Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林書妍zh_TW
dc.contributor.advisorShu-Yen Linen
dc.contributor.author久住明音zh_TW
dc.contributor.authorAkane KUSUMIen
dc.date.accessioned2023-08-15T16:41:39Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citationAhmed, D.M., A.R. Yousef and H.S.A. Hassan. 2010. Relationship between electrical conductivity, softening and color of Fuerte avocado fruits during ripening. Agriculture and Biology Journal of North America. 1:878-885.
Andaur, J.E., A.R. Guesalaga, E.E. Agosin, M.W. Guarini and P. Irarrázaval. 2004. Magnetic resonance imaging for nondestructive analysis of wine grapes. J. Agric. Food Chem. 52:165–170.
Arancibia-Guerra, C., G. Núñez-Lillo, A. Cáceres-Mella, E. Carrera, C. Meneses, N. Kuhn and R. Pedreschi. 2022. Color desynchronization with softening of ‘Hass’ avocado: Targeted pigment, hormone and gene expression analysis. Postharvest Biol. Technol. 194:112067.
Arzate-Vázquez, I., J.J. Chanona-Pérez, M.D.J. Perea-Flores, G. Calderón-Domínguez, M.A. Moreno-Armendáriz, H. Calvo, S. Godoy-Calderón, R. Quevedo and G. Gutiérrez-López. 2011. Image processing applied to the classification of avocado variety Hass (Persea americana Mill.) during the ripening process. Food Bioprocess Technol. 4:1307-1313.
Aubert, C., G. Chalot, S. Lurol, A. Ronjon and V. Cottet. 2019. Relationship between fruit density and quality parameters, levels of sugars, organic acids, bioactive compounds and volatiles of two nectarine cultivars, at harvest and after ripening. Food Chem. 297:124954.
Awad, T.S., H.A. Moharram, O.E. Shaltout, D.Y.M.M Asker and M.M. Youssef. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48:410-427.
Bennett, A.B., G.M. Smith and B.G. Nichols. 1987. Regulation of climacteric respiration in ripening avocado fruit. Plant Physiol. 83:973-976.
Bergh, B. and N. Ellstrand. 1986. Taxonomy of the avocado. California Avocado Society Yearbook, 70: 135-146.
Bernardini, F., J. Mittleman, H. Rushmeier, C. Silva and G. Taubin. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph.5:349-359.
Blakey, R.J., J.P. Bower and I. Bertling. 2009. Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using Near Infrared Spectroscopy. Postharvest Biol. Technol. 53:72-76.
Bora, P.S., N. Narain, R.V. Rocha and M.Q. Paulo. 2001. Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasas Aceites. 52:171-174.
Bozokalfa, M.K. and M. Kilic. 2010. Mathematical modeling in the estimation of pepper (Capsicum annuum L.) fruit volume. Chil. J. Agric. Res. 70:626-632.
Burdon, J., N. Lallu, G. Haynes, K. Francis, M. Patel, T. Laurie and J. Hardy. 2013. Relationship between dry matter and ripening time in 'hass' avocado. VI International
Conference on Managing Quality in Chains 1091:291-296.
Chen, C., Y.P. Chiang and Y. Pomeranz. 1989. Image analysis and characterization of cereal grains with a laser range finder and camera contour extractor. Cereal Chem. 66:466-470.
Cho, B.H., K. Koyama, E. Olivares Díaz and S. Koseki. 2020. Determination of “Hass” avocado ripeness during storage based on smartphone image and machine learning model. Food Bioproc. Tech. 13:1579-1587.
Clark, C.J., A. White, R.B. Jordan and A.B. Woolf. 2007. Challenges associated with segregation of avocados of differing maturity using density sorting at harvest. Postharvest Biol. Technol. 46:119-127.
Clark, C.J., V.A. McGlone, C. Requejo, A. White and A.B. Woolf. 2003. Dry matter determination in ‘Hass’ avocado by NIR spectroscopy. Postharvest Biol. Technol. 29:301-308.
Cutting, J.G.M., B.N. Wolstenholme and J. Hardy. 1992. Increasing relative maturity alters the base mineral composition and phenolic concentration of avocado fruit. J. Hortic. Sci. 67: 761-768.
Ernst, A.A. 2012. Interaction of storage, ethylene and ethylene inhibitors on post-harvest quality of ‘Maluma’. South African Avocado Growers’ Association Yearbook 35:34-40
Feng, X., A. Apelbaum, E.C. Sisler and R. Goren. 2000. Control of ethylene responses in avocado fruit with 1-methylcyclopropene. Postharvest Biol. Technol. 20:143-150.
