app10113958. 33. Hosen, M.A., M.A. Hussain, and F.S. Mjalli, Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation. Control Engineering Practice, 2011. 19(5): p. 454-467. 34. Kittisupakorn, P., et al., Neural network based model predictive control for a steel pickling process. Journal of Process Control, 2009. 19(4): p. 579-590. 35. Han, J., et al. Synthesis, Properties of Biodegradable Poly(Butylene Succinate-co-Butylene 2-Methylsuccinate) and Application for Sustainable Release. Materials, 2019. 12, DOI: 10.3390/ma12091507. 36. Perry, R.H. and D.W. Green, Perry's chemical engineers' handbook. 8th ed. ed. 2008, New York: McGraw-Hill. 37. Karayannidis, G.P., et al., Study of various catalysts in the synthesis of poly(propylene terephthalate) and mathematical modeling of the esterification reaction. Polymer, 2003. 44(4): p. 931-942. 38. Park, S.S., H.W. Jun, and S.S. Im, Kinetics of forming poly(butylene succinate) (PBS) oligomer in the presence of MBTO catalyst. Polymer Engineering & Science, 1998. 38(6): p. 905-913. 39. Masayuki Kamikawa, H.J., et al., Device and method for producing polybutylene succinate. 2013, Hitachi, Ltd., Tokyo (JP) 40. Achilias, D.S., A Review of Modeling of Diffusion Controlled Polymerization Reactions. Macromolecular Theory and Simulations, 2007. 16(4): p. 319-347. 41. Nunes, R.W., J.R. Martin, and J.F. Johnson, Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polymer Engineering & Science, 1982. 22(4): p. 205-228. 42. Berkowitz, S., Viscosity–molecular weight relationships for poly(ethylene terephthalate) in hexafluoroisopropanol–pentafluorophenol using SEC–LALLS. Journal of Applied Polymer Science, 1984. 29(12): p. 4353-4361. 43. Charlier, Q., et al., Solution viscosity -molar mass relationships for poly(Butylene succinate) and discussion on molar mass analysis. eXPRESS Polymer Letters, 2015. 9: p. 424. 44. Fonseca, R.R., et al., A fuzzy–split range control system applied to a fermentation process. Bioresource Technology, 2013. 142: p. 475-482. 45. Drgoňa, J., et al., All you need to know about model predictive control for buildings. Annual Reviews in Control, 2020. 50: p. 190-232. 46. Lheureux, A. Feed-forward vs feedback neural networks. 2022; Available from: https://blog.paperspace.com/feed-forward-vs-feedback-neural-networks/. 47. Baheti, P. Activation functions in neural networks (12 types & use cases). 2022; Available from: https://www.v7labs.com/blog/neural-networks-activation-functions. 48. Wu, G.-D. and S.-L. Lo, Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network. Expert Systems with Applications, 2010. 37(7): p. 4974-4983. 49. Ahmad, Z. and J. Zhang. A Nonlinear Model Predictive Control Strategy Using Multiple Neural Network Models. in Advances in Neural Networks - ISNN 2006. 2006. Berlin, Heidelberg: Springer Berlin Heidelberg. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88533 | - |
dc.description.abstract | 聚丁二酸丁二醇酯 (PBS) 是一種可生物降解的塑料,以其在各種應用中的強度和多功能性而聞名。 本研究提出了一種數據驅動的方法來模擬聚合過程中半間歇反應器中的溫度控制,並將所提出方法的性能與傳統控制器(包括 PID 控制和第一原理模型 MPC 控制)進行了比較。 該研究使用 Python 和 Tensorflow 開發了基於神經網絡模型的預測控制 (NNMPC) 和基於多重神經網絡模型的預測控制 (Multi-NNMPC)。 通過使用隱藏層中具有不同數量的神經元的廣泛動態數據來訓練神經網絡模型,以研究不同模型複雜性下的過程動態。 在標稱條件下,50 神經元 NNMPC 表現出測試結構中最有效的複雜性,絕對誤差積分 (IAE) 值為 2,104.77,20 神經元多 NNMPC 的性能略有改善,IAE 降低至 2,030.52,且控制動作呈重複趨勢。 MPC 控制。 這些方法解決了 PID 控制失敗的問題,該失敗導致超調和低效的設定點跟踪。 PID控制導致聚合物超規格,分子量幾乎達到14,000,IAE值為3,271.83。 相比之下,50 神經元 NNMPC 的最佳溫度控制方法可以執行嚴格的溫度控制並產生所需的聚合物性能,顯著優於 PID 控制。 這項研究還考慮了不確定條件,包括白噪聲的干擾和模型失配,所有控制方法都成功地處理了噪聲並保持溫度等溫,50 神經元 NNMPC 表現出比 PID 控制更小的閥門運動,增強了控製作用並提高了魯棒性 並減少公用事業消耗。 當引入模型失配來表示反應器結垢時,總傳熱係數降低了 30%,與其他控制器相比,50 個神經元 NNMPC 實現了控制變量更快地收斂到設定值。 它產生的 IAE 為 2,892.41,而 MPC 顯示的 IAE 為 3,009.59。 此外,神經網絡模型展示了高效學習高度非線性動力學的能力,與使用順序最小二乘規劃 (SLSQP) 方法的數學模型相比,預測最佳操縱變量的速度最高可達 5 至 20 倍。 | zh_TW |
