Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富zh_TW
dc.contributor.advisorJean-Fu Kiangen
dc.contributor.author辛佳亮zh_TW
dc.contributor.authorChia-Liang Hsinen
dc.date.accessioned2023-08-15T16:42:11Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-29-
dc.identifier.citationW. Liu, J. Liu, X. Hu, Z. Tang, L. Huang and Y. -L. Wang, Statistical performance analysis of the adaptive orthogonal rejection detector, IEEE Signal Processing Lett., vol. 23, no. 6, pp. 873-877, June 2016, doi: 10.1109/LSP.2016.2550495.
P. Sharma, K. K. Sarma and N. E. Mastorakis, Artificial intelligence aided electronic warfare systems- Recent trends and evolving applications, IEEE Access, vol. 8, pp. 224761-224780, 2020, doi: 10.1109/ACCESS.2020.3044453.
M. Tan, C. Wang, B. Xue and J. Xu, A novel deceptive jamming approach against frequency diverse array radar, IEEE Sensors J., vol. 21, no. 6, pp. 8323-8332, March 15, 2021, doi: 10.1109/JSEN.2020.3045757.
S. D. Berger, Digital radio frequency memory linear range gate stealer spectrum, IEEE Trans. Aerospace Electronic Syst., vol. 39, no. 2, pp. 725-735, April 2003, doi: 10.1109/TAES.2003.1207279.
F. A. Butt, I. H. Naqvi and A. I. Najam, Radar ECCM against deception jamming: A novel approach using bi-static and mono-static radars, Int. Multitopic Conf. (INMIC), 2012, pp. 137-141, doi: 10.1109/INMIC.2012.6511482.
D. Feng, L. Xu, X. Pan and X. Wang, Jamming wideband radar using interrupted-sampling repeater, IEEE Trans. Aerospace Electronic Syst., vol. 53, no. 3, pp. 1341-1354, June 2017, doi: 10.1109/TAES.2017.2670958.
P. Lingadevaru, B. Pardhasaradhi and P. Srihari, Sequential fusion based approach for estimating range gate pull-off parameter in a networked radar system: An ECCM algorithm, IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3185240.
D. Orlando, A novel noise jamming detection algorithm for radar applications, IEEE Signal Processing Lett., vol. 24, no. 2, pp. 206-210, Feb. 2017, doi: 10.1109/LSP.2016.2645793.
J. Schuerger and D. Garmatyuk, Deception jamming modeling in radar sensor networks, IEEE Military Commun. Conf., 2008, pp. 1-7, doi: 10.1109/MILCOM.2008.4753118.
J. Chen, S. Xu, J. Zou and Z. Chen, Interrupted-sampling repeater jamming suppression based on stacked bidirectional gated recurrent unit network and infinite training, IEEE Access, vol. 7, pp. 107428-107437, 2019, doi: 10.1109/ACCESS.2019.2932793.
J. D. Zhang, X. H. Zhu and K. Wang, A waveform diversity technique for countering RGPO, IET Int. Radar Conf., 2009, pp. 1-4, doi: 10.1049/cp.2009.0213.
S. Zhang, Y. Yang, G. Cui, B. Wang, H. Ji and S. Iommelli, Range-velocity jamming suppression algorithm based on adaptive iterative filtering, IEEE Radar Conf., 2016, pp. 1-6, doi: 10.1109/RADAR.2016.7485305.
J. Zhang, D. Zhu and G. Zhang, New antivelocity deception jamming technique using pulses with adaptive initial phases, IEEE Trans. Aerospace Electronic Syst., vol. 49, no. 2, pp. 1290-1300, April 2013, doi: 10.1109/TAES.2013.6494414.
Y. Yang, J. Wu, G. L. Cui, L. Li, L. J. Kong and Y. L. Huang, Optimized phase-coded waveform design against velocity deception, IEEE Radar Conf., 2015, pp. 0400-0404, doi: 10.1109/RADAR.2015.7131032.
M. Soumekh, SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization, IEEE Trans. Aerospace Electronic Syst., vol. 42, no. 1, pp. 191-205, Jan. 2006, doi: 10.1109/TAES.2006.1603414.
J. Akhtar, An ECCM scheme for orthogonal independent range-focusing of real and false targets, IEEE Radar Conf., 2007, pp. 846-849, doi: 10.1109/RADAR.2007.374330.