Flitsanov, U., A. Mizrach, A. Liberzon, M. Akerman and G. Zauberman. 2000. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20:279–286.
Fuentealba, C., I. Hernández, I., J.A. Olaeta, B. Defilippi, C. Meneses, R. Campos, S. Lurie, S. Carpentier and R. Pedreschi. 2017. New insights into the heterogeneous ripening in Hass avocado via LC–MS/MS proteomics. Postharvest Biol. Technol. 132:51-61.
Funasho Shoji Co., Ltd. n.d. “Facility”. https://www.funasho-s.co.jp/eng/facility.html Referred on 2023.06.13. Gaete‐Garretón, L., Y. Vargas‐Hernndez, C. León‐Vidal and A. Pettorino‐Besnier. 2005. A novel noninvasive ultrasonic method to assess avocado ripening. J. Food Sci. 70:187-191.
Gall, H. 1997. A ring sensor system using a modified polar coordinate system to describe the shape of irregular objects. Meas. Sci. Technol. 8:1228.
Gamble, J., F.R. Harker, S.R. Jaeger, A. White, C. Bava, M. Beresford, B. Stubbings, M. Wohlers, P.J. Hofman, R. Marques and A.Woolf. 2010. The impact of dry matter, ripeness and internal defects on consumer perceptions of avocado quality and intentions to purchase. Postharvest Biol. Technol. 57:35-43.
Hernández, I., C. Fuentealba, J.A. Olaeta, S. Lurie, B.G. Defilippi, R. Campos-Vargas and R. Pedreschi. 2016. Factors associated with postharvest ripening heterogeneity of ‘Hass’ avocados (Persea americana Mill). Fruits. 71:259-268.
Hershkovitz, V., H. Friedman, E.E. Goldschmidt and E. Pesis. 2009. The role of the embryo and ethylene in avocado fruit mesocarp discoloration. J. Exp. Bot. 60:791-799.
Hershkovitz, V., S.I. Saguy and E. Pesis. 2005. Postharvest application of 1-MCP to improve the quality of various avocado cultivars. Postharvest Biol. Technol. 37:252-264.
Hofman, P.J., J. Bower and A. Woolf. 2013. Harvesting, packing, postharvest technology, transport and processing. p.489-540. In: Schaffer, B., B.N. Wolstenholme and A.W. Whiley (eds.). The avocado: botany, production and uses. 2nd Edition. CABI International, Wallingford, UK.
Hofman, P.J., M. Jobin-Décor and J. Giles. 2000. Percentage of dry matter and oil content are not reliable indicators of fruit maturity or quality in late-harvested ‘Hass’ avocado. HortScience. 35:694-695.
Hor, S., M. Léchaudel, H. Mith and C. Bugaud. 2020. Fruit density: A reliable indicator of sensory quality for mango. Sci. Hortic. 272:109548.
Jaramillo-Acevedo, C.A., W.E. Choque-Valderrama, G.E. Guerrero-Álvarez and C. A. Meneses-Escobar. 2020. Hass avocado ripeness classification by mobile devices using digital image processing and ANN methods. Int. J. Food Eng. 16:20190161.
Jarimopas, B., T. Nunak and N. Nunak. 2005. Electronic device for measuring volume of selected fruit and vegetables. Postharvest Biol. Technol. 35:25-31.
Jordan, R.B., E.F. Walton, K.U. Klages and R.J. Seelye. 2000. Postharvest fruit density as an indicator of dry matter and ripened soluble solids of kiwifruit. Postharvest Biol. Technol. 20:163-173.
Kazhdan, M. and H. Hoppe. 2013. Screened poisson surface reconstruction. ACM Trans. Graph. 32:1-13.
Kazhdan, M., M. Bolitho and H. Hoppe. 2006. Poisson surface reconstruction. In Proceedings of the fourth Eurographics Symposium on Geometry Processing. 61–70
Khajehdizaj, F.P., A. Taghizadeh and B.B. Nobari. 2014. Effect of feeding microwave irradiated sorghum grain on nutrient utilization, rumen fermentation and serum metabolites in sheep. Livest. Sci. 167: 161-170.
Koc, A.B. 2007. Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biol. Technol. 45:366-371.
