Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88490
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆zh_TW
dc.contributor.advisorFeipei Laien
dc.contributor.author劉任軒zh_TW
dc.contributor.authorJen-Hsuan Liuen
dc.date.accessioned2023-08-15T16:32:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citation1. Anderson F, Downing GM, Hill J, Casorso L, Lerch N. Palliative performance scale (PPS): a new tool. J Palliat Care 1996;12(1):5–11. PMID:8857241
2. Lau F, Downing GM, Lesperance M, Shaw J, Kuziemsky C. Use of Palliative Performance Scale in End-of-Life Prognostication. J Palliat Med Mary Ann Liebert, Inc., publishers; 2006 Oct;9(5):1066–1075. doi: 10.1089/jpm.2006.9.1066
3. Baik D, Russell D, Jordan L, Dooley F, Bowles KH, Masterson Creber RM. Using the Palliative Performance Scale to Estimate Survival for Patients at the End of Life: A Systematic Review of the Literature. J Palliat Med Mary Ann Liebert, Inc., publishers; 2018 Aug 21;21(11):1651–1661. doi: 10.1089/jpm.2018.0141
4. Harrold J, Rickerson E, Carroll JT, McGrath J, Morales K, Kapo J, Casarett D. Is the Palliative Performance Scale a Useful Predictor of Mortality in a Heterogeneous Hospice Population? J Palliat Med Mary Ann Liebert, Inc., publishers; 2005 Jun;8(3):503–509. doi: 10.1089/jpm.2005.8.503
5. Pirovano M, Maltoni M, Nanni O, Marinari M, Indelli M, Zaninetta G, Petrella V, Barni S, Zecca E, Scarpi E, Labianca R, Amadori D, Luporini G. A new palliative prognostic score: a first step for the staging of terminally ill cancer patients. Italian Multicenter and Study Group on Palliative Care. J Pain Symptom Manage 1999 Apr;17(4):231–239. PMID:10203875
6. Maltoni M, Nanni O, Pirovano M, Scarpi E, Indelli M, Martini C, Monti M, Arnoldi E, Piva L, Ravaioli A, Cruciani G, Labianca R, Amadori D. Successful validation of the palliative prognostic score in terminally ill cancer patients. Italian Multicenter Study Group on Palliative Care. J Pain Symptom Manage 1999 Apr;17(4):240–247. PMID:10203876
7. Glare P, Virik K. Independent prospective validation of the PaP score in terminally ill patients referred to a hospital-based palliative medicine consultation service. J Pain Symptom Manage 2001 Nov;22(5):891–898. PMID:11728792
8. Glare P, Eychmueller S, Virik K. The use of the palliative prognostic score in patients with diagnoses other than cancer. J Pain Symptom Manage Elsevier; 2003 Oct 1;26(4):883–885. PMID:14527750
9. Morita T, Tsunoda J, Inoue S, Chihara S. The Palliative Prognostic Index: a scoring system for survival prediction of terminally ill cancer patients. Support Care Cancer 1999 Apr 1;7(3):128–133. doi: 10.1007/s005200050242
10. Morita T, Tsunoda J, Inoue S, Chihara S. Improved accuracy of physicians’ survival prediction for terminally ill cancer patients using the Palliative Prognostic Index. Palliat Med 2001 Sep;15(5):419–424. PMID:11591094
11. Stone CA, Tiernan E, Dooley BA. Prospective Validation of the Palliative Prognostic Index in Patients with Cancer. J Pain Symptom Manage 2008 Jun 1;35(6):617–622. doi: 10.1016/j.jpainsymman.2007.07.006