dc.description.abstract | Polybutylene succinate (PBS) is a biodegradable plastic known for its strength and versatility in various applications. This research presents a data-driven approach to simulate temperature control in a semi-batch reactor during polymerization, the performance of the proposed approaches was compared against conventional controllers, including PID control and first-principles model MPC control. The study developed neural network model-based predictive control (NNMPC) and multiple neural network model-based predictive control (Multi-NNMPC), using Python and Tensorflow. Neural network models were trained by using a wide range of dynamic data with varying numbers of neurons in hidden layers to investigate the process dynamics under different model complexities. Under nominal conditions, 50 neuron NNMPC demonstrated the most efficient complexity among the tested structures, exhibiting an Integral of Absolute Error (IAE) value of 2,104.77, 20 neuron Multi-NNMPC provided slightly improved performance as IAE reduced to 2,030.52 and the control action trended duplicating MPC control. These approaches addressed the failure of PID control, which caused overshoot and inefficient setpoint tracking. The PID control resulted in polymer over-specification, with the molecular weight reaching almost 14,000 and an IAE value of 3,271.83. In contrast, the optimal temperature control approach of the 50 neuron NNMPC could perform tight temperature control and yield the desired properties of the polymer, significantly outperforming PID control. This research also considers uncertain conditions, including the interference of white noise and model mismatch, all control approaches successfully handled the noise and maintained temperature isothermally, the 50 neuron NNMPC exhibited less aggressive valve movement than PID control, enhancing control action and leading to increased robustness and reduced utility consumption. When model mismatch was introduced to represent reactor fouling, reducing the overall heat transfer coefficient by 30%, the 50 neuron NNMPC achieved faster convergence of control variable to setpoints compared to other controllers. It yielded an IAE of 2,892.41, while MPC showed an IAE of 3,009.59. Moreover, the neural network model demonstrated the ability to learn highly nonlinear dynamics efficiently, enabling the prediction of optimal manipulated variables up to 5 to 20 times faster than a mathematical model using the Sequential Least Squares Programming (SLSQP) method. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:43:28Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:43:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
ACKNOWLEDGEMENTS ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xxiv Chapter 1 Introduction 1 1.1 Overview 1 1.2 Literature Review 3 1.3 Objectives 11 1.4 Scope of the research 12 1.5 Benefit of this research 12 Chapter 2 Methods 14 2.1 The synthesis of polybutylene succinate 14 2.1.1 Esterification 15 2.1.2 Polycondensation 22 2.2 Split range PID control 29 2.3 Model predictive control (MPC) 30 2.3.1 MPC control principle 31 2.4 Artificial neural network 33 2.4.1 Artificial neural network component 33 2.4.2 Artificial neural network architecture 34 2.4.3 Neural network training 36 2.4.4 Activation function 36 2.5 Artificial neural network 38 2.5.1 Model development 38 2.5.2 The controller design 38 2.5.3 Neural network model training 39 2.5.4 NNMPC deployment 43 2.5.5 Multi-NNMPC deployment 43 2.5.6 Control performance comparison 44 Chapter 3 Results and discussion 45 3.1 Model development 45 3.2 Split range PID control 48 3.2.1 Nominal case 49 3.2.2 White noise case 53 3.3 MPC control 56 3.3.1 Nominal case 58 3.3.2 White noise case 61 3.3.3 Model mismatch case 65 3.4 NNMPC control 68 3.4.1 Neural network model training and validation 68 3.4.2 Nominal case 74 3.4.3 White noise case 84 3.4.4 Model mismatch case 94 3.5 Multi-NNMPC control 104 3.5.1 Nominal case 105 3.5.2 White noise case 111 3.5.3 Model mismatch case 117 Chapter 4 Conclusions 123 REFERENCES 128 | - |
dc.language.iso | en | - |
dc.title | PBS 反應器之類神經網路模擬與模型預測控制器設計 | zh_TW |
dc.title | The Simulation of a Polybutylene Succinate (PBS) Reactor with a Neural Network Model Based Predictive Controller | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | Paisan Kittisupakorn | zh_TW |
dc.contributor.coadvisor | Paisan Kittisupakorn | en |
dc.contributor.oralexamcommittee | 余柏毅;郭文生 | zh_TW |
dc.contributor.oralexamcommittee | Bor-Yih Yu;Vincentius Surya Kurnia Adi | en |
dc.subject.keyword | 模型預測控制,分程PID 控制,機器學習,人工神經網絡,聚丁二酸丁二醇酯, | zh_TW |
dc.subject.keyword | Model Predictive Control,Split Range PID control,Machine Learning,Artificial Neural Networks,Polybutylene Succinate, | en |
dc.relation.page | 137 | - |
dc.identifier.doi | 10.6342/NTU202302309 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-04 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 7.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。