Kokawa, M., A. Hashimoto, X. Li, M. Tsuta and Y. Kitamura. 2020. Estimation of ‘Hass’ avocado (Persea americana Mill.) ripeness by fluorescence fingerprint measurement. Food Anal. Methods. 13:892-901.
Lee, D.J., R. M. Lane and G. H. Chang. 2001. Three-dimensional reconstruction for high-speed volume measurement. p. 258-267. In: K.G. Harding, J.W.V. Miller and B.G. Batchelor (eds.). Machine vision and three-dimensional imaging systems for inspection and metrology. SPIE, Washington, USA.
Lee, S.K., R.E. Young, P.M. Schiffman and C.W. Coggins. 1983. Maturity studies of avocado fruit based on picking dates and dry weight. J. Am. Soc. Hortic. Sci. 108:390-394.
Lewis, C.E., 1978. The maturity of avocados—a general review. J. Sci. Food Agric. 29:857-866.
Lin, X., H. Zhang, L. Hu, G. Zhao, S. Svanberg and K. Svanberg. 2020. Ripening of avocado fruits studied by spectroscopic techniques. J. Biophotonics. 13:202000076.
Liu, F.W. 1976. Banana response to low concentrations of ethylene. J. Am. Soc. Hortic. Sci. 101:222-224.
Liu, X., J. Sievert, M.L. Arpaia and M.A. Madore. 2002. Postulated physiological roles of the seven-carbon sugars, mannoheptulose, and perseitol in avocado. J. Am. Soc. Hortic. Sci. 127:108-114.
Lorente, D., N. Aleixos, J.U.A.N. Gómez-Sanchis, S. Cubero, O.L. García-Navarrete and J. Blasco. 2012. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Tech. 5:1121-1142.
Lufu, R., A. Ambaw and U.L. Opara. 2020. Water loss of fresh fruit: Influencing pre-harvest, harvest, and postharvest factors. Sci. Hortic. 272:109519.
Maftoonazad, N., Y. Karimi, H.S. Ramaswamy and S. O. Prasher. 2011. Artificial neural network modeling of hyperspectral radiometric data for quality changes associated with avocados during storage. J Food Process. Preserv. 35:432-446.
Magwaza, L.S. and S.Z. Tesfay. 2015. A review of destructive and non-destructive methods for determining avocado fruit maturity. Food Bioproc. Tech. 8:1995-2011.
Maisl, M., S. Kasperl, S. Oeckl and A. Wolff. 2006. Process monitoring using three dimensional computed tomography and automatic image processing. In Proceedings of the 9th European Conference on Non-Destructive Testing. 1-6.
Mardigan, L., A. Kwiatkowski, J. Castro and E. Clemente. 2014. Application of biofilms on fruits of avocado (Persea Americana Miller) in Postharvest. Int. J. Sci. 3:35-45.
McGlone, V.A., R.B. Jordan, R. Seelye and P.J. Martinsen. 2002. Comparing density and NIR methods for measurement of kiwifruit dry matter and soluble solids content. Postharvest Biol. Technol. 26:191-198.
Melado-Herreros, A., S. Nieto-Ortega, I. Olabarrieta, M. Gutiérrez, A. Villar, J. Zufía, N. Gorretta and J.M. Roger. 2021. Postharvest ripeness assessment of ‘Hass’ avocado based on development of a new ripening index and Vis-NIR spectroscopy. Postharvest Biol. Technol. 181:111683.
Miraei Ashtiani, S.H., A. Salarikia, M.R. Golzarian and B. Emadi. 2016. Non-destructive estimation of mechanical and chemical properties of persimmons by ultrasonic spectroscopy. Int. J. Food Prop. 19:1522-1534.
Mishra, P., M. Paillart, L. Meesters, E. Woltering, A. Chauhan and G. Polder. 2021. Assessing avocado firmness at different dehydration levels in a multi-sensor framework. Infrared Phys. Technol. 118:103901.
Mizrach, A. and U. Flitsanov. 1999. Nondestructive ultrasonic determination of avocado softening process. J. Food Eng. 40:139-144.
Mizrach, A., N. Galili, S. Gan-Mor, U. Flitsanov and I. Prigozin. 1996. Models of ultrasonic parameters to assess avocado properties and shelf life. J. Agric. Eng. Res.65:261-267.
Mohsenin, N.N. 1970. Physical properties of plant and animal materials. Gordon and Breach Science Publishers, New York, USA.
