請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88515
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛宇甯 | zh_TW |
dc.contributor.advisor | Louis Ge | en |
dc.contributor.author | 李文迪 | zh_TW |
dc.contributor.author | Wen-Di Lee | en |
dc.date.accessioned | 2023-08-15T16:38:41Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-27 | - |
dc.identifier.citation | Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction workflows. Remote Sensing, 10(7), 1091.
Alidoost, F., & Arefi, H. (2017). Comparison of UAS-based photogrammetry software for 3D point cloud generation: a survey over a historical site. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4. Arias, A. (1970). A measure of earthquake intensity. Seismic Design for Nuclear Plants, 438-483. Bahmanpour, A., Towhata, I., Sakr, M., Mahmoud, M., Yamamoto, Y., & Yamada, S. (2019). The effect of underground columns on the mitigation of liquefaction in shaking table model experiments. Soil Dynamics and Earthquake Engineering, 116, 15-30. Bardet, J., & Kapuskar, M. (1993). Liquefaction sand boils in San Francisco during 1989 Loma Prieta earthquake. Journal of geotechnical engineering, 119(3), 543-562. Bray, J. D., & Macedo, J. (2017). 6th Ishihara lecture: Simplified procedure for estimating liquefaction-induced building settlement. Soil Dynamics and Earthquake Engineering, 102, 215-231. Brennan, A. (2008). Observations on sand boils from simple model tests Geotechnical Earthquake Engineering and Soil Dynamics IV (pp. 1-10). Castiglia, M., de Magistris, F. S., & Koseki, J. (2019). Uplift of buried pipelines in liquefiable soils using shaking table apparatus Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (pp. 1638-1646): CRC Press. DeWitt, B. A., & Wolf, P. R. (2000). Elements of photogrammetry with applications in GIS. In: McGraw-Hill Higher Education. Dou, H., & Byrne, P. M. (1997). Model studies of boundary effect on dynamic soil response. Canadian Geotechnical Journal, 34(3), 460-465. Elgamal, A., Zeghal, M., Taboada, V., & Dobry, R. (1996). Analysis of site liquefaction and lateral spreading using centrifuge testing records. Soils and Foundations, 36(2), 111-121. Fiegel, G. L., & Kutter, B. L. (1994). Liquefaction mechanism for layered soils. Journal of geotechnical engineering, 120(4), 737-755. Fishman, K., Mander, J., & Richards Jr, R. (1995). Laboratory study of seismic free-field response of sand. Soil Dynamics and Earthquake Engineering, 14(1), 33-43. Hwang, J.-H., Yang, C.-W., & Chen, C.-H. (2003). Investigations on soil liquefaction during the Chi-Chi earthquake. Soils and Foundations, 43(6), 107-123. Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 29(1), 105-118. Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451. Ishikawa, T., Yoshimi, M., Isobe, K., & Yokohama, S. (2021). Reconnaissance report on geotechnical damage caused by 2018 Hokkaido Eastern Iburi earthquake with JMA seismic intensity 7. Soils and Foundations, 61(4), 1151-1171. Kim, H. S., Kim, M., Baise, L. G., & Kim, B. (2021). Local and regional evaluation of liquefaction potential index and liquefaction severity number for liquefaction-induced sand boils in pohang, South Korea. Soil Dynamics and Earthquake Engineering, 141, Article 106459. Ko, Y. Y., & Chen, C. H. (2020). On the variation of mechanical properties of saturated sand during liquefaction observed in shaking table tests. Soil Dynamics and Earthquake Engineering, 129, 105946. Ko, Y. Y., & Li, Y. T. (2020). Response of a scale-model pile group for a jacket foundation of an offshore wind turbine in liquefiable ground during shaking table tests. Earthquake Engineering and Structural Dynamics, 49(15), 1682-1701. Koga, Y., & Matsuo, O. (1990). Shaking table tests of embankments resting on liquefiable sandy ground. Soils and Foundations, 30(4), 162-174. Kramer, S. L., & Seed, H. B. (1988). Initiation of soil liquefaction under static loading conditions. Journal of geotechnical engineering, 114(4), 412-430. Langhaar, H. L. (1951). Dimensional analysis and theory of models. Lin, M. L., & Wang, K. L. (2006). Seismic slope behavior in a large-scale shaking table model test. Engineering Geology, 86(2), 118-133. Liu, C. Y., Li, C. H., Chan, P. C., Hung, C. H., & Lin, M. L. (2021). 3D sandbox and numerical modeling of coseismic surface rupture induced by oblique-slip faulting and its interaction with embedded shallow foundation. Engineering Geology, 282, 105990. Lombardi, D., Bhattacharya, S., Scarpa, F., & Bianchi, M. (2015). Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dynamics and Earthquake Engineering, 69, 46-56. Meymand, P. J. (1998). Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. University of California, Berkeley. Moretti, M., Alfaro, P., Caselles, O., & Canas, J. (1999). Modelling seismites with a digital shaking table. Tectonophysics, 304(4), 369-383. National Research Council. (1985). Liquefaction of Soils During Earthquakes (No. PB86-163110). Washington, DC: The National Academies Press. Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1-15. Nokande, S., Jafarian, Y., & Haddad, A. (2023). Shaking table tests on the liquefaction-induced uplift displacement of circular tunnel structure. Underground Space, 10, 182-198. O’Rourke, T., & Lane, P. A. (1989). Liquefaction hazards and their effects on buried pipelines. O’Rourke, T., & Hamada, M. (1992). Case studies of liquefaction and lifeline performance during past earthquakes: Volume 2, United States case studies. National Center for Earthquake Engineering Research, State University of New York, Buffalo, NY. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1-4), 1-76. Rauch, A. F. (1997). EPOLLS: an empirical method for prediciting surface displacements due to liquefaction-induced lateral spreading in earthquakes [Doctoral Dissertations, Virginia Polytechnic Institute and State University]. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2012). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 25-31. Seed, H. B. (1976). Evaluation of soil liquefaction effects on level ground during earthquakes. Seed, H. B., & Idriss, I. M. (1967). Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 93(3), 83-108. Takano, D., Morikawa, Y., & Takahashi, H. (2016). Centrifuge modeling of sand boil on sand containing silt. Japanese Geotechnical Society Special Publication, 2(23), 875-879. Tobita, T. (2019). Mechanism of liquefaction-induced settlements with sand boiling. The 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Taipei, Taiwan. Tsai, C. C., Hwang, Y. W., & Lu, C. C. (2020). Liquefaction, building settlement, and residual strength of two residential areas during the 2016 southern Taiwan earthquake. Acta Geotechnica, 15, 1363-1379. Tsai, C. C., Lin, W. C., Chu, M. C., & Chi, C. C. (2022). Experimental study on the mechanism of sand boils and associated settlements due to soil liquefaction in loose sand. Engineering Geology, 306, Article 106708. Wang, K. L., & Lin, M. L. (2011). Initiation and displacement of landslide induced by earthquake — a study of shaking table model slope test. Engineering Geology, 122(1), 106-114. Whitman, R. V., & Lambe, P. C. (1986). Effect of boundary conditions upon centrifuge experiments using ground motion simulation. Geotechnical Testing Journal, 9(2), 61-71. Yamaguchi, A., Yoshida, N., & Tobita, Y. (2008). Estimation of thickness of liquefied layer from sand boiling pattern. Doboku Gakkai Ronbunshuu C, 64(1), 79-89. Yeh, F. H., Huang, C. J., Han, J. Y., & Ge, L. (2018). Modeling slope topography using unmanned aerial vehicle image technique. MATEC web of conferences, Yeh, F. H., Wang, H. C., Lee, W. D., & Ge, L. (2023). Image Analyses of Liquefaction-Induced Settlements and Sand Boil in Shaking Table Tests. Geo-Congress 2023, Los Angeles, California. Youd, T. L. (1984). Geologic effects-liquefaction and associated ground failure. Proceedings of the Geologic and Hydraulic Hazards Training Program, 210-232. Youd, T. L., & Bennett, M. J. (1983). Liquefaction sites, imperial valley, California. Journal of geotechnical engineering, 109(3), 440-457. Zeghal, M., Elgamal, A.-W., Tang, H., & Stepp, J. (1995). Lotung downhole array. II: Evaluation of soil nonlinear properties. Journal of geotechnical engineering, 121(4), 363-378. Zeng, X., & Schofield, A. (1996). Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling. Geotechnique, 46(1), 83-102. 范韻翎(2022)。「振動台土壤液化引致噴砂與沉陷之機制」,碩士論文,國立臺灣大學土木工程學系,臺北,臺灣。https://doi.org/10.6342/NTU202202682 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88515 | - |
dc.description.abstract | 臺灣位於環太平洋地震帶上,地震頻繁發生,當疏鬆飽和的砂性地盤在強烈地震作用下之時,土壤孔隙水壓上升,導致有效應力降低,進而引發土壤液化現象。土壤液化常伴隨著噴砂,尤其地表存在不透水層,超額孔隙水壓在消散的過程中會沿著弱面將懸浮之砂土噴出地表。本研究使用剛性盒於1g振動台進行液化噴砂縮尺模型試驗,探討輸入振動之最大加速度、地表不透水層厚度和振動歷時對土層總沉陷量、噴砂量、液化時間以及激發水壓段歷時的影響。試驗中使用飽和石英砂作為液化層,而不透水層則使用石英粉與高嶺土混合而成,試體高度為20公分,模型縮尺率為百分之一。透過量測設備記錄不同深度的加速度和水壓隨時間變化,並進行動態分析。試驗前後拍攝了砂箱之模型地表面,以利於後續進行三維數值建模,並量化液化後之噴砂量與沉陷量。試驗結果顯示,輸入振動之最大加速度越大,地表沉陷量、總噴砂量和平均每孔噴砂量也越多。隨著不透水層厚度增加,其覆土壓力也相應增加,地表沉陷量、總噴砂量和平均每孔噴砂量也呈現增加的趨勢。振動歷時的增加,地表沉陷量、總噴砂量和平均每孔噴砂量會增加,與振動歷時呈正相關。較大的愛氏强度與地表沉陷量、總噴砂量和平均每孔噴砂量呈正相關,並且不透水層覆土壓力對沉陷量和噴砂量的影響較振動歷時顯著。在相同愛氏强度下,振動歷時對噴砂量的影響比最大加速度顯著。較高的最大加速度及較厚的不透水層將提早液化發生的時間,較大的最大加速度及較厚的不透水層會延長相同深度下激發水壓段的持續時間。觀察加速度歷時圖,在液化過程中,地表下17.5 m的加速度未降至趨近於零,因覆土應力較大,較不容易發生液化現象。本研究顯示空中三角測量技術可應用於土壤液化噴砂縮尺試驗,並且液化後引致的噴砂量與地表沉陷量分別和輸入振動之最大加速度、地表不透水層厚度與振動歷時呈正相關。 | zh_TW |
dc.description.abstract | Taiwan is located on the Circum-Pacific seismic belt and experiences frequent earthquakes. The phenomenon of soil liquefaction occurs when loose saturated sand is subjected to intense seismic loading, increasing pore water pressure and decreasing effective stress. Soil liquefaction is often associated with sand boils, particularly when an impermeable layer deposits on the ground surface, causing the excess pore water pressure to dissipate along weak planes and eject suspended soil particles onto the ground surface. This study aims to investigate, under cyclic loading, the effects of maximum acceleration, the thickness of an impermeable layer, the shaking duration on ground settlement, the volume of the sand ejection, liquefaction duration, and the duration of the excess pore pressure. Hence, a series of 1g shaking table model tests were conducted, and a rigid box was utilized. The model used saturated silica sand as the liquefiable layer, while the impermeable layer was composed of a mixture of silica powder and kaolin clay. The model specimen has a height of 20 cm, and the scaling factor between the model and prototype is 1/100. Acceleration and pore water pressure at different depths were measured using sensors and analyzed automatically. Pre- and post-test images of the model ground surface were captured to facilitate subsequent three-dimensional modeling (3D modeling) and quantification of sand boils and ground settlements for post-liquefaction.
The experimental results show that ground settlement, total ejection volume, and average ejection volume are increased with higher maximum accelerations. As the thickness of the impermeable layer increases, the overburden pressure also increases, resulting in a corresponding trend of increased ground settlement, the total volume of the ejection, and the average volume of the ejection. The increase in shaking duration is positively correlated with the increase in ground settlement, the total volume of the ejection, and the average volume of the ejection. The ground settlement, total ejection volume, and average ejection volume positively related to Arias intensity were observed. Additionally, the impermeable layer, representing the overburden pressure, has a greater impact on settlement and sand ejection than shaking duration. Under the same Arias intensity, the effect of shaking duration on sand ejection is more significant than the effect of maximum acceleration. Higher maximum acceleration and thicker impermeable layers caused liquefaction to occur earlier and extended the duration of excess pore water pressure at the same depth. The acceleration-time history reveals that acceleration at a depth of 17.5 m beneath the ground surface did not approach zero during the liquefaction process due to greater overburden pressure, making liquefaction less likely to occur. This study demonstrates the applicability of aerial triangulation in scaled model tests of soil liquefaction-induced sand boiling. The results indicate a positive correlation between the volume of the sand ejection and ground settlement with the maximum acceleration, thickness of the impermeable layer and shaking duration. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:38:41Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:38:41Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與步驟 1 1.3 研究架構 2 第二章 文獻回顧 3 2.1 土壤液化機制與災害 3 2.1.1 土壤液化發生機制 3 2.1.2 土壤液化破壞類型 7 2.2 物理模型試驗 10 2.2.1 邊界效應 14 2.2.2 模型相似律 17 第三章 試驗流程與試驗方法 19 3.1 試驗設備 19 3.1.1 MTS單軸向振動台 19 3.1.2 剛性盒 21 3.1.3 量測設備與儀器 22 3.1.4 攝影設備 25 3.2 試驗材料 26 3.2.1 石英矽砂 26 3.2.2 不透水層 27 3.3 試驗流程 28 3.3.1 感測器之校正 28 3.3.2 試體填製 29 3.3.3 控制點設置與拍攝流程 32 3.4 影像分析方法 34 3.5 訊號處理方法 36 3.5.1 愛氏强度 36 3.5.2 傅立葉轉換 36 3.5.3 應力-應變關係 37 第四章 試驗規劃與試驗結果 40 4.1 模型試驗規劃與條件 40 4.2 邊界效應之檢核 43 4.3 縮尺模型試驗結果 47 4.3.1 試驗1 48 4.3.2 試驗2 50 4.3.3 試驗3 52 4.3.4 試驗4 54 4.3.5 試驗5 56 4.3.6 試驗6-1 58 4.3.7 試驗6-2 60 4.3.8 試驗7 62 4.3.9 試驗8 64 第五章 模型試驗結果討論與分析 66 5.1 影像分析 66 5.1.1 三維數值模型精度檢核 66 5.1.2 噴砂量 73 5.1.3 地表沉陷量 75 5.2 試驗結果討論與分析 78 5.2.1 最大加速度 82 5.2.2 不透水層厚度 95 5.2.3 振動歷時 106 5.2.4 愛氏强度 114 5.3 土壤動力性質分析 119 第六章 結論與建議 139 6.1 結論 139 6.2 建議 140 參考文獻 141 附錄一 縮尺模型試驗影片 145 | - |
dc.language.iso | zh_TW | - |
dc.title | 以振動台試驗探討地表不透水層厚度對砂性地盤液化噴砂與沉陷之影響 | zh_TW |
dc.title | Effects of Impermeable Soil Layers on Liquefaction-Induced Sand Boil and Settlement through Shaking Table Tests | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡祈欽;柯永彥;葉馥瑄;朱民虔 | zh_TW |
dc.contributor.oralexamcommittee | Chi-Chin Tsai;Yung-Yen Ko;Fu-Hsuan Yeh;Min-Chien Chu | en |
dc.subject.keyword | 土壤液化,振動台試驗,噴砂,沉陷,愛氏强度,三維建模, | zh_TW |
dc.subject.keyword | Liquefaction,shaking table test,sand boils,ground settlement,Arias intensity,3D modeling, | en |
dc.relation.page | 145 | - |
dc.identifier.doi | 10.6342/NTU202301780 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-31 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。