J. Akhtar, Orthogonal block coded ECCM schemes against repeat radar jammers, IEEE Trans. Aerospace Electronic Syst., vol. 45, no. 3, pp. 1218-1226, July 2009, doi: 10.1109/TAES.2009.5259195.
Y. Li, T. Huang, X. Xu, Y. Liu, L. Wang and Y. C. Eldar, Phase transitions in frequency agile radar using compressed sensing, IEEE Trans. Signal Processing, vol. 69, pp. 4801-4818, 2021, doi: 10.1109/TSP.2021.3099629.
S. Wei, L. Zhang and H. Liu, Joint frequency and PRF agility waveform optimization for high-resolution ISAR imaging, IEEE Trans. Geosci. Remote Sensing, vol. 60, pp. 1-23, 2022, Art no. 5100723, doi: 10.1109/TGRS.2021.3051038.
Y. Quan, Y. Wu, Y. Li, G. Sun, M. Xing, Range-Doppler reconstruction for frequency agile and PRF-jittering radar, IET Radar Sonar Navig., vol. 12, no.3, pp. 348-352, 2018.
L. Lan, et al., Mainlobe deceptive jammer suppression using element-pulse coding with MIMO radar, Signal Processing 182, 107955, 2021.
A. de Maio, A. Farina and F. Gini, Performance analysis of the sidelobe blanking system for two fluctuating jammer models, IEEE Trans. Aerospace Electronic Syst., vol. 41, no. 3, pp. 1082-1091, July 2005, doi: 10.1109/TAES.2005.1541453.
U. Nickel, Design of generalised 2D adaptive sidelobe blanking detectors using the detection margin, Signal Processing, vol. 90, pp. 1357-1372, May 2010.
O. G. Vendik and D. S. Kozlov, Phased antenna array with a sidelobe cancellation for suppression of jamming, IEEE Antennas Wireless Propagat. Lett., vol. 11, pp. 648-650, 2012, doi: 10.1109/LAWP.2012.2203780.
S. Zhao, L. Zhang, Y. Zhou and N. Liu, Signal fusion-based algorithms to discriminate between radar targets and deception jamming in distributed multiple-radar architectures, IEEE Sensors J., vol. 15, no. 11, pp. 6697-6706, Nov. 2015, doi: 10.1109/JSEN.2015.2440769.
Q. Li, L. Zhang, Y. Zhou, S. Zhao, N. Liu and J. Zhang, Discrimination of active false targets based on hermitian distance for distributed multiple-radar architectures, IEEE Access, vol. 7, pp. 71872-71883, 2019, doi: 10.1109/ACCESS.2019.2920365.
P. F. Sammartino, C. J. Baker and H. D. Griffiths, Frequency diverse MIMO techniques for radar, IEEE Trans. Aerospace Electronic Syst., vol. 49, no. 1, pp. 201-222, Jan. 2013, doi: 10.1109/TAES.2013.6404099.
W. -Q. Wang, Overview of frequency diverse array in radar and navigation applications, IET Radar Sonar Navig., vol. 10, 2016.
G. Li, Q. Zhang, Y. Luo, K. Li, L. Su and R. Li, An anti-jamming method of ISAR imaging with FDA-MIMO radar, IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2018, pp. 490-493, doi: 10.1109/SAM.2018.8448422.
Y. Liu, C. Wang, J. Gong and G. Chen, Discrimination of mainlobe deceptive target with meter-wave FDA-MIMO radar, IEEE Commun. Lett., vol. 26, no. 5, pp. 1131-1135, May 2022, doi: 10.1109/LCOMM.2022.3155371.
W. -Q. Wang, H. C. So and A. Farina, FDA-MIMO signal processing for mainlobe jammer suppression, Euro. Signal Processing Conf., 2019, pp. 1-5, doi: 10.23919/EUSIPCO.2019.8902536.
W. Wang, Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays, IEEE Trans. Antennas Propagat., vol. 61, no. 8, pp. 4073-4081, Aug. 2013, doi: 10.1109/TAP.2013.2260515.
W. Khan, I. M. Qureshi and S. Saeed, Frequency diverse array radar with logarithmically increasing frequency offset, IEEE Antennas Wireless Propagat. Lett., vol. 14, pp. 499-502, 2015, doi: 10.1109/LAWP.2014.2368977.
Y. Liao, W. Wang and Z. Zheng, Frequency diverse array beampattern synthesis using symmetrical logarithmic frequency offsets for target indication, IEEE Trans. Antennas Propagat., vol. 67, no. 5, pp. 3505-3509, May 2019, doi: 10.1109/TAP.2019.2900353.
