請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆 | zh_TW |
| dc.contributor.advisor | Kwei-Long Huang | en |
| dc.contributor.author | 宋沛璇 | zh_TW |
| dc.contributor.author | Pei-Hsuan Sung | en |
| dc.date.accessioned | 2023-08-15T16:29:21Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | Braune, R., Benda, F., Doerner, K. F., & Hartl, R. F. (2022). A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems. International Journal of Production Economics, 243, 108342.
Cassady, C. R., & Kutanoglu, E. (2003). Minimizing Job Tardiness Using Integrated Preventive Maintenance Planning and Production Scheduling. IIE Transactions, 35(6), 503-513. Cheng, T. C. E., & Gupta, M. C. (1989). Survey of scheduling research involving due date determination decisions. European Journal of Operational Research, 38(2), 156-166. Compare, M., Martini, F., & Zio, E. (2015). Genetic algorithms for condition-based maintenance optimization under uncertainty. European Journal of Operational Research, 244(2), 611-623. Conway, R. W. (1965). Priority dispatching and job lateness in a job shop. J. Ind. Eng., 16(4), 228-237. Conway, R. W., & Maxwell, W. L. (1962). Network Dispatching by the Shortest-Operation Discipline. Operations Research, 10(1), 51-73. Della Croce, F., Gupta, J. N. D., & Tadei, R. (2000). Minimizing tardy jobs in a flowshop with common due date. European Journal of Operational Research, 120(2), 375-381. Eilon, S. (1979). Production scheduling. OR, 78, 237-266. Ettaye, G., El Barkany, A., Jabri, A., & El Khalfi, A. (2018). Optimizing the integrated production and maintenance planning using genetic algorithm. International Journal of Engineering Business Management, 10, 1847979018773260. Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1976). Some simplified NP-complete graph problems. Theoretical Computer Science, 1(3), 237-267. Hunsucker, J. L., & Shah, J. R. (1994). Comparative performance analysis of priority rules in a constrained flow shop with multiple processors environment. European Journal of Operational Research, 72(1), 102-114. Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2008). Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. The International Journal of Advanced Manufacturing Technology, 37(3), 354-370. Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2), 87-112. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). Chapter 9 Sequencing and scheduling: Algorithms and complexity. In Handbooks in Operations Research and Management Science (Vol. 4, pp. 445-522). Elsevier. Lee, I., Sikora, R., & Shaw, M. (1997). A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27, 36-54. Lee, T., & Loong, Y. (2019). A review of scheduling problem and resolution methods in flexible flow shop. International Journal of Industrial Engineering Computations, 10(1), 67-88. Levitin, G., & Lisnianski, A. (2000). Optimization of imperfect preventive maintenance for multi-state systems. Reliability Engineering & System Safety, 67(2), 193-203. Li, W., & Dawei, L. (2002, 10-14 June 2002). A scheduling algorithm for flexible flow shop problem. Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527). Lin, T.-W., & Wang, C.-H. (2012). A hybrid genetic algorithm to minimize the periodic preventive maintenance cost in a series-parallel system. Journal of Intelligent Manufacturing, 23(4), 1225-1236. Lodree, E., Jang, W., & Klein, C. M. (2004). A new rule for minimizing the number of tardy jobs in dynamic flow shops. European Journal of Operational Research, 159(1), 258-263. Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research, 94(3), 425-438. Ruiz, R., Carlos García-Díaz, J., & Maroto, C. (2007). Considering scheduling and preventive maintenance in the flowshop sequencing problem. Computers & Operations Research, 34(11), 3314-3330. Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. Salmasnia, A., & Mirabadi-Dastjerd, D. (2017). Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures. TOP, 25(3), 544-578. Sriskandarajah, C., & Sethi, S. P. (1989). Scheduling algorithms for flexible flowshops: Worst and average case performance. European Journal of Operational Research, 43(2), 143-160. Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54(3), 453-473. Wittrock, R. J. (1988). An Adaptable Scheduling Algorithm for Flexible Flow Lines. Operations Research, 36(3), 445-453. Zequeira, R. I., & Bérenguer, C. (2006). Periodic imperfect preventive maintenance with two categories of competing failure modes. Reliability Engineering & System Safety, 91(4), 460-468. Zhao, Y. X. (2003). On preventive maintenance policy of a critical reliability level for system subject to degradation. Reliability Engineering & System Safety, 79(3), 301-308. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88479 | - |
| dc.description.abstract | 近年來製造業的快速更迭,欲達最佳生產效率及產能最大化,企業開始重視設備維護的精準操作安排。由於設備成本的問題及更換的不容易,生產系統除了最小化生產排程完工時間和最大化訂單產量外,關於維護排程問題的分配中如何在瞬息萬變的生產條件下進行作業與機台的合理安排也成為其中一個關鍵。另外透過精確的維護排程可以有效降低機台的故障與損壞率及生產成本,從而提升機台效率,並縮短交貨時間提高客戶滿意度以及市場競爭力。除此之外面對生產環境的不停變化,針對設備劣化的計算也相對複雜,因此提出較符合設備退化的劣化模式,方能反應出最真實的生產狀況。
這樣的背景下,生產排程不僅只是分配作業與機台的順序,還需要考慮機台的維護策略,生產流程需要具備足夠的彈性來應對機台分配與作業排序的雙重決策,因此本研究將在彈性流線型生產排程 (Flexible Flowshop Scheduling) 的基礎下,著重於兩種類型的派工方式:作業和機台加工順序的組合,甚至提出少見的最小機台使用率 (Least Utilized Machine) 作為其中一個派工方法,期望能優化整體的生產績效。機台維護策略同時發揮了重要的作用,雖然機台維護策略會耗用生產時間,但忽視維護工作可能導致機台故障率提高。優秀的維護策略不僅能增加機台的運行時間,也能提升機台的壽命。在維護策略上,將探討三種評判標準:維護種類、工件可否被中斷及維護水準,以定義最佳的維護策略。而為了因應生產環境的不確定性,在機台劣化率的部分將考慮模擬隨機劣化模式,以更貼近真實生產背景。最終透過數值分析與國內某航太企業之實務案例驗證所提出之方法,結果表明最佳維護方法集中於特定維護策略,且所提出之最小機台使用率的組合在某些問題規模也有較好的求解結果。 | zh_TW |
| dc.description.abstract | In recent years, the manufacturing industries have evolved rapidly in improving the efficiency of production and capacity. Companies begin to invest more resources in accurate operation arrangements for equipment maintenance. Due to the high cost of equipment and difficulties of replacements, it has become a major challenge on not only how to arrange jobs and machines, but also on minimizing production scheduling completion time and maximizing order output. The other challenges presented to the industries are failure and damage rates of machinery, delivery times and the calculation of equipment degradation. These can be delt with accurate maintenance scheduling and precise degradation modeling programs so as to meet customer requirements and to increase market competitiveness.
Given the above background, production scheduling is not only assigning jobs and machine sequences, but also considering equipment maintenance strategies. The production process needs to be flexible enough to handle the dual decisions of machine sequencing and job sequencing which is one of the goals of this paper to correlate by proposing several dispatching rules, such as EDD, FCFS, SPT and LUM (Least Utilized Machine). Effective maintenance strategies can increase machine operating time as well as machine life. In terms of maintenance strategies, three evaluation criteria were explored in order to define the optimal maintenance strategy: types of maintenance, job interruption, and level of maintenance. Also, to cope with the complexity of the production environment, simulating random degradation models were considered in terms of machine degradation rates. So as to be more aligned with the real production background. Ultimately, through numerical analysis and practical case studies, the results show that the optimal maintenance methods stand on specific maintenance strategies. And the proposed Least Utilized Machine in dispatching rule also achieves better results in certain problem scales. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:29:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:29:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目 3 1.3 研究架構 5 第二章 文獻探討 7 2.1 彈性流線型生產排程 7 2.2 派工法則在生產排程中之應用 10 2.3 基因演算法 11 2.4 設備劣化與維護之關係 12 2.5 小結 15 第三章 問題描述與基本模型 16 3.1 排程問題描述 16 3.1.1 彈性流線型生產排程問題 16 3.1.2 納入機台效率考量 19 3.1.3 小結 22 3.2 派工法則於生產排程安排 22 3.3 基因演算法 27 3.3.1 基因演算法之基本概念 27 3.3.2 染色體編碼及初始群體生成 29 3.3.3 計算適應值 29 3.3.4 交配、突變 30 3.3.5 選擇與產生下一代 32 3.4 彈性流線型生產排程範例和求解方 33 第四章 基於模型之維護策略 40 4.1 機台加工效率定義 40 4.2 維護策略 43 4.2.1 維護種類 45 4.2.2 工件可否被中斷 47 4.2.3 可用率可否恢復如初 49 4.3 隨機劣化設計 51 第五章 模型模擬與數值分析 55 5.1 生產環境模擬分析 55 5.2 排程結果數值比較 58 5.2.1 維護時長敏感度分析 58 5.2.2 數值結果呈現 60 5.2.3 排程策略建議 65 5.3 實務案例驗證 65 第六章 結論 73 6.1 總結 73 6.2 未來方向 74 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 最小化總延遲時間 | zh_TW |
| dc.subject | 劣化模式 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 派工法則 | zh_TW |
| dc.subject | 彈性流線型生產排程 | zh_TW |
| dc.subject | Degradation rate | en |
| dc.subject | Minimize total tardiness | en |
| dc.subject | Flexible flowshop scheduling | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | Dispatching rule | en |
| dc.title | 考量彈性流線型機台劣化模式之排程與維護策略之研究 | zh_TW |
| dc.title | The Study of Scheduling and Maintenance Policy in Flexible Flowshop with Machine Degradation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳文智;楊朝龍 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Chih Chen;Chao-Lung Yang | en |
| dc.subject.keyword | 彈性流線型生產排程,派工法則,基因演算法,劣化模式,最小化總延遲時間, | zh_TW |
| dc.subject.keyword | Flexible flowshop scheduling,Dispatching rule,Genetic Algorithm,Degradation rate,Minimize total tardiness, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202302332 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2028-07-28 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-07-28 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