12. Kao CY, Hung YS, Wang HM, Chen JS, Chin TL, Lu CY, Chi CC, Yeh YC, Yang JM, Yen JH, Chou WC. Combination of initial palliative prognostic index and score change provides a better prognostic value for terminally ill cancer patients: a six-year observational cohort study. J Pain Symptom Manage 2014 Nov;48(5):804–814. PMID:24709367
13. Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer 2003 Sep 15;89(6):1028–1030. PMID:12966420
14. Roxburgh CSD, McMillan DC. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol Lond Engl 2010 Jan;6(1):149–163. PMID:20021215
15. Hiratsuka Y, Yamaguchi T, Maeda I, Morita T, Mori M, Yokomichi N, Hiramoto S, Matsuda Y, Kohara H, Suzuki K, Tagami K, Yamaguchi T, Inoue A. The Functional Palliative Prognostic Index: a scoring system for functional prognostication of patients with advanced cancer. Support Care Cancer Off J Multinatl Assoc Support Care Cancer 2020 Dec;28(12):6067–6074. PMID:32303826
16. Chen PY, Huang CH, Peng JK, Yeh SY, Hung SH. Prediction Accuracy Between Terminally Ill Patients’ Survival Length and the Estimations Made From Different Medical Staff, a Prospective Cohort Study. Am J Hosp Palliat Care 2022 Jun 14;10499091221108508. PMID:35701084
17. Oosterveld-Vlug MG, Custers B, Hofstede J, Donker GA, Rijken PM, Korevaar JC, Francke AL. What are essential elements of high-quality palliative care at home? An interview study among patients and relatives faced with advanced cancer. BMC Palliat Care 2019 Nov 6;18(1):96. PMID:31694715
18. Nysæter TM, Olsson C, Sandsdalen T, Wilde-Larsson B, Hov R, Larsson M. Preferences for home care to enable home death among adult patients with cancer in late palliative phase – a grounded theory study. BMC Palliat Care 2022 Apr 11;21(1):49. doi: 10.1186/s12904-022-00939-y
19. Leng A, Maitland E, Wang S, Nicholas S, Lan K, Wang J. Preferences for End-of-Life Care Among Patients With Terminal Cancer in China. JAMA Netw Open 2022 Apr 25;5(4):e228788. doi: 10.1001/jamanetworkopen.2022.8788
20. Gomes B, Calanzani N, Curiale V, McCrone P, Higginson IJ. Effectiveness and cost-effectiveness of home palliative care services for adults with advanced illness and their caregivers. Cochrane Database Syst Rev 2013 Jun 6;(6):CD007760. PMID:23744578
21. Kastbom L, Milberg A, Karlsson M. A good death from the perspective of palliative cancer patients. Support Care Cancer Off J Multinatl Assoc Support Care Cancer 2017 Mar;25(3):933–939. PMID:27837324
22. Danielsen BV, Sand AM, Rosland JH, Førland O. Experiences and challenges of home care nurses and general practitioners in home-based palliative care - a qualitative study. BMC Palliat Care 2018 Jul 18;17(1):95. PMID:30021583
23. Finucane AM, O’Donnell H, Lugton J, Gibson-Watt T, Swenson C, Pagliari C. Digital health interventions in palliative care: a systematic meta-review. Npj Digit Med Nature Publishing Group; 2021 Apr 6;4(1):1–10. doi: 10.1038/s41746-021-00430-7
24. Chou TJ, Wu YR, Tsai JS, Cheng SY, Yao CA, Peng JK, Chiu TY, Huang HL. Telehealth-Based Family Conferences with Implementation of Shared Decision Making Concepts and Humanistic Communication Approach: A Mixed-Methods Prospective Cohort Study. Int J Environ Res Public Health 2021 Oct 14;18:10801. doi: 10.3390/ijerph182010801
25. Schuit AS, Holtmaat K, Lissenberg-Witte BI, Eerenstein SEJ, Zijlstra JM, Eeltink C, Becker-Commissaris A, Zuylen L van, Linde ME van, Oordt CWM der H van, Sommeijer DW, Verbeek N, Bosscha K, Tewarie RN, Sedee R-J, Bree R de, Graeff A de, Vos F de, Cuijpers P, Leeuw IMV. Efficacy of the eHealth application Oncokompas, facilitating incurably ill cancer patients to self-manage their palliative care needs: A randomized controlled trial. Lancet Reg Health – Eur Elsevier; 2022 Jul 1;18. PMID:35496496
26. Mills J, Fox J, Damarell R, Tieman J, Yates P. Palliative care providers’ use of digital health and perspectives on technological innovation: a national study. BMC Palliat Care 2021 Aug 7;20(1):124. doi: 10.1186/s12904-021-00822-2
27. Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving palliative care with deep learning. BMC Med Inform Decis Mak 2018 12;18(Suppl 4):122. PMID:30537977
28. Hirozawa T, Yamada T, Ohwada H. New Survival Prediction System for Terminal Patients based on Machine Learning. 2018 IEEE Int Conf Bioinforma Biomed BIBM 2018. p. 2756–2758. doi: 10.1109/BIBM.2018.8621357
29. Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zöphel K, Kotzerke J, Schreiber A, Tinhofer I, Budach V, Sak A, Stuschke M, Balermpas P, Rödel C, Ganswindt U, Belka C, Pigorsch S, Combs SE, Mönnich D, Zips D, Krause M, Baumann M, Troost EGC, Löck S, Richter C. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep Nature Publishing Group; 2017 Oct 16;7(1):13206. doi: 10.1038/s41598-017-13448-3
30. Wang M, Jing X, Cao W, Zeng Y, Wu C, Zeng W, Chen W, Hu X, Zhou Y, Cai X. A non-lab nomogram of survival prediction in home hospice care patients with gastrointestinal cancer. BMC Palliat Care 2020 Dec 7;19(1):185. doi: 10.1186/s12904-020-00690-2
31. Wu CT, Li GH, Huang CT, Cheng YC, Chen CH, Chien JY, Kuo PH, Kuo LC, Lai F. Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study. JMIR MHealth UHealth 2021 May 6;9(5):e22591. doi: 10.2196/22591
32. Yu X, Qiu H, Xiong S. A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors. Front Bioeng Biotechnol 2020;8:63. PMID:32117941
33. Low CA. Harnessing consumer smartphone and wearable sensors for clinical cancer research. NPJ Digit Med 2020;3:140. PMID:33134557
34. Pardoel S, Kofman J, Nantel J, Lemaire ED. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson’s Disease: A Review. Sensors 2019 Nov 24;19(23). PMID:31771246
35. Tsai CH, Chen PC, Liu DS, Kuo YY, Hsieh TT, Chiang DL, Lai F, Wu CT. Panic Attack Prediction Using Wearable Devices and Machine Learning: Development and Cohort Study. JMIR Med Inform 2022 Feb 15;10(2):e33063. doi: 10.2196/33063
36. Sabry F, Eltaras T, Labda W, Alzoubi K, Malluhi Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J Healthc Eng 2022 Apr 18;2022:4653923. PMID:35480146
37. Mitratza M, Goodale BM, Shagadatova A, Kovacevic V, Wijgert J van de, Brakenhoff TB, Dobson R, Franks B, Veen D, Folarin AA, Stolk P, Grobbee DE, Cronin M, Downward GS. The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review. Lancet Digit Health Elsevier; 2022 May 1;4(5):e370–e383. PMID:35461692
38. Pavic M, Klaas V, Theile G, Kraft J, Tröster G, Guckenberger M. Feasibility and Usability Aspects of Continuous Remote Monitoring of Health Status in Palliative Cancer Patients Using Wearables. Oncology 2020;98(6):386–395. PMID:31336377
39. Pavic M, Klaas V, Theile G, Kraft J, Tröster G, Blum D, Guckenberger M. Mobile Health Technologies for Continuous Monitoring of Cancer Patients in Palliative Care Aiming to Predict Health Status Deterioration: A Feasibility Study. J Palliat Med Mary Ann Liebert, Inc., publishers; 2019 Dec 23;23(5):678–685. doi: 10.1089/jpm.2019.0342
40. Yang TY, Kuo PY, Huang Y, Lin HW, Malwade S, Lu LS, Tsai LW, Syed-Abdul S, Sun CW, Chiou JF. Deep-Learning Approach to Predict Survival Outcomes Using Wearable Actigraphy Device Among End-Stage Cancer Patients. Front Public Health 2021 Dec 9;9:730150. PMID:34957004
41. Lin CP, Tsay MS, Chang YH, Chen HC, Wang CY, Chuang YS, Wu CY. A Comparison of the Survival, Place of Death, and Medical Utilization of Terminal Patients Receiving Hospital-Based and Community-Based Palliative Home Care: A Retrospective and Propensity Score Matching Cohort Study. Int J Environ Res Public Health Multidisciplinary Digital Publishing Institute; 2021 Jan;18(14):7272. doi: 10.3390/ijerph18147272
42. Abernethy AP, Shelby-James T, Fazekas BS, Woods D, Currow DC. The Australia-modified Karnofsky Performance Status (AKPS) scale: a revised scale for contemporary palliative care clinical practice [ISRCTN81117481]. BMC Palliat Care 2005 Nov 12;4(1):7. doi: 10.1186/1472-684X-4-7
43. Masso M, Allingham SF, Banfield M, Johnson CE, Pidgeon T, Yates P, Eagar K. Palliative Care Phase: Inter-rater reliability and acceptability in a national study. Palliat Med SAGE Publications Ltd STM; 2015 Jan 1;29(1):22–30. doi: 10.1177/0269216314551814
44. Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions. Adv Neural Inf Process Syst Curran Associates, Inc.; 2017. Available from: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html [accessed Nov 5, 2022]
45. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell Nature Publishing Group; 2020 Jan;2(1):56–67. doi: 10.1038/s42256-019-0138-9
46. Bruera S, Chisholm G, Dos Santos R, Crovador C, Bruera E, Hui D. Variations in Vital Signs in the Last Days of Life in Patients With Advanced Cancer. J Pain Symptom Manage 2014 Oct;48(4):510–517. PMID:24731412
47. Zhang Z, Khatami R. Can we trust the oxygen saturation measured by consumer smartwatches? Lancet Respir Med Elsevier; 2022 May 1;10(5):e47–e48. PMID:35358426
48. Fedorin I, Slyusarenko K. Consumer Smartwatches As a Portable PSG: LSTM Based Neural Networks for a Sleep-Related Physiological Parameters Estimation. 2021 43rd Annu Int Conf IEEE Eng Med Biol Soc EMBC 2021. p. 849–452. doi: 10.1109/EMBC46164.2021.9629597
49. Naemi A, Schmidt T, Mansourvar M, Wiil UK. Personalized Predictive Models for Identifying Clinical Deterioration Using LSTM in Emergency Departments. Stud Health Technol Inform 2020 Nov 23;275:152–156. PMID:33227759
50. Lee JM, Kim HC, Kang JI, Suh I. Association between stressful life events and resting heart rate. BMC Psychol 2014 Sep 8;2(1):29. doi: 10.1186/s40359-014-0029-0
51. Mezzacappa ES, Kelsey RM, Katkin ES, Sloan RP. Vagal rebound and recovery from psychological stress. Psychosom Med 2001;63(4):650–657. PMID:11485119
52. Alboni P, Alboni M, Gianfranchi L. Simultaneous occurrence of two independent vagal reflexes: a possible cause of vagal sudden death. Heart BMJ Publishing Group Ltd; 2011 Apr 15;97(8):623–625. PMID:21357371
53. Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig 2018 Mar;15(3):235–245. PMID:29486547
54. Schubert C, Lambertz M, Nelesen RA, Bardwell W, Choi JB, Dimsdale JE. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress. Biol Psychol 2009 Mar;80(3):325–332. PMID:19100813
55. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health Elsevier; 2021 Nov 1;3(11):e745–e750. PMID:34711379
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88490-
dc.description.abstract在安寧緩和的照護中,緊急的臨床狀況改變以及死亡都是常見而不可避免的。然而,這些事件的不確定性,包括發生的時機、症狀之輕重、是否需要至醫院接受及時照護,常會讓病人與家屬無所適從。因此對於在接受門診或是居家安寧緩和照護的病人,會下降其生活品質並帶來不安全感。然而目前預測這些事件並沒有很好的預測方式,運用新興科技如穿戴裝置或人工智慧來協助的臨床研究證據也不多。
本研究為一前瞻性研究,旨在探索將穿戴式裝置和人工智慧應用於安寧緩和癌症患者的照護上,預測死亡和緊急醫療需求的可能性。收案對象為於臺大醫院門診、病房或居家醫療接受安寧緩和照護的末期癌症患者。每位參與者均配備智慧手環,收集包括步數、心率、睡眠時間和血氧飽和度等生理數據。研究團隊同時每週進行臨床評估,追蹤持續到受試者死亡或是最長52週的時間。生理數據與臨床評估被合併為一資料集,並在資料前處理後利用基於機器學習的分類器和深度神經網絡模型,預測7天內的死亡或緊急醫療需求事件,評估指標包括接受者操作特徵曲線下面積、F1分數、準確度和特異度,之後並針對表現較好的模型進行Shapley值分析,以進一步了解人工智慧於預測上的判斷基礎。
於2021年9月至2022年8月期間,本研究共納入40名患者,總共收集了1657個數據點。在所使用的模型中,包括極限梯度提升、深度學習、隨機森林和K近鄰演算法在內的4個模型,在預測死亡事件和緊急醫療需求呈現出不錯的表現。其中,與死亡預測相關的關鍵特徵包括平均心率、每日行走步數、臨床功能、意識變化和臨床照護階段評估。對於緊急醫療需求的預測,重要特徵包括疼痛和睡眠品質,以及當天的最低心律。
本研究的結果顯示了將穿戴式裝置和人工智慧整合到安寧緩和照護之潛力,並透過可解釋性人工智慧為末期病患的病程變化提供可能的洞見。未來也需要進一步的研究,持續驗證模型之可靠性,並評估其實際應用對臨床照護品質的影響。
zh_TW
dc.description.abstractDeath or emergent events are inevitable in the clinical course of terminal patients, but their uncertainty can diminish quality of life and create feelings of unsafety for patients and their families, especially those who are receiving outpatient or home-based care. Predicting these events is important yet challenging in palliative care. Limited evidence exists on the use of artificial intelligence (AI) and wearable devices in palliative cancer patients.
This prospective study aimed to explore the potential of using wearable devices and artificial intelligence (AI) to predict death events and emergent medical needs in terminal cancer patients. Participants diagnosed with cancer and receiving palliative care at National Taiwan University Hospital were enrolled between September 2021 and August 2022. Each participant was provided with a smartwatch to collect physiological data, including steps taken, heart rate, sleep time, and blood oxygen saturation. Weekly clinical assessments were conducted, and participants were followed until the end of life or up to 52 weeks. Machine learning-based classifiers and deep neural network (DNN) models were employed to predict events occurring within 7 days, with evaluation metrics including area under the receiver operating curve (AUROC), F1 score, accuracy, and specificity. Shapley value analysis was performed to gain further insights into the models' performance.
The study included a total of 40 patients, with 1657 data points collected throughout the study period. Among the models examined, including Extreme-gradient boost (XGBoost), DNN, Random Forest (RF), and K-nearest neighbors (KNN), fair performances were observed in predicting both death events and emergent medical needs. Key features associated with death prediction included average heart rate, steps taken, functional level, clinical care phase, and a change in consciousness level. For the prediction of emergent medical needs, minimal heart rate on the day, pain, and sleep quality were identified as significant features. These findings highlight the potential of integrating wearable devices and AI into clinical palliative care, providing valuable insights for personalized care at the end-of-life stage. Further research is needed to validate these findings and assess the impact on clinical care.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:32:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:32:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Survival Prediction in Palliative Medicine 1
1.2 Survival Prediction Tool in Palliative Medicine 1
1.2.1 Palliative Performance Scale (PPS) 1
1.2.2 Palliative Prognostic Score (PaP) 2
1.2.3 Palliative Prognostic Index (PPI) 2
1.2.4 Glasgow Prognostic Score (GPS) 3
1.2.5 Other Tools 3
1.3 Leveraging Digital Technology for Event Prediction in Palliative Care 4
1.3.1 Machine Learning and Artificial Intelligence 4
1.3.2 Wearable Devices 4
1.4 The Aim of this Study 5
Chapter 2 Method 6
2.1 Study Design and Participants 6
2.2 Collection of Data 6
2.2.1 Basic Demographic Data 6
2.2.2 Wearable Device Data 7
2.2.3 Clinical Assessments 7
2.2.4 Event Collection 7
2.3 Data Processing 10
2.3.1 Data Combination & Imputation 10
2.3.2 Data Labeling 11
2.3.3 Data Exclusion 11
2.3.4 Down-sampling of the Overrepresented Data 12
2.3.5 Train-test Split & Up-sampling of Training Data 12
2.4 Feature Engineering 13
2.4.1 Feature Creation 13
2.4.2 Feature Selection 14
2.5 Classification Models and Hyperparameter Tuning 15
2.6 Evaluation of Model Performance 16
2.7 Explainable AI with Shapley Analysis 17
2.8 User-feedback of Wearable Devices 17
Chapter 3 Result 18
3.1 Patient Demographics 18
3.2 Completeness of Data 19
3.3 Prediction of 7-day Death Event 20
3.3.1 Selected Features 20
3.3.2 Performance of Models on Testing Set 22
3.3.3 Shapley Analysis of the Top Models 23
3.4 Prediction of 7-day Emergent Medical Need 28
3.4.1 Selected Features 28
3.4.2 Performance of Models on Testing Set 30
3.4.3 Shapley Analysis 32
3.5 User-feedback on Wearable Device 37
Chapter 4 Discussion 39
4.1 The Prediction of Death Events 39
4.1.1 Wearable Device Parameters 39
4.1.2 Clinical Assessment Parameters 40
4.2 The Prediction of Emergent Medical Needs 42
4.2.1 Wearable Device Parameters 42
4.2.2 Clinical Assessment Parameter 43
4.3 Undetermined Issues in Prediction Models 44
4.3.1 Interactions Behind Models and Parameters 44
4.3.2 The optimal prediction interval 45
4.3.3 Representing the Time Complexity for the Events 46
4.4 The Use of Wearable Devices and AI in Terminal Cancer Care 47
4.4.1 User Experience 47
4.4.2 Tolerance to Wearable Devices 47
4.4.3 To Be Examined: The Benefit on Clinical Care 47
4.5 Limitations 48
Chapter 5 Conclusion 49
Reference 50
-
dc.language.isoen-
dc.subject事件預測zh_TW
dc.subject安寧緩和zh_TW
dc.subject人工智慧zh_TW
dc.subject機器學習zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject死亡預測zh_TW
dc.subjectwearable deviceen
dc.subjectpalliative careen
dc.subjectevent predictionen
dc.subjectsurvival predictionen
dc.subjectartificial intelligenceen
dc.subjectmachine learningen
dc.title運用穿戴裝置與機器學習預測安寧緩和醫療中的急性與死亡事件zh_TW
dc.titleUtilizing Wearable Devices and Machine Learning to Predict Acute Events and Mortality in Palliative Careen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡兆勳;黃國晉;陳啟煌;蔣榮先zh_TW
dc.contributor.oralexamcommitteeJaw-Shiun Tsai;Kuo-Chin Huang;Chi-Huang Chen;Jung-Hsien Chiangen
dc.subject.keyword安寧緩和,人工智慧,機器學習,穿戴式裝置,死亡預測,事件預測,zh_TW
dc.subject.keywordpalliative care,artificial intelligence,machine learning,wearable device,survival prediction,event prediction,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202302195-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved