Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 生物多樣性國際碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor袁孝維zh_TW
dc.contributor.advisorHsiao-Wei Yuanen
dc.contributor.authorRajatanan Prapatsornzh_TW
dc.contributor.authorRajatanan Prapatsornen
dc.date.accessioned2023-08-15T16:42:27Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationÁgh, N., Csörgő, T., & Szöllősi, E. (2022). Delay in arrival: lineage-specific influence of haemosporidians on autumn migration of European robins. Parasitology Research, 121(10), 2831-2840. https://doi.org/10.1007/s00436-022-07621-5
Ágh, N., Piross, I. S., Majoros, G., Csorgo, T., & Szollosi, E. (2019). Malaria infection status of European Robins seems to associate with timing of autumn migration but not with actual condition. Parasitology, 146(6), 814-820. https://doi.org/10.1017/S0031182018002184
Alerstam, T. (2006). Strategies for the transition to breeding in time-selected bird migration. Ardea, 94, 347-357.
Alves, J. A., Gunnarsson, T. G., Hayhow, D. B., Appleton, G. F., Potts, P. M., Sutherland, W. J., & Gill, J. A. (2013). Costs, benefits, and fitness consequences of different migratory strategies. Ecology, 94(1), 11-17. https://doi.org/https://doi.org/10.1890/12-0737.1
Arbeiter, S., Schulze, M., Tamm, P., & Hahn, S. (2016). Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster. Journal of Ornithology, 157(1), 155-163. https://doi.org/10.1007/s10336-015-1262-x
Ardia, D. R., & Clotfelter, E. D. (2006). Individual quality and age affect responses to an energetic constraint in a cavity-nesting bird. Behavioral Ecology, 18(1), 259-266. https://doi.org/10.1093/beheco/arl078
Blas, J. (2015). Stress in Birds. In Sturkie's Avian Physiology (pp. 769-810). https://doi.org/10.1016/b978-0-12-407160-5.00033-6
Bobby Fokidis, H., Greiner, E. C., & Deviche, P. (2008). Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. Journal of Avian Biology, 39(3), 300-310. https://doi.org/https://doi.org/10.1111/j.0908-8857.2008.04248.x
Bodawatta, K. H., Shriner, I., Pigott, S., Koane, B., Vinagre‐Izquierdo, C., Rios, R. S., Jønsson, K. A., & Tori, W. P. (2022). Ecological factors driving the feather mite associations in tropical avian hosts. Journal of Avian Biology, 2022(6). https://doi.org/10.1111/jav.02951
Boland, C. (2004). Breeding Biology of Rainbow Bee-Eaters (Merops ornatus): A Migratory, Colonial, Cooperative Bird. The Auk, 121. https://doi.org/10.2307/4090318
Brown, C. R., & Brown, M. B. (2004). Empirical Measurement of Parasite Transmission between Groups in a Colonial Bird. Ecology, 85(6), 1619-1626. https://doi.org/https://doi.org/10.1890/03-0206
Brust, V., Bastian, H. V., Bastian, A., & Schmoll, T. (2015). Determinants of between-year burrow re-occupation in a colony of the European bee-eater Merops apiaster. Ecol Evol, 5(15), 3223-3230. https://doi.org/10.1002/ece3.1563
Burnham, K. P., & Anderson, D. R. (2002). Information and Likelihood Theory: A Basis for Model Selection and Inference. In K. P. Burnham & D. R. Anderson (Eds.), Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (pp. 49-97). Springer New York. https://doi.org/10.1007/978-0-387-22456-5_2
Burton, E. J., Newnham, R., Bailey, S. J., & Alexander, L. G. (2014). Evaluation of a fast, objective tool for assessing body condition of budgerigars (Melopsittacus undulatus). J Anim Physiol Anim Nutr (Berl), 98(2), 223-227. https://doi.org/10.1111/jpn.12063
Caro, S. M., Griffin, A. S., Hinde, C. A., & West, S. A. (2016). Unpredictable environments lead to the evolution of parental neglect in birds. Nature Communications, 7(1), 10985. https://doi.org/10.1038/ncomms10985
Casas-Crivillé, A., & Valera, F. (2005). The European bee-eater (Merops apiaster) as an ecosystem engineer in arid environments. Journal of Arid Environments, 60(2), 227-238. https://doi.org/10.1016/j.jaridenv.2004.03.012
CDC. (2016). Blood Specimens - Microscopic Examination. https://www.cdc.gov/dpdx/diagnosticprocedures/blood/microexam.html
Chastel, O., Weimerskirch, H., & Jouventin, P. (1995). Influence of Body Condition on Reproductive Decision and Reproductive Success in the Blue Petrel. The Auk, 112(4), 964-972. https://doi.org/10.2307/4089027
Civitello, D. J., Cohen, J., Fatima, H., Halstead, N. T., Liriano, J., McMahon, T. A., Ortega, C. N., Sauer, E. L., Sehgal, T., Young, S., & Rohr, J. R. (2015). Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proceedings of the National Academy of Sciences, 112(28), 8667-8671. https://doi.org/doi:10.1073/pnas.1506279112
Clark, N. F., & Taylor-Robinson, A. W. (2021). An Ecologically Framed Comparison of The Potential for Zoonotic Transmission of Non-Human and Human-Infecting Species of Malaria Parasite. Yale J Biol Med, 94(2), 361-373.
Clark, P., Boardman, W., & Raidal, S. (2009). Hemoparasites of birds. In Atlas of Clinical Avian Hematology (1st ed., pp. 129-130). Wiley-Blackwell.
Cornelius, E. A., Davis, A. K., & Altizer, S. A. (2014). How important are hemoparasites to migratory songbirds? Evaluating physiological measures and infection status in three neotropical migrants during stopover. Physiol Biochem Zool, 87(5), 719-728. https://doi.org/10.1086/677541
Costa, J. S., Rocha, A. D., Correia, R. A., & Alves, J. A. (2020). Developing and validating a nestling photographic aging guide for cavity-nesting birds: an example with the European Bee-eater (Merops apiaster). Avian Research, 11(1). https://doi.org/10.1186/s40657-020-0188-z
Côté, I. M., & Poulinb, R. (1995). Parasitism and group size in social animals: a meta-analysis. Behavioral Ecology, 6(2), 159-165. https://doi.org/10.1093/beheco/6.2.159
Cox, D. T. C., & Cresswell, W. (2014). Mass gained during breeding positively correlates with adult survival because both reflect life history adaptation to seasonal food availability. Oecologia, 174(4), 1197-1204. https://doi.org/10.1007/s00442-013-2859-5
Cuevas, E., Orellana‐Peñailillo, C., Botero‐Delgadillo, E., Espíndola‐Hernández, P., Vásquez, R. A., & Quirici, V. (2021). Influence of the haemosporidian Leucocytozoon spp. over reproductive output in a wild Neotropical passerine, the Thorn‐tailed Rayadito (Aphrastura spinicauda). Ibis, 163(3), 948-961. https://doi.org/10.1111/ibi.12934
Cuthbert, R. J., Cooper, J., & Ryan, P. G. (2014). Population trends and breeding success of albatrosses and giant petrels at Gough Island in the face of at-sea and on-land threats. Antarctic Science, 26(2), 163-171. https://doi.org/10.1017/S0954102013000424
da Silva Rodrigues, R., de Souza Penha, V. A., Miwa, R. Y., Branco, J. O., & Junior, O. M. (2021). Stress and Body Condition Predict Haemosporidian Parasitaemia in Birds from Cerrado, Southeastern Brazil. Ardea, 109(2), 175-183, 179. https://doi.org/10.5253/arde.v109i3.a7
Decker, K. L., Conway, C. J., & Fontaine, J. J. (2012). Nest predation, food, and female age explain seasonal declines in clutch size. Evolutionary Ecology, 26(3), 683-699. https://doi.org/10.1007/s10682-011-9521-7
Dillon, K. G., & Conway, C. J. (2017). Nest predation risk explains variation in avian clutch size. Behavioral Ecology, 29(2), 301-311. https://doi.org/10.1093/beheco/arx130
Doneley, R. (2016). The Clinical Examination. In Avian Medicine (pp. 49-72). https://doi.org/10.1016/b978-0-7234-3832-8.00005-5
Dossman, B. C., Rodewald, A. D., Studds, C. E., & Marra, P. P. (2023). Migratory birds with delayed spring departure migrate faster but pay the costs. Ecology, 104(2), e3938. https://doi.org/https://doi.org/10.1002/ecy.3938
Duijns, S., Niles, L. J., Dey, A., Aubry, Y., Friis, C., Koch, S., Anderson, A. M., & Smith, P. A. (2017). Body condition explains migratory performance of a long-distance migrant. Proceedings of the Royal Society B: Biological Sciences, 284(1866), 20171374. https://doi.org/10.1098/rspb.2017.1374
Fitri, L. E., Candradikusuma, D., Setia, Y. D., Wibawa, P. A., Iskandar, A., Winaris, N., & Pawestri, A. R. (2022). Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods. Tropical Medicine and Infectious Disease, 7(10), 253. https://www.mdpi.com/2414-6366/7/10/253
Fontaine, J. J., & Martin, T. E. (2006). Parent birds assess nest predation risk and adjust their reproductive strategies. Ecology Letters, 9(4), 428-434. https://doi.org/https://doi.org/10.1111/j.1461-0248.2006.00892.x
Gameiro, J., Veiga, J., Valera, F., Palmeirim, J. M., & Catry, I. (2021). Influence of colony traits on ectoparasite infestation in birds breeding in mixed-species colonies. Parasitology, 148(8), 904-912. https://doi.org/10.1017/S0031182021000470
Gosler, A. G. (1991). On the use of greater covert moult and pectoral muscle as measures of condition in passerines with data for the Great Tit (Parus major). Bird Study, 38(1), 1-9. https://doi.org/10.1080/00063659109477061
Granthon, C., & Williams, D. A. (2017). Avian Malaria, Body Condition, and Blood Parameters In Four Species of Songbirds. The Wilson Journal of Ornithology, 129(3), 492-508, 417. https://doi.org/10.1676/16-060.1
Halliday, F. W., & Rohr, J. R. (2019). Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps. Nature Communications, 10(1), 5032. https://doi.org/10.1038/s41467-019-13049-w


Hayes, C. D., Hayes, T. I., McClure, C. J. W., Quiroga, M., Thorstrom, R. K., & Anderson, D. L. (2018). Native parasitic nest fly impacts reproductive success of an island‐endemic host. Animal Conservation, 22(2), 157-164. https://doi.org/10.1111/acv.12449
Hicks, O., Green, J. A., Daunt, F., Cunningham, E. J. A., Newell, M., Butler, A., & Burthe, S. J. (2019). Sublethal effects of natural parasitism act through maternal, but not paternal, reproductive success in a wild population. Ecology, 100(8), e02772. https://doi.org/https://doi.org/10.1002/ecy.2772