Moreda, G.P., J. Ortiz-Cañavate, F.J. García-Ramos and M. Ruiz-Altisent. 2009. Non-destructive technologies for fruit and vegetable size determination–a review. J. Food Eng. 92:119-136.
Ncama, K., L.S. Magwaza, C.A. Poblete-Echeverria, H.H. Nieuwoudt, S.Z. Tesfay and A. Mditshwa. 2018. On-tree indexing of ‘Hass’ avocado fruit by non-destructive assessment of pulp dry matter and oil content. Biosyst. Eng. 174:41-49.
Osondu, H.A.A., S.A. Akinola, T. Shoko, S.K. Pillai and D. Sivakumar. 2022. Coating properties, resistance response, molecular mechanisms and anthracnose decay reduction in green skin avocado fruit (‘Fuerte’) coated with chitosan hydrochloride loaded with functional compounds. Postharvest Biol. Technol. 186:111812.
Ozdemir, F. and A. Topuz. 2004. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 86:79–83.
Pedreschi, R., P. Muñoz, P. Robledo, C. Becerra, B.G. Defilippi, H. van Eekelen, R. Mumm, E. Westra and R.C. De Vos. 2014. Metabolomics analysis of postharvest ripening heterogeneity of ‘Hass’ avocadoes. Postharvest Biol. Technol. 92:172-179.
Pedreschi, R., V. Uarrota, C. Fuentealba, J.E. Alvaro, P. Olmedo, B.G. Defilippi, C. Meneses and R. Campos-Vargas. 2019. Primary metabolism in avocado fruit. Front.Plant Sci. 10:795.
Pesis, E., Y. Fuchs and G. Zauberman. 1978. Cellulase activity and fruit softening in avocado. Plant Physiol. 61:416-419.
Ranney, C. 1991. Relationship between physiological maturity and percent dry matter of avocados. California Avocado Soc. Yrbk. 75:71–85.
Rowell, A.W.G. 1988. Cold storage capacity of avocados from different geographic regions. South African Avocado Growers’ Assn. Yrbk. 11:41-47.
Sacher, J.A. 1962. Relations between changes in membrane permeability and the climacteric in banana and avocado. Nature. 195:577-578.
Schmilovitch, Z., A. Hoffman, H. Egozi, R. El-Batzri and C. Degani. 1997. Determination of avocado maturity by near-infrared spectrometry. In III International Symposium on Sensors in Horticulture 562:175-179.
Self, G.K., E. Ordozgoiti, M.J.W. Povey and H. Wainwright. 1994. Ultrasonic evaluation of ripening avocado flesh. Postharvest Biol. Technol. 4:111-116.
Shezi, S., L.S. Magwaza, S.Z. Tesfay and A. Mditshwa. 2020. Biochemical changes in response to canopy position of avocado fruit (cv.‘Carmen’and ‘Hass’) during growth and development and relationship with maturity. Sci. Hortic. 265:109227.
Sowmya, V., K.P. Soman and M. Hassaballah. 2019. Hyperspectral image: Fundamentals and advances. p.401-424. In: M. Hassaballah and K.M. Hosny (eds.). Recent Advances in Computer Vision: Theories and Applications. Springer Cham, Cham, Switzerland.
Storey, W.B., B. Bergh and G.A. Zentmyer. 1986. The origin, indigenous range, and dissemination of the avocado. California Avocado Soc. Yrbk. 70:127-133.
Tan, C.X. 2019. Virgin avocado oil: An emerging source of functional fruit oil. J. Funct. Foods. 54:381-392.
Teng, S.W., H. Tung-Chuan, J.J. Shyr and A. Wakana. 2016. Lipid content and fatty acid composition in Taiwan avocados (Persea americana Mill). J. Fac. Agr., Kyushu Univ., 61: 65–70.
Tinyane, P.P., P. Soundy and D. Sivakumar. 2018. Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Sci. Hortic. 230:43-49.
Uarrota, V.G. and R. Pedreschi. 2022. Mathematical modelling of Hass avocado firmness by using destructive and non-destructive devices at different maturity stages and under two storage conditions. Folia Hortic. 34:139-150.
Wang, M., Y. Xu, Y. Yang, B. Mo, M.A. Nikitina and X. Xiao. 2022. Vis/NIR optical biosensors applications for fruit monitoring. Biosens. Bioelectron. X:100197.
Wang, W. and C. Li. 2014. Size estimation of sweet onions using consumer-grade RGB-depth sensor. J. Food Eng. 142:153-162.
Wang, W., T.R. Bostic and L. Gu. 2010. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 122:1193-1198.
Wedding, B.B., C. Wright, S. Grauf and R.D. White. 2012. The application of near infrared spectroscopy for the assessment of avocado quality attributes. p.211-230. In: T. Theophanides (ed.). Infrared Spectroscopy - Life and Biomedical Sciences. InTechOpen, London, UK.
Woolf, A., C. Clark, E. Terander, V. Phetsomphou, R. Hofshi, M.L. Arpaia, D. Boreham, M. Wong and A. White. 2003. Measuring avocado maturity; ongoing developments. The Orchidardist. 40-45.
Woolf, A.B., I.B. Ferguson, L.C. Requejo-Tapia, L. Boyd, W.A. Laing and A. White. 1999. Impact of sun exposure on harvest quality of ‘Hass’ avocado fruit. Rev. Chapingo Ser. Hortic. 5:353-358.
Wu, C.J., M.C. Lin and H.F. Ni. 2023. Colletotrichum species causing anthracnose disease on avocado fruit in Taiwan. Eur. J. Plant Pathol. 165: 629-647.
Wu, H., C. Chou, T.L. Chang and I.Z. Chen. 2007. Genetic relationship estimation of Taiwan avocado cultivars by volatile constituents of leaves. In Proceedings VI World Avocado Congress, Viña del Mar, Chile:12-16.
Xi, W., Y. Liu, W. Zhao, R. Hu and X. Luo. 2021. Colored radiative cooling: How to balance color display and radiative cooling performance. Int. J. Therm. Sci. 170: 107172.
Yokohama Customs. 2021. “Avocado-no-yunyu”. https://www.customs.go.jp/yokohama/toukei/topics/data/2109avocado.pdf. Referred on 2023. 06. 13. In Japanese.
Zhang, J., X. Wang, J. Xia, S. Xing and X. Zhang. 2022. Flexible sensing enabled intelligent manipulator system (FSIMS) for avocados (Persea Americana Mill) ripeness grading. J. Clean. Prod. 132599.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88526-
dc.description.abstract酪梨(Persea americana)是一種全球貿易的水果,果實收穫時的狀態會影響後熟與否和達到最佳食用狀態所需的時間。 儘管關於酪梨採收的判斷已有許多採收指標,但用於預測後熟期的非破壞性技術仍然不足。本研究旨在建立一種非破壞性的密度測量方法,以三維重建法作為預測酪梨後熟的指標,並了解‘Red Fairy’、‘Choquette’和‘Hass’三個品種酪梨在後熟期間的物性變化。自果實採收後開始,在果實後熟期間每 2 天進行重量、體積、硬度和果皮顏色的測量。此外,每 2 天拍攝果實的三維模型,並在成熟時評估種子特性。當質構儀測得的水果硬度達到 10N 以下時,即視為完全後熟。根據果實第一次密度測量的結果將其分為高、中、低共3 組密度。當有果實開始達到後熟時,‘Red Fairy’和‘Hass’的最高密度組顯示出較高的硬度和較綠的顏色,表明成熟較慢;‘Choquette’的最高密度組顯示出顯著較低的硬度和較大的顏色變化,表明成熟較快。由於整個水果密度與不同天數的硬度或顏色指標之間存在顯著相關性,因此建立了回歸模型。然而,模型的 R 平方值小於 0.50,說明在建構的模型尚無法很好的預測,所使用的參數可能需要更多考量,雖然進一步考慮種子大小或種子空間,但並未改善相關係數和 R 平方值。最後,以‘Red Fairy’為材料,確定應用三維重建法是否可以取代傳統用於測量水果體積的排水法。使用兩種不同方法進行的體積測量具有顯著的相關性(R2 = 0.988,p<0.01),說明使用三維重建法可以替代傳統排水法,而三維拍攝重建法量測體積具有好的效率。基於重建法的密度分類也表明最高密度組傾向於成熟緩慢,這與排水法獲得的結果相符。總和以上結果,對採收後、剛開始後熟的果實,以簡單的果實物理特性測量結果可以提供酪梨後熟行為的初步預估。zh_TW
dc.description.abstractAvocado (Persea americana) is a globally traded fruit, and its condition during harvest can affect the successful ripening and time required to reach the optimal edible state. Although numerous harvesting guidelines exist, non-destructive techniques for predicting the ripening period are insufficient. This study aimed to establish a nondestructive density measurement by the 3D reconstruction method as an indicator for avocado ripening prediction. Fruits of ‘Red Fairy’, ‘Choquette’, and ‘Hass’ were measured for weight, volume, firmness, and skin color every 2 days during ripening. Besides, 3D models of fruits were acquired every 2 days, too, and seed characteristics were evaluated at ripening. When the firmness of a fruit measured by a texture analyzer reached below 10N, it was regarded as ripe. The fruits were divided into 3 groups based on the first density measurement. When the earliest fruits reached ripening, the highest density groups of ‘Red Fairy’ and ‘Hass’ showed significantly higher firmness and greener color, indicating slower ripening; that of ‘Choquette’ exhibited significantly lower firmness and bigger color change, indicating faster ripening. Although the opposite trend was observed, it roughly succeeded to classify slow- or fast-ripening fruit by density. Then, regression models were developed since significant correlations were observed between whole fruit density and firmness or color indicators from different days. However, their R-squared values were less than 0.50, implying that those models may not be suitable for predicting those parameters practically. Further consideration of seed size or seed space did not improve correlation coefficients and R-squared values. Finally, an investigation was conducted with ‘Red Fairy’ to determine whether the 3D reconstruction method could replace the displacement method, which has been conventionally used in measuring the fruit volume. Volume measurements using two different methods showed a significant similarity (R2 = 0.988, p < 0.01), highlighting the efficiency of the 3D reconstruction method. Density classifications based on the reconstruction method also demonstrated that the highest-density group tended to ripen slowly, matching the results obtained by the displacement method. Those results demonstrate that simple fruit characteristic measurements can provide a preliminary estimation of avocado ripening behavior.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:41:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:41:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
中文摘要 iii
Table of Contents iv
Introduction 1
Introduction-Avocado fruit maturity 2
Introduction-Avocado ripening and issues 3
Introduction-Predicting avocado fruit ripening status 4
Introduction-The relationship between fruit maturity at harvest and post-harvest ripening 5
Introduction-Density at the beginning of ripening as a parameter of fruit quality 6
Introduction-Density changes during ripening in avocado fruits 8
Introduction-Fruit volume measurement method 8
Objectives 10
Materials and Methods-Avocado samples and storage conditions 11
Materials and Methods-Acquirement of ripening parameters during ripening 11
Materials and Methods-Acquirement of other parameters during ripening 12
Materials and Methods-Development of fruit models with the 3D reconstruction method 12
Materials and Methods-Development of fruit models with the 3D reconstruction method 13
Materials and Methods-Statistical analysis 14
Results and Discussions-Determination of the definition of ripening 15
Results and Discussions-Ripening traits of each sample batch of three tested avocado cultivars 16
Results and Discussions-Changes in measured parameters during ripening 16
Results and Discussions-Results of principal component analysis showing factors that contributed to the
ripening 18
Results and Discussions-Relationships between density and firmness or color 20
Results and Discussions-Predictions of ripening parameters based on whole fruit density calculated by the
displacement method 21
Results and Discussions-Effect of seed weight and seed space on whole fruit density 23
Results and Discussions-Potential factors weakening relationships between density and ripening 25
Results and Discussions-Comparison of relations of whole fruit density and firmness during ripening with
respect to firmness 26
Results and Discussions-Comparison of volume measurement by the displacement method and the 3D
reconstruction method 28
Results and Discussions-Comparison of volume measurement by the displacement method and the 3D
reconstruction method 28
Results and Discussions-Predictions of ripening parameters based on whole fruit density calculated by the 3D
reconstruction method 29
Conclusions 31
References 33
-
dc.language.isoen-
dc.subject三維影像zh_TW
dc.subject酪梨zh_TW
dc.subject後熟zh_TW
dc.subject密度zh_TW
dc.subject體積測量zh_TW
dc.subjectripenessen
dc.subjectPersea americanaen
dc.subject3D imagingen
dc.subjectvolume estimationen
dc.subjectdensityen
dc.title酪梨後熟期間果實密度及性狀特徴之研究zh_TW
dc.titleA Study of the Correlation Between Fruit Density and Physical Properties on Avocado Ripeningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳柏安;陳世芳zh_TW
dc.contributor.oralexamcommitteePo-An Chen;Shih-Fang Chenen
dc.subject.keyword酪梨,後熟,密度,體積測量,三維影像,zh_TW
dc.subject.keywordPersea americana,ripeness,density,volume estimation,3D imaging,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202302656-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved