請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88471完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志宏 | zh_TW |
| dc.contributor.advisor | Zsehong Tsai | en |
| dc.contributor.author | 林家頡 | zh_TW |
| dc.contributor.author | Chia-Chieh Lin | en |
| dc.date.accessioned | 2023-08-15T16:27:17Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | P. Milgrom, “Putting auction theory to work: The simultaneous ascending auction,” Journal of Political Economy, vol. 108, no. 2, pp. 245–272, 2000.
J.-S. Lee and B. Szymanski, “A novel auction mechanism for selling time-sensitive e-services,” in Seventh IEEE International Conference on E-Commerce Technology (CEC’05), pp. 75–82, 2005. W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961. “Amazon EC2 On-Demand Pricing.” https://aws.amazon.com/tw/ec2/pricing/on-demand, 2016. I. I. Cplex, “V12. 1: User's manual for cplex,” International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009. D. Kumar, G.Baranwal, and D.P.Vidyarthi, “Asurveyonauctionbasedapproaches for resource allocation and pricing in emerging edge technologies,” Journal of Grid Computing, vol. 20, no. 1, pp. 1–52, 2022. V. Krishna, Auction theory. Academic press, 2009. H. Qiu, K. Zhu, N. C. Luong, C. Yi, D. Niyato, and D. I. Kim, “Applications of auction and mechanism design in edge computing: A survey,” IEEE Transactions on Cognitive Communications and Networking, 2022. T. Roughgarden, “Algorithmic game theory,” Communications of the ACM, vol. 53, no. 7, pp. 78–86, 2010. J. C. Cox, V. L. Smith, and J. M. Walker, “Theory and individual behavior of first-price auctions,” Journal of Risk and Uncertainty, vol. 1, pp. 61–99, 1988. R. B. Myerson, “Optimal auction design,” Mathematics of Operations Research, vol. 6, no. 1, pp. 58–73, 1981. E. H. Clarke, “Multipart pricing of public goods,” Public Choice, pp. 17–33, 1971. T. Groves, “Incentives in teams,” Econometrica: Journal of the Econometric Society, pp. 617–631, 1973. B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords,” American Economic Review, vol. 97, no. 1, pp. 242–259, 2007. H. R. Varian, “Position auctions,” International Journal of Industrial Organization, vol. 25, no. 6, pp. 1163–1178, 2007. A. Leo-Hansen, “How is the vcg mechanism profiting facebook?,” 06 2020. G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, and G. Chen, “Auction-based vm allocation for deadline-sensitive tasks in distributed edge cloud,” IEEE Transactions on Services Computing, 2019. L. Liu, H. Ge, S. Li, X. Chen, H. Gong, and Y. Cui, “Resource allocation strategy based on improved auction algorithm in mobile edge computing environment,” in 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 355–363, IEEE, 2021. T.Bahreini, H.Badri, and D.Grosu, “Mechanisms for resource allocation and pricing in mobile edge computing systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 667–682, 2021. Q.Wang, S.Guo, J.Liu, C.Pan, and L.Yang, “Profit maximization incentive mechanism for resource providers in mobile edge computing,” IEEE Transactions on Services Computing, 2019. H. Zhang, F.Guo, H.Ji, and C.Zhu, “Combinational auction-based service provider selection in mobile edge computing networks,” IEEE Access, vol. 5, pp. 13455-13464, 2017. A. Goldsmith, Wireless Communications. USA: Cambridge University Press, 2005. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423, 1948. H. Shi, R. V. Prasad, E. Onur, and I. Niemegeers, “Fairness in wireless networks: issues, measures and challenges,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 5–24, 2014. A. Pla, B. Lopez, and J. Murillo, “Multi-dimensional fairness for auction-based resource allocation,” Knowledge-Based Systems, vol. 73, pp. 134–148, 2015. J.MurilloEspinaretal., Egalitarian behaviour in multi unit combinatorial auctions. Universitat de Girona, 2010. R. Hassanzadeh, A. Movaghar, and H. R. Hassanzadeh, “A multi-dimensional fairness combinatorial double-sided auction model in cloud environment,” in 2016 8th International Symposium on Telecommunications (IST), pp. 672–677, 2016. T. Hoßfeld, L. Skorin-Kapov, P. E. Heegaard, and M. Varela, “Definition of qoe fairness in shared systems,” IEEE Communications Letters, vol. 21, no. 1, pp. 184– 187, 2017. T. Hoßfeld, P. E. Heegaard, M. Varela, L. Skorin-Kapov, and M. Fiedler, “From qos distributions to qoe distributions: a system’s perspective,” in 2020 6th IEEE Conference on Network Softwarization (NetSoft), pp. 51–56, 2020. P.Lai, Q.He, M.Abdelrazek, F.Chen, J.Hosking, J.Grundy, and Y.Yang, “Optimal edge user allocation in edge computing with variable sized vector bin packing,” in International Conference on Service-Oriented Computing, pp. 230–245, Springer, 2018. C. Telecom, “Chunghwa telecom 5g.” https://www.cht.com.tw/home/campaign/5g/ index.html, Dec 2022. F. Sam, “Taiwan mobile web experience report.” https://www.opensignal.com/zh- hant/reports/2022/12/taiwan/mobile-network-experience, Dec 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88471 | - |
| dc.description.abstract | 移動邊緣運算是一種有前途的技術,可提供計算和無線資源,並縮短與移動終端用戶的通訊延遲。移動邊緣運算位於整個網絡架構的邊緣,對於計算資源受限的移動終端用戶來說,移動邊緣運算可以用於卸載應用,而且在距離上比起傳統的雲數據中心更為接近。然而,由於移動邊緣運算的資源有限,因此需要一個好的資源分配方式,以有效地分配資源給終端用戶,並防止資源被低效利用。拍賣機制非常適合用以實現資源的最佳分配,並為資源提供者和資源使用者提供參與資源分配交易的誘因。
目前大部分將拍賣機制應用於移動邊緣運算中的資源分配的研究都沒有綜合考慮計算和無線資源的分配,這些研究都只專注於計算資源的分配,而這會使移動終端用戶面臨暴露問題,最終導致較低的社會福利。此外,大多數拍賣模型的研究都僅關注最大化社會福利,很少考慮拍賣的公平性,但是忽視公平性通常會導致某部分的資源使用者的服務匱乏,造成使用者流失,使用者流失可能會導致寡頭市場的產生,這給剩餘的使用者降低出價的議價權,從而降低社會福利。 為了解決上述問題,我們首先提出了一個單輪拍賣機制,該機制在移動終端用戶卸載任務期限約束下,共同分配資源提供者(即移動運營商)的計算和無線資源給資源使用者(即移動終端用戶),同時最大化社會福利。我們將此資源分配問題建模為一個整數線性規劃問題。為了有效地解決這個整數線性規劃問題,我們提出了一種貪心近似演算法,它提供了一個與商業求解器的解決方案相比具有快速執行速度的近似最優解。其次,基於一輪拍賣機制,我們提出了一個公平拍賣機制,用於公平分配資源,以解決使用者流失的問題,該機制提供了一種可以有效且公平地分配計算和無線資源給移動用戶的方法。最後,大量模擬實驗的結果證明我們提出的模型確實可以在最大化系統的整體福利之餘,解決暴露問題和使用者流失問題。在這篇研究當中,我們的主要貢獻是提供了一種在資源競爭的移動邊緣運算環境中,使用拍賣機制來有效、高效、且公平地共同分配計算和無線資源給移動用戶的方法。 | zh_TW |
| dc.description.abstract | Mobile edge computing is a promising technology that provides computing and wireless resources with lower communication latency to the end user. Deployed at the network's edge, mobile edge computing is geographically closer for resource-restricted mobile devices to offload their task than traditional cloud data centers. However, with limited resources, a well-designed resource allocation scheme is needed to efficiently allocate resources to end users and prevent resources from under-utilization. The auction mechanism is well-suited for achieving optimal allocation strategy and incentivizes resource providers and consumers to participate in the resource allocation trade.
Most existing works that apply auction mechanisms failed to jointly allocate computing and wireless resources while maximizing social welfare under task deadline constraint, leading to the exposure problems for mobile users and minor social welfare. Furthermore, most auction-based models focus only on maximizing social welfare. Few have considered fairness among auction participants, but without considering fairness leads to the bidder dropout problem due to service starvation in a recurrent auction environment, and the bidder dropout problem may lead to an oligopoly market, which gives the remaining bidder bargaining power to lower their bid, thus decreasing social welfare. To address the problems mentioned above, we propose a one-round auction mechanism, which jointly allocates computing and wireless resources of the resource provider, i.e., the mobile operator, to consumers, i.e., mobile users, while maximizing social welfare under users' offloaded tasks' deadline constraint. We modeled this resource allocation problem as an integer linear programming problem. To solve this integer linear programming problem efficiently, we proposed a greedy approximation algorithm, which provides a near-optimal solution with fast execution speed compared to the commercial solver's solution. Second, based on the one-round auction mechanism, we proposed a fairness-aware auction mechanism for fair resource allocation to address the user's dropout problem. This mechanism provides a way to efficiently and fairly allocate computing and wireless resources to mobile users while preventing the bidder dropout problem from arising. Finally, we performed extensive simulations, proving that our proposed model can solve the exposure and bidder dropout problems while maximizing the social welfare. In brief, our main contribution is providing an effective and efficient way to jointly and fairly allocate computing and wireless resources to mobile users using a fairness-aware auction mechanism in a resource-competitive MEC environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:27:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:27:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 中文摘要 v Abstract vii Contents xi List of Figures xv List of Tables xvii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 6 1.3 Thesis Organization 8 Chapter 2 Related Work 11 2.1 Auction Mechanism 11 2.2 Auction-based Resource Allocation and Pricing Mechanism 15 Chapter 3 Auction-based Resource Allocation and Pricing Model 21 3.1 SystemModel 21 3.2 NetworkModel 26 3.3 Procedure of a Centralized Single Round Auction 28 3.4 Mobile Edge Computing Resource Allocation and Pricing Problem 31 3.5 A Greedy Heuristic Algorithm for Resource Allocation 34 3.6 Payment Rule 36 3.7 Concluding Remark 38 Chapter 4 Fairness-aware Resource Allocation and Pricing Model 41 4.1 Fairness Issue in Recurrent Auction Environments 41 4.2 Fairness Weight and F-index 43 4.3 Payment Rule 47 4.4 Procedure of a Centralized recurrent Auction 48 4.5 Concluding Remark 51 Chapter 5 Simulation Analysis 53 5.1 Dataset Description 53 5.2 Simulation Settings 55 5.2.1 Single Round Auction 55 5.2.2 Recurrent Auction Environments 56 5.3 Simulation Results of the Single Round Auction 57 5.3.1 Target of Comparison 57 5.3.2 Comparison of Served User Percentage 59 5.3.3 Comparison of Social Welfare 61 5.3.4 Concluding Remark 62 5.4 Simulation Results of Fairness-Aware Auction Model in Recurrent Auction Scenario 63 5.4.1 Target of Comparison 63 5.4.2 Comparison of Fixed Arrival Rate in Recurrent Auction Scenario 64 5.4.3 Comparison of Multiple Arrival Rates in Recurrent Auction Scenario 66 5.5 ConcludingRemark 70 Chapter 6 Conclusion and Future Work 73 6.1 Conclusions 73 6.2 Future Work 75 References 77 Appendix A - Notations 81 Appendix B - Proof of Equation 3.22 in Section 3.6 83 | - |
| dc.language.iso | en | - |
| dc.subject | 定價機制 | zh_TW |
| dc.subject | 拍賣機制 | zh_TW |
| dc.subject | 公平拍賣機制 | zh_TW |
| dc.subject | 行動邊緣運算 | zh_TW |
| dc.subject | 資源分配 | zh_TW |
| dc.subject | pricing mechanism | en |
| dc.subject | resource allocation | en |
| dc.subject | mobile edge computing | en |
| dc.subject | fairness-aware auction mechanism | en |
| dc.subject | auction mechanism | en |
| dc.title | 公平拍賣機制於行動邊緣運算下之資源分配與定價啟發式最佳化 | zh_TW |
| dc.title | A Fairness-Aware Auction Mechanism with Heuristic-Based Optimization for Resource Allocation and Pricing in Mobile Edge Computing Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 馮輝文;林風;鍾耀梁 | zh_TW |
| dc.contributor.oralexamcommittee | Huei-Wen Ferng;P Lin;Yao-Liang Chung | en |
| dc.subject.keyword | 資源分配,行動邊緣運算,定價機制,公平拍賣機制,拍賣機制, | zh_TW |
| dc.subject.keyword | mobile edge computing,resource allocation,pricing mechanism,auction mechanism,fairness-aware auction mechanism, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202302400 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 3.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