Hogan, J. N. (2012). Epidemiology of Fecal Protozoa at the Human, Animal, and Environmental Interface University of California Davis]. https://escholarship.org/uc/item/0sx0n5tt
Hoi, H., Darolová, A., Krištofík, J., & Hoi, C. (2017). The effect of the ectoparasite Carnus hemapterus on immune defence, condition, and health of nestling European Bee-eaters. Journal of Ornithology, 159(1), 291-302. https://doi.org/10.1007/s10336-017-1500-5
Hoi, H., Krištofík, J., Darolová, A., & Hoi, C. (2010). Are parasite intensity and related costs of the milichiid fly Carnus hemapterus related to host sociality? Journal of Ornithology, 151(4), 907-913. https://doi.org/10.1007/s10336-010-0529-5
Hoi, H., KriŠTofÍK, J., DarolovÁ, A., & Hoi, C. (2012). Experimental evidence for costs due to chewing lice in the European bee-eater (Merops apiaster). Parasitology, 139(1), 53-59. https://doi.org/10.1017/S0031182011001727

Ilgūnas, M., Bukauskaitė, D., Palinauskas, V., Iezhova, T. A., Dinhopl, N., Nedorost, N., Weissenbacher-Lang, C., Weissenböck, H., & Valkiūnas, G. (2016). Mortality and pathology in birds due to Plasmodium (Giovannolaia) homocircumflexum infection, with emphasis on the exoerythrocytic development of avian malaria parasites. Malaria Journal, 15(1). https://doi.org/10.1186/s12936-016-1310-x
IUCN. (2016). Blue-tailed Bee-eater. https://www.iucnredlist.org/species/22683750/92998513
Jimenez-Penuela, J., Ferraguti, M., Martinez-de la Puente, J., Soriguer, R., & Figuerola, J. (2019). Urbanization and blood parasite infections affect the body condition of wild birds. Sci Total Environ, 651(Pt 2), 3015-3022. https://doi.org/10.1016/j.scitotenv.2018.10.203
Kaminski, M., Janiszewski, T., Indykiewicz, P., Nowakowski, J. J., Kowalski, J., Dulisz, B., & Minias, P. (2021). Density-dependence of nestling immune function and physiological condition in semi-precocial colonial bird: a cross-fostering experiment. Front Zool, 18(1), 7. https://doi.org/10.1186/s12983-021-00388-y
Kelly, T. R., Rubin, B. D., MacDougall-Shackleton, S. A., & MacDougall-Shackleton, E. A. (2020). Experimental Malaria Infection Affects Songbirds' Nocturnal Migratory Activity. Physiol Biochem Zool, 93(2), 97-110. https://doi.org/10.1086/707495
Khalil, H., Ecke, F., Evander, M., Magnusson, M., & Hörnfeldt, B. (2016). Declining ecosystem health and the dilution effect. Scientific Reports, 6(1), 31314. https://doi.org/10.1038/srep31314
Klaassen, M. (2003, 2003//). Relationships Between Migration and Breeding Strategies in Arctic Breeding Birds. Avian Migration, Berlin, Heidelberg.
Krams, R., Krama, T., Elferts, D., Daukšte, J., Raibarte, P., Brūmelis, G., Dauškane, I., Strode, L., & Krams, I. A. (2022). High Blood Parasite Infection Rate and Low Fitness Suggest That Forest Water Bodies Comprise Ecological Traps for Pied Flycatchers. Birds, 3(2), 221-233. https://doi.org/10.3390/birds3020014
Labocha, M. K., & Hayes, J. P. (2011). Morphometric indices of body condition in birds: a review. Journal of Ornithology, 153(1), 1-22. https://doi.org/10.1007/s10336-011-0706-1
Lagrue, C., & Presswell, B. (2016). Assessing parasite infections from avian faecal samples: The old methods are still the best. Notornis, 63, 32-36.
Lessells, C. M., & Avery, M. I. (1989). Hatching Asynchrony in European Bee-Eaters Merops apiaster. Journal of Animal Ecology, 58(3), 815-835. https://doi.org/10.2307/5126
Libman, M. D., Gyorkos, T. W., Kokoskin, E., & Maclean, J. D. (2008). Detection of pathogenic protozoa in the diagnostic laboratory: result reproducibility, specimen pooling, and competency assessment. J Clin Microbiol, 46(7), 2200-2205. https://doi.org/10.1128/JCM.01666-07
Manzoli, D. E., Antoniazzi, L. R., Saravia, M. J., Silvestri, L., Rorhmann, D., & Beldomenico, P. M. (2013). Multi-level determinants of parasitic fly infection in forest passerines. PLoS One, 8(7), e67104. https://doi.org/10.1371/journal.pone.0067104
Manzoli, D. E., Saravia-Pietropaolo, M. J., Arce, S. I., Percara, A., Antoniazzi, L. R., & Beldomenico, P. M. (2021). Specialist by preference, generalist by need: availability of quality hosts drives parasite choice in a natural multihost-parasite system. Int J Parasitol, 51(7), 527-534. https://doi.org/10.1016/j.ijpara.2020.12.003
Marzal, A., Bensch, S., Reviriego, M., Balbontin, J., & De Lope, F. (2008). Effects of malaria double infection in birds: one plus one is not two. J Evol Biol, 21(4), 979-987. https://doi.org/10.1111/j.1420-9101.2008.01545.x
McHardy, I. H., Wu, M., Shimizu-Cohen, R., Couturier, M. R., & Humphries, R. M. (2014). Detection of intestinal protozoa in the clinical laboratory. J Clin Microbiol, 52(3), 712-720. https://doi.org/10.1128/jcm.02877-13
Merino, S., Moreno, J., Sanz, J. J., & Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc Biol Sci, 267(1461), 2507-2510. https://doi.org/10.1098/rspb.2000.1312
Milenkaya, O., Catlin, D. H., Legge, S., & Walters, J. R. (2015). Body Condition Indices Predict Reproductive Success but Not Survival in a Sedentary, Tropical Bird. PLoS One, 10(8), e0136582. https://doi.org/10.1371/journal.pone.0136582
Minias, P., Gach, K., Wlodarczyk, R., & Janiszewski, T. (2019). Colony size affects nestling immune function: a cross-fostering experiment in a colonial waterbird. Oecologia, 190(2), 333-341. https://doi.org/10.1007/s00442-019-04402-3
Minias, P., Włodarczyk, R., & Janiszewski, T. (2015). Opposing selective pressures may act on the colony size in a waterbird species. Evolutionary Ecology, 29(2), 283-297. https://doi.org/10.1007/s10682-014-9752-5
Møller, A. P., Merino, S., Brown, C. R., & Robertson, R. J. (2001). Immune defense and host sociality: a comparative study of swallows and martins. Am Nat, 158(2), 136-145. https://doi.org/10.1086/321308
Nip, E. J., Frei, B., & Elliott, K. H. (2019). Seasonal and temporal variation in scaled mass index of Black-capped Chickadees (Poecile atricapillus). The Canadian Field-Naturalist, 132(4), 368-377. https://doi.org/10.22621/cfn.v132i4.2015
Nuijten, R. J. M., Vriend, S. J. G., Wood, K. A., Haitjema, T., Rees, E. C., Jongejans, E., & Nolet, B. A. (2020). Apparent breeding success drives long-term population dynamics of a migratory swan. Journal of Avian Biology, 51(11). https://doi.org/https://doi.org/10.1111/jav.02574
O'Brien, V. A., & Brown, C. R. (2011). Group size and nest spacing affect Buggy Creek virus (Togaviridae: Alphavirus) infection in nestling house sparrows. PLoS One, 6(9), e25521. https://doi.org/10.1371/journal.pone.0025521
Oniki-Willis, Y., Willis, E. O., Lopes, L. E., & Rózsa, L. (2023). Museum-Based Research on the Lice (Insecta: Phthiraptera) Infestations of Hummingbirds (Aves: Trochilidae)-Prevalence, Genus Richness and Parasite Associations. Diversity, 15(1).
Peig, J., & Green, A. J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos, 118(12), 1883-1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x
Picman, J., Pribil, S., & Isabelle, A. (2002). Antipredation Value of Colonial Nesting in Yellow-Headed Blackbirds. The Auk, 119(2), 461-472. https://doi.org/10.1093/auk/119.2.461
Pigeault, R., Cozzarolo, C. S., Choquet, R., Strehler, M., Jenkins, T., Delhaye, J., Bovet, L., Wassef, J., Glaizot, O., & Christe, P. (2018). Haemosporidian infection and co-infection affect host survival and reproduction in wild populations of great tits. International journal for parasitology, 48(14), 1079-1087. https://doi.org/10.1016/j.ijpara.2018.06.007
Pigeault, R., Cozzarolo, C. S., Glaizot, O., & Christe, P. (2019). Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in Great Tits Parus major. Ibis, 162(3), 613-626. https://doi.org/10.1111/ibi.12774
Postma, E., & van Noordwijk, A. J. (2005). Genetic Variation for Clutch Size in Natural Populations of Birds from a Reaction Norm Perspective. Ecology, 86(9), 2344-2357. http://www.jstor.org/stable/3451023
Rassouli, M., Darvishi, M. M., & Lima, S. R. R. (2016). Ectoparasite (louse, mite and tick) infestations on female turkeys (Galliformes, Phasianidae. Meleagris gallopavo) in Iran. Journal of parasitic diseases, 40(4), 1226-1229. https://doi.org/10.1007/s12639-015-0657-1
Reséndiz-Infante, C., & Gauthier, G. (2020). Temporal changes in reproductive success and optimal breeding decisions in a long-distance migratory bird. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78565-y
Romagnano, A. (1999). Examination and Preventive Medicine Protocols in Psittacines. Veterinary Clinics of North America: Exotic Animal Practice, 2(2), 333-355. https://doi.org/https://doi.org/10.1016/S1094-9194(17)30127-5

Rönkä, M., Saari, L., Hario, M., Hänninen, J., & Lehikoinen, E. (2011). Breeding success and breeding population trends of waterfowl: Implications for monitoring. Wildlife Biology, 17, 225-239. https://doi.org/10.2981/09-064
Russell, R. E., DiRenzo, G. V., Szymanski, J. A., Alger, K. E., & Grant, E. H. C. (2020). Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease [Policy and Practice Reviews]. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.569016
Sánchez, C. A., Becker, D. J., Teitelbaum, C. S., Barriga, P., Brown, L. M., Majewska, A. A., Hall, R. J., & Altizer, S. (2018). On the relationship between body condition and parasite infection in wildlife: a review and meta‐analysis. Ecology Letters, 21(12), 1869-1884. https://doi.org/10.1111/ele.13160
Sarah, E. B., & Dale, H. C. (2023). Does Preening Behavior Reduce the Prevalence of Avian Feather Lice (Phthiraptera: Ischnocera)? Journal of Parasitology, 109(3), 145-147. https://doi.org/10.1645/23-2
Schuster, R., & Krone, O. (2016). Infectious Diseases. In J. Samour (Ed.), Avian Medicine (Third Edition) (pp. 480). Mosby. https://doi.org/https://doi.org/10.1016/B978-0-7234-3832-8.00014-6
Smalley, I., Blake-Smalley, R., O'Hara-Dhand, K., Jary, Z., & Svircev, Z. (2013). Sand martins favour loess: How the properties of loess ground facilitate the nesting of sand martins/bank swallows/uferschwalben (Riparia riparia Linnaeus 1758). Quaternary International, 296, 216-219. https://doi.org/https://doi.org/10.1016/j.quaint.2012.03.059
Sol, D., Jovani, R., & Torres, J. (2003). Parasite mediated mortality and host immune response explain age-related differences in blood parasitism in birds. Oecologia, 135(4), 542-547. https://doi.org/10.1007/s00442-003-1223-6
Stope, M. B. (2023). The Connection between Immunocompetence and Reproduction in Wildlife. Life, 13(3), 785. https://www.mdpi.com/2075-1729/13/3/785
Strong, A. M., & Sherry, T. W. (2000). Habitat-specific effects of food abundance on the condition of ovenbirds wintering in Jamaica. Journal of Animal Ecology, 69(5), 883-895. https://doi.org/10.1046/j.1365-2656.2000.00447.x
Suh, K. N., Kozarsky, P., & Keystone, J. S. (2015). Cyclospora cayetanensis, Cystoisospora (Isospora) belli, Sarcocystis Species, Balantidium coli, and Blastocystis Species. In J. E. Bennett, R. Dolin, & M. J. Blaser (Eds.), Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (Eighth Edition) (pp. 3184-3191.e3182). W.B. Saunders. https://doi.org/https://doi.org/10.1016/B978-1-4557-4801-3.00285-X
Symonds, M. R. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65(1), 13-21. https://doi.org/10.1007/s00265-010-1037-6
Tella, J. L. (2002). The evolutionary transition to coloniality promotes higher blood parasitism in birds. Journal of Evolutionary Biology, 15(1), 32-41. https://doi.org/https://doi.org/10.1046/j.1420-9101.2002.00375.x
Tortosa, F. S., Pérez, L., & Hillström, L. (2003). Effect of food abundance on laying date and clutch size in the White Stork Ciconia ciconia. Bird Study, 50(2), 112-115. https://doi.org/10.1080/00063650309461302
Townsend, A. K., Wheeler, S. S., Freund, D., Sehgal, R. N. M., & Boyce, W. M. (2018). Links between blood parasites, blood chemistry, and the survival of nestling American crows. Ecol Evol, 8(17), 8779-8790. https://doi.org/10.1002/ece3.4287
Wang, Y.-P., Siefferman, L., Wang, Y.-J., Ding, T.-S., Chiou, C.-R., Shieh, B.-S., Hsu, F.-S., & Yuan, H.-W. (2009). Nest site restoration increases the breeding density of blue-tailed bee-eaters. Biological Conservation, 142(8), 1748-1753. https://doi.org/10.1016/j.biocon.2009.03.013
Ward, P., & Zahavi, A. (1973). THE IMPORTANCE OF CERTAIN ASSEMBLAGES OF BIRDS AS “INFORMATION-CENTRES” FOR FOOD-FINDING. Ibis, 115(4), 517-534. https://doi.org/https://doi.org/10.1111/j.1474-919X.1973.tb01990.x
Williams, R. B. (2005). Avian malaria: clinical and chemical pathology of Plasmodium gallinaceum in the domesticated fowl Gallus gallus. Avian Pathol, 34(1), 29-47. https://doi.org/10.1080/03079450400025430
Wolc, A., Jankowski, T., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., & Dekkers, J. C. M. (2019). Investigating the genetic determination of clutch traits in laying hens. Poultry Science, 98(1), 39-45. https://doi.org/https://doi.org/10.3382/ps/pey354
Wong, M. H. (2021). Tanks, propaganda and tourists: Welcome to Kinmen County. https://edition.cnn.com/travel/article/kinmen-travel-taiwan-china/index.html
World Health, O., Research, U. N. U. W. B. W. S. P. f., & Training in Tropical, D. (2015). Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings (version 1.0): procedure: methods manual. World Health Organization. https://apps.who.int/iris/handle/10665/163782
Yabsley, M. J. (2008). Eimeria. In Parasitic Diseases of Wild Birds (pp. 162-180). https://doi.org/https://doi.org/10.1002/9780813804620.ch8
Yang, L., Zhou, L., & Song, Y. (2015). The effects of food abundance and disturbance on foraging flock patterns of the wintering Hooded Crane (Grus monacha). Avian Research, 6(1), 15. https://doi.org/10.1186/s40657-015-0024-z
Yuan, H. W., Brent Burt, D., Wang, L. P., Chang, W. L., Wang, M. K., Chiou, C. R., & Ding, T. S. (2006). Colony site choice of blue‐tailed bee‐eaters: influences of soil, vegetation, and water quality. Journal of Natural History, 40(7-8), 485-493. https://doi.org/10.1080/00222930600681043
Yuan, H. W., Burt, D., Wang, L. P., Chang, W. L., Wang, M. K., Chiou, C. R., & Ding, T. S. (2006). Colony site choice of blue-tailed bee-eaters: Influences of soil, vegetation, and water quality. Journal of Natural History - J NATUR HIST, 40. https://doi.org/10.1080/00222930600681043
Yuan, H. W., Wang, M. K., Chang, W. L., Wang, L. P., Chen, Y. M., & Chiou, C. R. (2006). Soil composition affects the nesting behavior of blue-tailed bee-eaters (Merops philippinus) on Kinmen Island. Ecological Research, 21(4), 510-512. https://doi.org/10.1007/s11284-006-0183-9
Zylberberg, M., Derryberry, E. P., Breuner, C. W., Macdougall-Shackleton, E. A., Cornelius, J. M., & Hahn, T. P. (2015). Haemoproteus infected birds have increased lifetime reproductive success. Parasitology, 142(8), 1033-1043. https://doi.org/10.1017/S0031182015000256
林昀萱. (2022). 金門栗喉蜂虎生殖群規模對生殖成功之影響 國立臺灣大學]. http://dx.doi.org/10.6342/NTU202202555
蔡佩妤. (2007). 金門島栗喉蜂虎生殖經驗對於繁殖棲地忠實性之影響 (Publication Number 2007年) 國立臺灣大學]. AiritiLibrary.
袁孝維, 王力平, & 丁宗蘇. (2003). 金門島栗喉蜂虎(Merops philipennus)繁殖生物學研究. 國家公園學報, 13(2), 71-84.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88529-
dc.description.abstractNonezh_TW
dc.description.abstractSeveral studies have proved that birds residing in higher density colonies had more chance of infectious disease exposure. Not only parasite infection deteriorate host physical condition, it also indirectly affects the reproductive performance which can affect the population stability. Kinmen island, known to be the only breeding ground of blue-tailed bee-eater (Merops philippinus) within Taiwanese territory, has been removing vegetation periodically to attract more birds to breed in the destined areas. As a result, those areas showed to host higher bird density than the untreated colonies nonetheless its population health has yet been investigated. This study aimed to compare parasite prevalence, body condition, and reproductive performance between birds breeding in natural and treated colonies to determine whether human intervention in effort of conservation has any impact on bee-eater health. The study found that despite birds residing in natural colonies expressed better body condition and brood size, there was no significant difference in parasite prevalence between the colony types. Moreover, none of pathogen infection had significant influence over the body condition nor reproductive performance. This study findings which was in opposition to the initial expectation might be elicited by low disease prevalence, migration strategy, and natural selection. Without any serious health concern, the blue-tailed bee-eaters population in Kinmen island was in acceptable condition thus far. Human intervention by breeding grounds alteration did not have critical impact on its population health and reproductive performance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:42:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:42:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsI. Introduction and literature review 1
II. Methodology 11
III. Results 22
IV. Discussion 28
V. Conclusion 42
References 44
Figures 60
Tables 70
-
dc.language.isoen-
dc.subjectnonezh_TW
dc.subjectbreeding coloniesen
dc.subjectblue-tailed bee-eateren
dc.subjectprevalenceen
dc.subjectparasiteen
dc.subjectbody conditionen
dc.subjectbrood sizeen
dc.title金門栗喉蜂虎身體素質與寄生蟲感染評估zh_TW
dc.titleBody Condition and Parasite Prevalence Assessment of Blue-tailed Bee-eaters (Merops philippinus) in Kinmenen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁宗蘇; 蔡若詩;謝寶森zh_TW
dc.contributor.oralexamcommitteeTzung-Su Ding;Jo-Szu Tsai;Bao-Sen Shiehen
dc.subject.keywordnone,zh_TW
dc.subject.keywordblue-tailed bee-eater,prevalence,parasite,body condition,brood size,breeding colonies,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202302673-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college國際學院-
dc.contributor.author-dept生物多樣性國際碩士學位學程-
顯示於系所單位:生物多樣性國際碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf7.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved