請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88511
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅立 | zh_TW |
dc.contributor.advisor | Li Lo | en |
dc.contributor.author | 楊翔宇 | zh_TW |
dc.contributor.author | Hsiang-Yu Yang | en |
dc.date.accessioned | 2023-08-15T16:37:40Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-31 | - |
dc.identifier.citation | Aitchison, J. (1982). The Statistical Analysis of Compositional Data. In Source: Journal of the Royal Statistical Society. Series B (Methodological) (Vol. 44, Issue 2).
Aitchison, J., & Egozcue, J. J. (2005). Compositional data analysis: Where are we and where should we be heading? Mathematical Geology, 37(7), 829–850. https://doi.org/10.1007/s11004-005-7383-7 Bloemsma, M. R., Zabel, M., Stuut, J. B. W., Tjallingii, R., Collins, J. A., & Weltje, G. J. (2012). Modelling the joint variability of grain size and chemical composition in sediments. Sedimentary Geology, 280, 135–148. https://doi.org/10.1016/j.sedgeo.2012.04.009 Boothroyd, J. C., Friedrich, N. E., & McGinn, S. R. (1985). Geology of microtidal coastal lagoons: Rhode Island. Marine Geology, 63(1–4), 35–76. https://doi.org/10.1016/0025-3227(85)90079-9 Bown, T. M., & Kraus, M. J. (1987). Integration of channel and floodplain suites. I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology, 57(4), 587–601. Boyle, J. F. (2001). Inorganic Geochemical Methods in Palaeolimnology. In W. M. Last & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments (Vol. 2, pp. 83–141). Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/0-306-47670-3_5 Chawchai, S., Chabangborn, A., Kylander, M., Löwemark, L., Mörth, C. M., Blaauw, M., Klubseang, W., Reimer, P. J., Fritz, S. C., & Wohlfarth, B. (2013). Lake Kumphawapi – an archive of Holocene palaeoenvironmental and palaeoclimatic changes in northeast Thailand. Quaternary Science Reviews, 68, 59–75. https://doi.org/10.1016/J.QUASCIREV.2013.01.030 Chen, J., Yang, C., Liu, L., Ji, J., Balsam, W., Sun, Y., & Lu, H. (2006). Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochimica et Cosmochimica Acta, 70(6), 1471–1482. https://doi.org/10.1016/J.GCA.2005.11.029 Chen, Y.-G., & Liu, T.-K. (1996). Sea Level Changes in the Last Several Thousand Years, Penghu Islands, Taiwan Strait. In QUATERNARY RESEARCH (Vol. 45). CHUN, S. S., & CHOUGH, S. K. (1995). The Cretaceous Uhangri Formation, SW Korea: lacustrine margin facies. Sedimentology, 42(2), 293–322. https://doi.org/10.1111/J.1365-3091.1995.TB02104.X Church, J. A. , J.M. Gregory, P. Huybrechts, M. Kuhn, K. Lambeck, M.T. Nhuan, D. Qin, & P.L. Woodworth. (2001). Changes in Sea Level. In Houghton et al. (Ed.), Climate Change 2001: The Scientific Basis (pp. 639–693). Clifton, H. E., Hunter, R. E., & Phillips, R. L. (1971). Depositional structures and processes in the non-barred high-energy nearshore. Journal of Sedimentary Research, 41(3), 651–670. https://doi.org/10.1306/74D7231A-2B21-11D7-8648000102C1865D Cohen, A. S. (2003). Paleolimnology: The History and Evolution of Lake Systems. Paleolimnology. https://doi.org/10.1093/OSO/9780195133530.001.0001 Croudace, I. W., Löwemark, L., Tjallingii, R., & Zolitschka, B. (2019). Current perspectives on the capabilities of high resolution XRF core scanners. Quaternary International, 514, 5–15. https://doi.org/10.1016/j.quaint.2019.04.002 Croudace, I. W., Rindby, A., & Rothwell, R. G. (2006). ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Geological Society Special Publication, 267, 51–63. https://doi.org/10.1144/GSL.SP.2006.267.01.04 Dalrymple, R. W., Zaitlin, B. A., & Boyd, R. (1992). Estuarine facies models; conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 62(6), 1130–1146. https://doi.org/10.1306/D4267A69-2B26-11D7-8648000102C1865D Davies, S. J., Lamb, H. F., & Roberts, S. J. (2015). Micro-XRF Core Scanning in Palaeolimnology: Recent Developments. 189–226. https://doi.org/10.1007/978-94-017-9849-5_7 De Swart, H. E., & Zimmerman, J. T. F. (2008). Morphodynamics of Tidal Inlet Systems. Https://Doi.Org/10.1146/Annurev.Fluid.010908.165159, 41, 203–229. https://doi.org/10.1146/ANNUREV.FLUID.010908.165159 De Vries, J. L. , & Vrebos, B. A. R. (2002). Quantification of infinitely thick specimens by XRF analysis. In R. E. , M. A. A. van Grieken (Ed.), Handbook of X-Ray Spectrometry (Second, pp. 341–405). Marcel Dekker. Dott, R. H., & Bourgeois, J. (1982). Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93(8), 663–680. https://doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2 Dypvik, H., & Harris, N. B. (2001). Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chemical Geology, 181(1–4), 131–146. https://doi.org/10.1016/S0009-2541(01)00278-9 Erban, L. E., Gorelick, S. M., & Zebker, H. A. (2014). Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9(8). https://doi.org/10.1088/1748-9326/9/8/084010 Fleming, E., Payne, J. L., Sweet, W. V., Craghan, M., Haines, J., Hart, J. A. F., Stiller, H., & Sutton-Grier, A. (2018). Chapter 8 : Coastal Effects. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II. https://doi.org/10.7930/NCA4.2018.CH8 Franzini, M., Leoni, L., & Saitta, M. (1972). A simple method to evaluate the matrix effects in X-Ray fluorescence analysis. X-Ray Spectrometry, 1(4), 151–154. https://doi.org/10.1002/XRS.1300010406 Frey, R. W., & Basan, P. B. (1985). Coastal Salt Marshes. Coastal Sedimentary Environments, 225–301. https://doi.org/10.1007/978-1-4612-5078-4_4 Gregory, B. R. B., Patterson, R. T., Reinhardt, E. G., Galloway, J. M., & Roe, H. M. (2019). An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples. Chemical Geology, 521, 12–27. https://doi.org/10.1016/j.chemgeo.2019.05.008 Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P., & Mélières, M. A. (2007). High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quaternary Science Reviews, 26(19–21), 2644–2660. https://doi.org/10.1016/J.QUASCIREV.2007.07.007 Harms, J. C., Southard, J. B., Southard, J. B., & Walker, R. G. (1982). Structures and Sequences in Clastic Rocks. Structure and Sequence in Clastic Rocks. https://doi.org/10.2110/SCN.82.09 Hennekam, R., & De Rick, G. (2012). X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records. Limnology and Oceanography: Methods, 10(12), 991–1003. https://doi.org/10.4319/LOM.2012.10.991 Hennessy, J. T., & Zarillo, G. A. (1987). The interrelation and distinction between flood-tidal delta and washover deposits in a transgressive barrier island. Marine Geology, 78(1–2), 35–56. https://doi.org/10.1016/0025-3227(87)90067-3 Ingram, W. C., Meyers, S. R., Brunner, C. A., & Martens, C. S. (2010). Late Pleistocene–Holocene sedimentation surrounding an active seafloor gas-hydrate and cold-seep field on the Northern Gulf of Mexico Slope. Marine Geology, 278(1–4), 43–53. https://doi.org/10.1016/J.MARGEO.2010.09.002 Itambi, A. C., von Dobeneck, T., & Adegbie, A. T. (2010). Millennial-scale precipitation changes over Central Africa during the late Quaternary and Holocene: evidence in sediments from the Gulf of Guinea. Journal of Quaternary Science, 25(3), 267–279. https://doi.org/10.1002/JQS.1306 Jenkins, R., & De Vries, J. L. (1970). Practical X-Ray Spectrometry. Practical X-Ray Spectrometry. https://doi.org/10.1007/978-1-349-00055-5 Kido, Y., Koshikawa, T., & Tada, R. (2006). Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Marine Geology, 229(3–4), 209–225. https://doi.org/10.1016/j.margeo.2006.03.002 Klein, G. de V. (1971). A Sedimentary Model for Determining Paleotidal Range. 82, 2585–2592. Kraus, M. J. (1987). Integration of channel and floodplain suites, II. Vertical relations of alluvial paleosols. Journal of Sedimentary Petrology, 57(4), 602–612. https://doi.org/10.1306/212F8BB6-2B24-11D7-8648000102C1865D Kraus, M. J., & Aslan, A. (1993). Eocene Hydromorphic Paleosols: Significance for Interpreting Ancient Floodplain Processes. Journal of Sedimentary Research, 63(3), 453–463. https://doi.org/10.1306/D4267B22-2B26-11D7-8648000102C1865D Kylander, M. E., Ampel, L., Wohlfarth, B., & Veres, D. (2011). High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies. Journal of Quaternary Science, 26(1), 109–117. https://doi.org/10.1002/JQS.1438 Longhitano, S. G., Mellere, D., Steel, R. J., & Ainsworth, R. B. (2012). Tidal depositional systems in the rock record: A review and new insights. Sedimentary Geology, 279, 2–22. https://doi.org/10.1016/J.SEDGEO.2012.03.024 Longman, J., Veres, D., & Wennrich, V. (2019). Utilisation of XRF core scanning on peat and other highly organic sediments. Quaternary International, 514, 85–96. https://doi.org/10.1016/j.quaint.2018.10.015 Löwemark, L., Bloemsma, M., Croudace, I., Daly, J. S., Edwards, R. J., Francus, P., Galloway, J. M., Gregory, B. R. B., Steven Huang, J. J., Jones, A. F., Kylander, M., Luo, Y., Maclachlan, S., Ohlendorf, C., Patterson, R. T., Pearce, C., Profe, J., Reinhardt, E. G., Stranne, C., … Turner, J. N. (2019). Practical guidelines and recent advances in the Itrax XRF core-scanning procedure. Quaternary International, 514, 16–29. https://doi.org/10.1016/j.quaint.2018.10.044 Löwemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W., Lee, T. Q., Song, S. R., & Jarvis, S. (2011). Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6), 1250–1256. https://doi.org/10.1016/j.jseaes.2010.06.002 Mark, S. Z., Abbott, M. B., Rodbell, D. T., & Moy, C. M. (2022). XRF analysis of Laguna Pallcacocha sediments yields new insights into Holocene El Niño development. Earth and Planetary Science Letters, 593. https://doi.org/10.1016/j.epsl.2022.117657 Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5–6), 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 Miall, A. D. (1977). A review of the braided-river depositional environment. Earth-Science Reviews, 13(1), 1–62. https://doi.org/10.1016/0012-8252(77)90055-1 Miall, A. D. (1996). The geology of fluvial deposits. Sedimentary facies, basin analysis, and petroleum geology. 582. Neumann, J. E., Emanuel, K., Ravela, S., Ludwig, L., Kirshen, P., Bosma, K., & Martinich, J. (2015). Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy. Climatic Change, 129(1–2), 337–349. https://doi.org/10.1007/S10584-014-1304-Z/FIGURES/6 Olsen, T. R., Mellere, D., & Olsen, T. (1999). Facies architecture and geometry of landward-stepping shoreface tongues: the Upper Cretaceous Cliff House Sandstone (Mancos Canyon, south-west Colorado). Sedimentology, 46(4), 603–625. Ramsey, C. B. (2009). Bayesian Analysis of Radiocarbon Dates. Radiocarbon, 51(1), 337–360. https://doi.org/10.1017/S0033822200033865 Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41 Reineck, H.-E., & Singh, I. B. (1980). Depositional Sedimentary Environments. Depositional Sedimentary Environments. https://doi.org/10.1007/978-3-642-81498-3 Reineck, H.-E., & Wunderlich, F. (1968). CLASSIFICATION AND ORIGIN OF FLASER AND LENTICULAR BEDDING. Sedimentology, 11(1–2), 99–104. https://doi.org/10.1111/J.1365-3091.1968.TB00843.X Reinson, G. E. (1992). Transgressive Barrier Island and Estuarine Systems. In R. G. Walker & N. P. James (Eds.), Facies Models: Response to Sea Level Change (pp. 179–194). Richter, T. O., Van Der Gaast, S., Koster, B., Vaars, A., Gieles, R., De Stigter, H. C., De Haas, H., & Van Weering, C. E. (2006). The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In Rothwell RG (Ed.), New techniques in sediment core analysis (Vol. 267, pp. 39–50). Geological Society, London, Special Publications. https://doi.org/10.1144/ GSL.SP.2006.267.01.03 Rohling, E. J., Fenton, M., Jorissen, F. J., Bertrand, P., Ganssen, G., & Caulet, J. P. (1998). Magnitudes of sea-level lowstands of the past 500,000 years. Nature 1998 394:6689, 394(6689), 162–165. https://doi.org/10.1038/28134 Rothwell, R. G., Croudace, I. W., Rothwell, R. G., & Croudace, I. W. (2015a). Micro-XRF Studies of Sediment Cores: A Perspective on Capability and Application in the Environmental Sciences. 17, 1–21. https://doi.org/10.1007/978-94-017-9849-5_1 Rothwell, R. G., Croudace, I. W., Rothwell, R. G., & Croudace, I. W. (2015b). Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us? 25–102. https://doi.org/10.1007/978-94-017-9849-5_2 Rothwell, R. G., Hoogakker, B., Thomson, J., Croudace, I. W., & Frenz, M. (2006). Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. Geological Society Special Publication, 267, 79–98. https://doi.org/10.1144/GSL.SP.2006.267.01.06 Schwartz, R. K. (1982). Bedform and stratification characteristics of some modern small-scale washover sand bodies. Sedimentology, 29(6), 835–849. https://doi.org/10.1111/J.1365-3091.1982.TB00087.X Shala, S., Helmens, K. F., Jansson, K. N., Kylander, M. E., Risberg, J., & Löwemark, L. (2014). Palaeoenvironmental record of glacial lake evolution during the early Holocene at Sokli, NE Finland. Boreas, 43(2), 362–376. https://doi.org/10.1111/BOR.12043 Stuiver, M., & Reimer, P. J. (1993). CALIB rev. 8. In Radiocarbon (Vol. 35, pp. 215–230). Sun, S.-C. (1964). Photogeologic Study Of The Tainan-Kaohsiung Coastal Plain Area, Taiwan. Petroleum Geology of Taiwan, 3, 39–51. Sun, S. C. (1970). Photogeologic study of the Tainan-Hsinying coastal plain, Taiwan. Petroleum Geology of Taiwan, 7, 133–144. Swift, D. J. P., Figueiredo, A. G., Freeland, G. L., & Oertel, G. F. (1983). Hummocky cross-stratification and megaripples; a geological double standard? Journal of Sedimentary Research, 53(4), 1295–1317. https://doi.org/10.1306/212F8369-2B24-11D7-8648000102C1865D Swift, D. J. P., Phillips, S., & Thorne, J. A. (2009). Sedimentation on Continental Margins, IV: Lithofacies and Depositional Systems. Shelf Sand and Sandstone Bodies, 89–152. https://doi.org/10.1002/9781444303933.CH4 Thomas, R. G., Smith, D. G., Wood, J. M., Visser, J., Calverley-Range, E. A., & Koster, E. H. (1987). Inclined heterolithic stratification—Terminology, description, interpretation and significance. Sedimentary Geology, 53(1–2), 123–179. https://doi.org/10.1016/S0037-0738(87)80006-4 Thorbjarnarson, K. W., Nittrouer, C. A., DeMaster, D. J., & McKinney, R. B. (1985). Sediment accumulation in a back-barrier lagoon, Great Sound, New Jersey. Journal of Sedimentary Research, 55(6), 856–863. https://doi.org/10.1306/212F881E-2B24-11D7-8648000102C1865D Turner, J. N., Jones, A. F., Brewer, P. A., Macklin, M. G., Rassner, S. M., Turner, J. N., Jones, · A F, Jones, A. F., Brewer, P. A., Macklin, · M G, Rassner, · S M, Macklin, M. G., & Rassner, S. M. (2015). Micro-XRF Applications in Fluvial Sedimentary Environments of Britain and Ireland: Progress and Prospects. 17, 227–265. https://doi.org/10.1007/978-94-017-9849-5_8 Walker, R. G. (1984). Facies model: Geoscience Canada, Reprint Series, 1, Anisworth Press, 2nd edition, 317pp Wang, M. J., Zheng, H. B., Xie, X., Fan, D. Du, Yang, S. Y., Zhao, Q. H., & Wang, K. (2011). A 600-year flood history in the Yangtze River drainage: Comparison between a subaqueous delta and historical records. Chinese Science Bulletin, 56(2), 188–195. https://doi.org/10.1007/S11434-010-4212-2/METRICS Weimer, R. J., Howard, J. D., & Lindsay, D. R. (1982). Tidal Flats and Associated Tidal Channels. Sandstone Depositional Environments. https://doi.org/10.1306/M31424C9 Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Röhl, U., & Croudace, I. W. (2015). Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties. 507–534. https://doi.org/10.1007/978-94-017-9849-5_21 Weltje, G. J., & Tjallingii, R. (2008). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274(3–4), 423–438. https://doi.org/10.1016/j.epsl.2008.07.054 Wentworth, C. K. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5), 377–392. https://doi.org/10.1086/622910 Wolters, S., Zeiler, M., & Bungenstock, F. (2010). Early Holocene environmental history of sunken landscapes: Pollen, plant macrofossil and geochemical analyses from the Borkum Riffgrund, southern North Sea. International Journal of Earth Sciences, 99(8), 1707–1719. https://doi.org/10.1007/S00531-009-0477-6/TABLES/4 Wu, L., Wilson, D. J., Wang, R., Yin, X., Chen, Z., Xiao, W., & Huang, M. (2020). Evaluating Zr/Rb Ratio From XRF Scanning as an Indicator of Grain-Size Variations of Glaciomarine Sediments in the Southern Ocean. Geochemistry, Geophysics, Geosystems, 21(11), e2020GC009350. https://doi.org/10.1029/2020GC009350 Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1 3), 41 59. doi: 10.1016/s0040 1951(96)00297 1 Zhang, X., Zhang, H., Chang, F., Ashraf, U., Peng, W., Wu, H., Liu, Q., Liu, F., Zhang, Y., & Duan, L. (2020). Application of Corrected Methods for High-Resolution XRF Core Scanning Elements in Lake Sediments. Applied Sciences 2020, Vol. 10, Page 8012, 10(22), 8012. https://doi.org/10.3390/APP10228012 Chang, J.-C. (張瑞津)、Shih, T.-T. (石再添)、Chen, H. (陳翰霖)(1996) A Study On Geomorphological Change Of Tainan Coastal Plain, Southwestern Taiwan:臺灣師範大學地理研究報告,第26期,第19–56頁。 Lin, C.-C. (林朝棨)(1961) Shell Mounds In Southwest Taiwan And Their Geohistorical Significance:國立台灣大學考古人類學刊,第15~16期,第49–94頁。 Lin, C.-C. (林朝棨)(1966) An Outline Of Taiwan’s Quaternary Geohistory With A Special Discussion Of The Relation Between Natural History And Cultural History In Taiwan:國立臺灣大學人類學刊,第28期,第7–44頁。 Yang, C.-C. (楊志成)(2007) Seismogenic Structure of the Chiayi-Tainan Area and the Long-term Slip Rates of Frontal Thrusts in Southwestern Taiwan:國立台灣大學地質科學研究所博士論文,共116頁。 Yang, Y.-J. (楊詠然)(2016) Environment Evolution of the Western Coastal Plain in Taiwan Since the Last Glacial Maximum Period:國立台灣大學地質科學研究所碩士論文,共173頁。 Wang, C.-K. (王超國)(2009) Analysis of Geomorphologic Change and Evolution for Tai-Jiang Inner Sea of Taiwan by Time Series Maps:國立台灣大學地質科學研究所碩士論文,共120頁。 Shih, T.-T. (石再添)(1979) Landforms and Their Evolution of the Chianan Liman Coast in Southwestern Taiwan:國立臺灣師範大學地理學研究報告,第五期,第11–48頁。 Kaim Ang (翁佳音)、Liu, Y.-C (劉益昌)、黃文博、許清保(2010) 台江國家公園及周緣地區人文歷史調查及保存之先期規劃成果報告。 Tsang, Cheng-hwa (臧振華)、Li, Kuang-Ti (李匡悌)、Chu, Cheng-Yi(朱正宜)(2004) 臺南科學工業園區道爺遺址未劃入保存區部分搶救考古計劃期末報告。 Tsang, Cheng-hwa (臧振華)、Li, Kuang-Ti (李匡悌)、李德仁、Chu, Cheng-Yi (朱正宜)(2007) 南部科學工業園區考古遺址搶救監測後續計畫期末報告。 Chen, Y.-G. (陳于高)(1993) Sea-level change and neotectonics in southern part of Taiwan region since late pleistocene:國立台灣大學地質科學研究所博士論文,共159頁。 Chen, W.-S. (陳文山)、Sung, S.-H. (宋時驊)、Wu, L.-C. (吳樂群)、Hsu, H.-D. (徐澔德)、Yang, H.-C. (楊小青)(2004). Shoreline changes of Taiwan since the Last Glacial Maximum:考古人類學刊,第40–55頁。 Chen, W.-S. (陳文山)、Yang, C.-C. (楊志成)、Yang, H.-C (楊小青)(2009). How to reconstruct the late quaternary subsurfae stratigraphy of the Taiwan coastal plain:經濟部中央地質調查所特刊,第22期,第101–114頁。 Chen, W.-S. (陳文山), Yang, C.-C. (楊志成), Yang, H.-C. (楊小青), Wu, L.-C. (吳樂群), Lin, C.-W. (林啟文), Chang, H. C. (張徽正), Shih, R. (石瑞銓), Lin, W.-H. (林偉雄), Lee, Y.-H. (李元希), Shih, T.-S. (石同生), & Lu, S. (盧詩丁)(2004). Tectono-geomorphologic studies in the Chiayi-Tainan region in southwestern Taiwan and its implications for active structure:經濟部中央地質調查所彙刊,第53–77頁. Huang, Y.-T. (黃郁婷)(2001). Upper Quaternary Sedimentary Environments and Sequence Stratigraphy of the Tsengwen-hsi River Basin , Chianan Plain︰A Preliminary Study:國立台灣大學地質學研究所碩士論文,共158頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88511 | - |
dc.description.abstract | 自全新世以來,台灣西南部的海岸線快速地變遷,廣闊的嘉南平原所保存的沉積物不僅紀錄了環境變遷的歷史,甚至可以在其東側的台南科學園區一帶發掘出距今4800年以來豐富的人類活動。而了解人類與環境相互作用之間複雜的關係對於幫助人類社會應對當前氣候變化的影響至關重要。本研究使用鑽探於台南科學園區西側的五根沉積物岩芯(50-100米,回收率>95%)與多種類沉積物-地球化學指標來建立早全新世以來台南科學園區一帶的環境變遷紀錄,透過加速器質譜儀碳十四定年建立年代框架後,進行1毫米解析度的X光螢光分析(X-ray fluorescence, XRF)為岩芯提供高解析度的元素組成資訊,並配合岩相分析來區分不同的沉積環境。此外,岩芯沉積物中所測得的總有機碳(total organic carbon, TOC)、總氮(total nitrogen, TN)、碳酸鈣含量與粒徑分析也同時一起進行後續的討論。
我們發現Log(Ca/Ti)可以作為指示海相沉積環境的代用指標,與總無機碳(碳酸鈣含量)呈現良好的相關性(r = 0.64, p < 0.0001)。而Log(Zr/Rb)則是與沉積物粒徑組成有著良好的相關性。其中,泥(r = -0.69, p < 0.0001)和粉砂(r = -0.72, p < 0.0001)有著顯著的負相關性,另外與砂(r = 0.76, p < 0.0001)也有著強烈的正相關。其中在五根岩芯中皆出現了Log(Ca/Ti)的平穩的訊號,指示出了一段從9300到7300年前的穩定海相沉積環境,推測為可能代表早全新世海進時期的溢浪三角洲相。除此之外,較高的TOC/TN也可以被發現在富含有機質的細顆粒泥質沉積物中,提供判斷沼澤相很好的依據。 早全新世以來的古河口-濱海沉積環境可以被此研究中的多種類指標健全地重建。XRF元素對數比可以以非破壞性的方式獲得建立環境指標,元素分析和雷射粒徑分析則可以得到特定層位的組成信息。因此,一個全面的沉積相判識方法可以透過與岩相相互驗證後被確立,並提供此地區後續研究可以被進行比對的參考。 | zh_TW |
dc.description.abstract | Since the Holocene, the coastline of southwestern Taiwan has undergone rapid changes, and the sediment deposits preserved in the extensive Chianan Plain not only record the history of environmental changes but also reveal rich human activities from 4,800 cal BP in the Tainan Science Park region. Disentangling the complex relationship between humans and the environment is crucial for helping human society respond to the impacts of current climate change. Five long and continuous sedimentary cores (50-100 m penetration with >95% recovery rate) from the newly developed Tainan science park region have been retrieved in this study. We aim to apply multi-proxy methods to provide comprehensive environmental information in Tainan science park region since the early Holocene. The 1-millimeter resolution X-ray fluorescence (XRF) element profile offered enriched compositional information in the sediment cores that can support the lithofacies analysis to distinguish different sedimentary environments. Besides, the sedimentary composition of total organic carbon (TOC), total nitrogen (TN), and grain size analyses are applied with a well-established age model based on accelerator mass spectrometry radiocarbon dating.
We find Ca/Ti ratio can serve as an indicator of the marine environment, which also has a positive correlation with the total inorganic carbon, which can represent the calcium carbonate content (r = 0.64, p < 0.0001). While the Zr/Rb proxy is linked with the variation of grain sizes, showing a significant negative correlation with clay (r = -0.69, p < 0.0001), silt (r = -0.72, p < 0.0001), and a positive correlation with sand (r = 0.76, p < 0.0001). Relatively constant Ca/Ti ratio in these five cores suggests a stable marine sediment supply during 9.3-7.3 kyr BP, which is inferred to represent washover fan facies during a transgressive phase. Furthermore, higher TOC/TN ratios are found in organic-rich fine-grained mud sediments, providing a reliable indicator for identifying marsh and lagoon facies. The early Holocene paleo-estuarine to nearshore depositional environment can be robustly reconstructed using the multi-proxy employed in this study. XRF logarithm ratios offer non-destructive method to establish environmental proxy, while elemental and grain size analyses provide compositional information for specific intervals. Therefore, a comprehensive sedimentary facies identification method can be established through cross-validation with lithofacies data, offering a comparable reference for other research in this region. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:37:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:37:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements (in Chinese) i
Abstract (in Chinese) ii Abstract iii Contents v Figures vii Tables x 1 Introduction 1 1.1 The interaction between rapid environmental changes and prehistoric humans since the middle Holocene 1 1.2 The aim of this study 12 2 Literature Review 13 2.1 The application of XRF analysis in environmental science 13 2.2 Geological background 17 3 Materials and Methods 22 3.1 Sediment cores 22 3.2 Radiocarbon dating 23 3.3 Multi-proxy method 24 3.3.1 XRF analysis 24 3.3.2 Elemental carbon and nitrogen analysis 26 3.3.3 Grain size analysis 27 3.3.4 Lithofacies analysis 28 4 Results 37 4.1 Radiocarbon dating 37 4.2 Multi-proxy sediment analysis 38 4.2.1 Core 690 39 4.2.2 Core 691 42 4.2.3 Core 692 45 4.2.4 Core 699 48 4.2.5 Core 700 52 4.3 Sedimentary facies identification 57 4.3.1 Terrestrial fluvial system facies 58 4.3.2 Barrier island system facies 62 5 Discussion 76 5.1 XRF proxy validation 76 5.2 Age model 80 5.3 Profile comparison 87 5.3.1 691-692-690 (Profile A) 89 5.3.2 691-699-692-690-700 (Profile B) 91 5.3.3 696-690-700-695 (Profile C) 91 5.3.4 699-692-701-702 (Profile D) 96 5.3.5 699-691-697-693-698 (Profile E) 96 5.4 The environmental changes around midddle-Holocene 101 6 Conclusions 107 References 109 Appendix 126 | - |
dc.language.iso | en | - |
dc.title | 多種類指標重建全新世古環境變化: 以台南科學園區為例 | zh_TW |
dc.title | Multi-proxy reconstruction of Holocene paleo-environmental changes: Examples from the Tainan Science Park region | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 施路易;吳泓昱;楊小青 | zh_TW |
dc.contributor.oralexamcommittee | Ludvig Löwemark;Hung-Yu Wu;Hsiao-Chin Yang | en |
dc.subject.keyword | 中全新世,沉積相,XRF岩芯掃描,環境代用指標,台江內海, | zh_TW |
dc.subject.keyword | Middle Holocene,Sediment facies,XRF core scanning,Environmental proxy,Taijiang Inland Sea, | en |
dc.relation.page | 140 | - |
dc.identifier.doi | 10.6342/NTU202302306 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-02 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 12.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。