A. Basit, I. M. Qureshi, W. Khan, S. u. Rehman and M. M. Khan, Beam pattern synthesis for an FDA radar with Hamming window-based nonuniform frequency offset, IEEE Antennas Wireless Propagat. Lett., vol. 16, pp. 2283-2286, 2017, doi: 10.1109/LAWP.2017.2714761.
Y. Liao, H. Tang, X. Chen and W. -Q. Wang, Frequency diverse array beampattern synthesis with Taylor windowed frequency offsets, IEEE Antennas Wireless Propagat. Lett., vol. 19, no. 11, pp. 1901-1905, Nov. 2020, doi: 10.1109/LAWP.2020.3024710.
H. Shao, J. Dai, J. Xiong, H. Chen and W. Wang, Dot-shaped range-angle beampattern synthesis for frequency diverse array, IEEE Antennas Wireless Propagat. Lett., vol. 15, pp. 1703-1706, 2016, doi: 10.1109/LAWP.2016.2527818.
Y. Xu, X. Shi, W. Li and J. Xu, Flat-top beampattern synthesis in range and angle domains for frequency diverse array via second-order cone programming, IEEE Antennas Wireless Propagat. Lett., vol. 15, pp. 1479-1482, 2016, doi: 10.1109/LAWP.2015.2513758.
J. Xiong, W. Wang, H. Shao and H. Chen, Frequency diverse array transmit beampattern optimization with genetic algorithm, IEEE Antennas Wireless Propagat. Lett., vol. 16, pp. 469-472, 2017, doi: 10.1109/LAWP.2016.2584078.
Y. Liao, J. Wang and Q. H. Liu, Transmit beampattern synthesis for frequency diverse array with particle swarm frequency offset optimization, IEEE Transactions Antennas Propagat., vol. 69, no. 2, pp. 892-901, Feb. 2021, doi: 10.1109/TAP.2020.3027576.
J. Xu, G. Liao, L. Huang and H. C. So, Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar, IEEE Trans. Signal Processing, vol. 65, no. 4, pp. 973-984, 15 Feb.15, 2017, doi: 10.1109/TSP.2016.2628340.
L. Lan et al., GLRT-based adaptive target detection in FDA-MIMO radar, IEEE Trans. Aerospace Electronic Syst., vol. 57, no. 1, pp. 597-613, Feb. 2021, doi: 10.1109/TAES.2020.3028485.
B. Huang, J. Jian, A. Basit, R. Gui and W. -Q. Wang, Adaptive distributed target detection for FDA-MIMO radar in Gaussian clutter without training data, IEEE Trans. Aerospace Electronic Syst., vol. 58, no. 4, pp. 2961-2972, Aug. 2022, doi: 10.1109/TAES.2022.3145781.
B. Huang, W. -Q. Wang, A. Basit and R. Gui, Bayesian detection in Gaussian clutter for FDA-MIMO radar, IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2655-2667, March 2022, doi: 10.1109/TVT.2021.3139894.
B. Huang, A. Basit, W. -Q. Wang and S. Zhang, Adaptive detection with Bayesian framework for FDA-MIMO radar, IEEE Geosci. Remote Sensing Lett., vol. 19, pp. 1-5, 2022, Art no. 3509505, doi: 10.1109/LGRS.2021.3123654.
B. Huang, A. Basit, R. Gui and W. -Q. Wang, Adaptive moving target detection without training data for FDA-MIMO radar, IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 220-232, Jan. 2022, doi: 10.1109/TVT.2021.3126781.
X. Chen, B. Chen, J. Guan, Y. Huang and Y. He, Space-range-doppler focus-based low-observable moving target detection using frequency diverse array MIMO radar, IEEE Access, vol. 6, pp. 43892-43904, 2018, doi: 10.1109/ACCESS.2018.2863745.
Z. Ding and J. Xie, Joint transmit and receive beamforming for cognitive FDA-MIMO radar with moving target, IEEE Sensors J., vol. 21, no. 18, pp. 20878-20885, 15 Sept.15, 2021, doi: 10.1109/JSEN.2021.3100332.
Y. Zhu, L. Liu, Z. Lu and S. Zhang, Target detection performance analysis of FDA-MIMO radar, IEEE Access, vol. 7, pp. 164276-164285, 2019, doi: 10.1109/ACCESS.2019.2943082.
F. Wen, J. Shi, J. He and T. -K. Truong, 2D-DoD and 2D-DoA estimation using sparse L-shaped EMVS-MIMO radar, IEEE Trans. Aerospace Electronic Syst., vol. 59, no. 2, pp. 2077-2084, April 2023, doi: 10.1109/TAES.2022.3208858.
J. Wang, P. Wang, F. Luo and W. Wu, Waveform design and DoA-DoD estimation of OFDM-LFM signal based on SDFnT for MIMO radar, IEEE Access, vol. 11, pp. 1348-1358, 2023, doi: 10.1109/ACCESS.2022.3233103.
Y. -C. Lin and T. -S. Lee, Max-MUSIC: A low-complexity high-resolution direction finding method for sparse MIMO radars, IEEE Sensors J., vol. 20, no. 24, pp. 14914-14923, 15 Dec.15, 2020, doi: 10.1109/JSEN.2020.3009426.
J. Xiong, W. -Q. Wang and K. Gao, FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis, IEEE Trans. Aerospace Electronic Syst., vol. 54, no. 1, pp. 284-294, Feb. 2018, doi: 10.1109/TAES.2017.2756498.
C. Wen, J. Peng, Y. Zhou and J. Wu, Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario, IEEE Sensors J., vol. 18, no. 10, pp. 4154-4166, May 15, 2018, doi: 10.1109/JSEN.2018.2820905.
J. Xu, G. Liao, S. Zhu, L. Huang and H. C. So, Joint range and angle estimation using MIMO radar with frequency diverse array, IEEE Trans. Signal Processing, vol. 63, no. 13, pp. 3396-3410, July 2015, doi: 10.1109/TSP.2015.2422680.
Yao, W. Wu and D. Fang, Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern, IEEE Trans. Antennas Propagat., vol. 64, no. 10, pp. 4434-4446, Oct. 2016, doi: 10.1109/TAP.2016.2594075.
W. Khan and I. M. Qureshi, Frequency diverse array radar with time-dependent frequency offset, IEEE Antennas Wireless Propagat. Lett., vol. 13, pp. 758-761, 2014, doi: 10.1109/LAWP.2014.2315215.
Y. Wang, W. Li, G. Huang and J. Li, Time-invariant range-angle-dependent beampattern synthesis for FDA radar targets tracking, IEEE Antennas Wireless Propagat. Lett., vol. 16, pp. 2375-2379, 2017, doi: 10.1109/LAWP.2017.2718580.
K. Chen, S. Yang, Y. Chen and S. Qu, Accurate models of time-invariant beampatterns for frequency diverse arrays, IEEE Trans. Antennas Propagat., vol. 67, no. 5, pp. 3022-3029, May 2019, doi: 10.1109/TAP.2019.2896712.
M. Tan, C. Wang and Z. Li, Correction analysis of frequency diverse array radar about time, IEEE Trans. Antennas Propagat., vol. 69, no. 2, pp. 834-847, Feb. 2021, doi: 10.1109/TAP.2020.3016508.
Y. Xu, X. Shi, W. Li, J. Xu and L. Huang, Low-sidelobe range-angle beamforming with FDA using multiple parameter optimization, IEEE Trans. Aerospace Electronic Syst., vol. 55, no. 5, pp. 2214-2225, Oct. 2019, doi: 10.1109/TAES.2018.2883873.
Y. Xu and K. Luk, Enhanced transmit-receive beamforming for frequency diverse array, IEEE Trans. Antennas Propagat., vol. 68, no. 7, pp. 5344-5352, July 2020, doi: 10.1109/TAP.2020.2977717.
Y. Xu, A. Wang and J. Xu, Range-angle transceiver beamforming based on semicircular-FDA scheme, IEEE Trans. Aerospace Electronic Syst., vol. 58, no. 2, pp. 834-843, April 2022, doi: 10.1109/TAES.2021.3111792.
J. Xu, J. Kang, G. Liao and H. C. So, Mainlobe deceptive jammer suppression with FDA-MIMO radar, IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2018, pp. 504-508, doi: 10.1109/SAM.2018.8448961.
L. Lan, G. Liao, J. Xu, Y. Zhang and F. Fioranelli, Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection, IEEE Access, vol. 6, pp. 34582-34597, 2018, doi: 10.1109/ACCESS.2018.2850816.
M. Akcakaya and A. Nehorai, MIMO radar sensitivity analysis for target detection, IEEE Trans. Signal Processing, vol. 59, no. 7, pp. 3241-3250, July 2011, doi: 10.1109/TSP.2011.2141665.
J. Xu, S. Zhu and G. Liao, Space-time-range adaptive processing for airborne radar systems, IEEE Sensors J., vol. 15, no. 3, pp. 1602-1610, March 2015, doi: 10.1109/JSEN.2014.2364594.
Z. Ding, J. Xie, B. Wang and H. Zhang, Robust adaptive null broadening method based on FDA-MIMO radar, IEEE Access, vol. 8, pp. 177976-177983, 2020, doi: 10.1109/ACCESS.2020.3025602.
H. He, P. Stoica and J. Li, Designing unimodular sequence sets with good correlations-Including an application to MIMO radar, IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4391-4405, Nov. 2009, doi: 10.1109/TSP.2009.2025108.
L. Lan, G. Liao, J. Xu, Y. Zhang and B. Liao, Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging, IEEE Trans. Geosci. Remote Sensing, vol. 58, no. 6, pp. 4145-4159, June 2020, doi: 10.1109/TGRS.2019.2961324.
L. Lan, J. Xu, G. Liao, Y. Zhang, F. Fioranelli and H. C. So, Suppression of mainbeam deceptive jammer with FDA-MIMO radar, IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11584-11598, Oct. 2020, doi: 10.1109/TVT.2020.3014689.
R. Gui, W. -Q. Wang and H. Shao, General receiver design for FDA radar, IEEE Radar Conf., 2018, pp. 0280-0285, doi: 10.1109/RADAR.2018.8378571.
B. Liu, L. Wang and Y. Jin, An effective PSO-based memetic algorithm for flow shop scheduling, IEEE Trans. Systems, Man, Cybernetics, Part B, vol. 37, no. 1, pp. 18-27, Feb. 2007, doi: 10.1109/TSMCB.2006.883272.
M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58-73, Feb. 2002, doi: 10.1109/4235.985692.
G. W. Stimson, Introduction to Airborne Radar, 2nd ed., SciTech Publishing, 1998.
F. Gini, A. De Maio and L. Patton, Waveform Design and Diversity for Advanced Radar Systems, London: Institution of Engineering and Technology, 2012.
R. Gui, B. Huang, W. -Q. Wang and Y. Sun, Generalized ambiguity function for FDA radar joint range, angle and Doppler resolution evaluation, IEEE Geosci. Remote Sensing Lett., vol. 19, pp. 1-5, 2022, Art no. 3502305, doi: 10.1109/LGRS.2020.3044351.
M. A. Richards, Fundamentals of Radar Signal Processing, New York: McGraw-Hill, 2005.
L. Tzafri and A. J. Weiss, High-resolution direct position determination Using MVDR, IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6449-6461, Sept. 2016, doi: 10.1109/TWC.2016.2585116.
Y. Guo, G. Liao, Q. Zhang, J. Li and T. Gu, A robust radial velocity estimation method for FDA-SAR, IEEE Geosci. Remote Sensing Lett., vol. 17, no. 4, pp. 646-650, April 2020, doi: 10.1109/LGRS.2019.2929493.
R. Guo, Y. Ni, H. Liu, F. Wang and L. He, Signal diverse array radar for electronic warfare, IEEE Antennas Wireless Propagat. Lett., vol. 16, pp. 2906-2910, 2017, doi: 10.1109/LAWP.2017.2751648.
H. Lee and J. Chun, Virtual array response vector for angle estimation of MIMO radar with a wide-band interleaved OFDM signal, IEEE Commun. Lett., vol. 25, no. 5, pp. 1539-1543, May 2021, doi: 10.1109/LCOMM.2021.3049355.
A. H. Shaikh, X. Dang, T. Ahmed and D. Huang, New transmit-receive array configurations for the MIMO radar with enhanced degrees of freedom, IEEE Commun. Lett., vol. 24, no. 7, pp. 1534-1538, July 2020, doi: 10.1109/LCOMM.2020.2983403.
Z. Huang, X. Li, P. Huang and W. Wang, 2-D DOA estimation for incoherently distributed sources considering mixed circular and noncircular signals in massive MIMO system, IEEE Access, vol. 7, pp. 106900-106911, 2019, doi: 10.1109/ACCESS.2019.2932004.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88528-
dc.description.abstract本論文提出一種新型 FH-LFM-FD-MIMO 雷達系統來檢測和定位真實目標,同時抑制虛假目標干擾信號。由發射陣列發射經過載波頻率優化的線性調頻 (LFM) 脈衝,來實現頻率分集多輸入多輸出(FD-MIMO)和跳頻(FH)方法。結合粒子群優化(PSO)算法和排序值(ROV)映射來生成頻率分集 (FD) 碼,以增強干擾抑制性能為目標,再依據頻率分集 (FD) 碼設定所有發射陣列單元的頻率偏移。應用特定的FD碼來實現跳頻(FH)方法,脈衝重複間隔可抑制頻域和空間域中的干擾信號,接收器檢測到具匹配 FD 代碼的目標回波,同時抑制具不匹配FD碼的假目標干擾信號。再使用第二種 PSO 算法優化聚焦範圍波束形成向量,以實現低旁瓣的聚焦響應。檢測到目標後,應用二維最小方差無失真響應(2D-MVDR)以更精確地定位目標。提出一種二元積分檢測方法來增強嚴重干擾條件下的檢測性能。模擬結果驗證了所提出的FH-LFM-FD-MIMO雷達系統與傳統方法相比可以將輸出信號干擾加噪聲比(SJNR)提高20 dB以上,在給定誤報率下獲得更高的檢測機率,並提高定位精確度。zh_TW
dc.description.abstractA novel FH-LFM-FD-MIMO radar system is proposed to detect and localize true targets while suppressing false-target jamming signals. Linear frequency modulated (LFM) pulses are transmitted by a transmit array, with the carrier frequencies optimized to implement frequency-diverse multiple-input-multiple-output (FD-MIMO) and frequency-hopping (FH) schemes. The frequency offsets at all the transmit-array elements are represented as a frequency-diverse (FD) code, which is generated by combining a particle swarm optimization (PSO) algorithm and a rank-order-value (ROV) mapping to enhance the jamming suppression performance. The frequency-hopping (FH) scheme is implemented by applying specific FD codes in different pulse repetition intervals to suppress jamming signals in both frequency domain and spatial domain. The target echoes carrying matched FD code are detected at the receiver, while the false-target jamming signals carrying mismatched FD codes are suppressed. A spotlight response with low sidelobe level is achieved by optimizing the spotlight-range beamforming vector with a second PSO algorithm. After a target is detected, a two-dimensional minimum-variance distortionless response (2D-MVDR) is applied to pinpoint the target with higher precision. A binary integration detection scheme is proposed to enhance the detection performance under more severe jamming condition. The simulation results verify that the proposed FH-LFM-FD-MIMO radar system can increase the output signal-to-jamming-plus-noise ratio (SJNR) by more than 20 dB compared to conventional approaches, acquiring higher probability of detection under constant false alarm rate and enhancing the localization precision.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:42:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:42:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
中文摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
1 Introduction 1
2 Signal Model 12
3 Design of FD Codebook 21
4 Beamforming Spotlight Response 26
5 Target Detection and Localization 31
5.1 Target Detection 33
5.2 Target Localization 41
6 Simulations and Discussions 47
6.1 Highlight of Contributions 52
7 Conclusions 54
Bibliography 55
-
dc.language.isoen-
dc.subject虛假目標干擾zh_TW
dc.subject偵測zh_TW
dc.subject跳頻zh_TW
dc.subject線性調頻脈衝zh_TW
dc.subject頻率分集多輸入多輸出zh_TW
dc.subject定位zh_TW
dc.subject聚焦響應zh_TW
dc.subjectlocalizationen
dc.subjectFrequency-hoppingen
dc.subjectlinear frequency modulated (LFM) pulseen
dc.subjectfrequency-diverse multiple-multiple-output (FD-MIMO)en
dc.subjectfalse target jammingen
dc.subjectspotlight responseen
dc.subjectdetectionen
dc.title跳頻及頻域分集多輸入多輸出雷達於假目標干擾下之目標偵測和定位zh_TW
dc.titleFrequency-Hopping Frequency-Diverse MIMO Radar for Target Detection and Localization under False-Target Jammingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁建均;李翔傑zh_TW
dc.contributor.oralexamcommitteeJian-jiun Ding;Hsiang-Chieh Leeen
dc.subject.keyword跳頻,線性調頻脈衝,頻率分集多輸入多輸出,虛假目標干擾,聚焦響應,偵測,定位,zh_TW
dc.subject.keywordFrequency-hopping,linear frequency modulated (LFM) pulse,frequency-diverse multiple-multiple-output (FD-MIMO),false target jamming,spotlight response,detection,localization,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202302364-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved