請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88453
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈川洲 | zh_TW |
dc.contributor.advisor | Chuan-Chou Shen | en |
dc.contributor.author | 林益增 | zh_TW |
dc.contributor.author | Yi-Zeng Lin | en |
dc.date.accessioned | 2023-08-15T16:22:29Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-30 | - |
dc.identifier.citation | Books
Deines, P. (1980). The Isotopic Composition of Reduced Organic Carbon. In The Terrestrial Environment, A (pp. 329-406). Hoefs, J. (2015). Stable Isotope Geochemistry. Koutavas, A., & Lynch-Stieglitz, J. (2004). Variability of the Marine ITCZ over the Eastern Pacific during the Past 30,000 Years. In The Hadley Circulation: Present, Past and Future (pp. 347-369). Wyrtki, K., Bennett, E. B., & Rochford, D. J. (1971). Oceanographic Atlas of the International Indian Ocean Expedition: Thematic Atlas. National Science Foundation. Journals Abram, N. J., Dixon, B. C., Rosevear, M. G., Plunkett, B., Gagan, M. K., Hantoro, W. S., & Phipps, S. J. (2015). Optimized coral reconstructions of the Indian Ocean Dipole: An assessment of location and length considerations. Paleoceanography, 30(10), 1391-1405. Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T. L., Shen, C. C., Cheng, H., Edwards, R. L., & Heslop, D. (2020). Coupling of Indo-Pacific climate variability over the last millennium. Nature, 579(7799), 385-392. Arbuszewski, J. A., deMenocal, P. B., Cléroux, C., Bradtmiller, L., & Mix, A. (2013). Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum. Nature Geoscience, 6(11), 959-962. Baker, A., Ito, E., Smart, P. L., & McEwan, R. F. (1997). Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology, 136(3-4), 263-270. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294(5549), 2130-2136. Breecker, D. O., Payne, A. E., Quade, J., Banner, J. L., Ball, C. E., Meyer, K. W., & Cowan, B. D. (2012). The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation. Geochimica et Cosmochimica Acta, 96, 230-246. Cai, W., & Cowan, T. (2013). Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophysical Research Letters, 40(6), 1200-1205. Cai, W., Wang, G., Gan, B., Wu, L., Santoso, A., Lin, X., Chen, Z., Jia, F., & Yamagata, T. (2018). Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nat Commun, 9(1), 1419. Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., & Calvin Alexander, E. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372, 82-91. Chiang, J. C. H., & Friedman, A. R. (2012). Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change. Annual Review of Earth and Planetary Sciences, 40(1), 383-412. Chiang, J. C. H., Lee, S.-Y., Putnam, A. E., & Wang, X. (2014). South Pacific Split Jet, ITCZ shifts, and atmospheric North–South linkages during abrupt climate changes of the last glacial period. Earth and Planetary Science Letters, 406, 233-246. Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46(4). Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468. Dreybrodt, W. (1980). Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chemical Geology, 29(1-4), 89-105. Du, X., Russell, J. M., Liu, Z., Otto-Bliesner, B. L., Oppo, D. W., Mohtadi, M., Zhu, C., Galy, V. V., Schefuß, E., Yan, Y., Rosenthal, Y., Dubois, N., Arbuszewski, J., & Gao, Y. (2023). North Atlantic cooling triggered a zonal mode over the Indian Ocean during Heinrich Stadial 1. Sci Adv, 9(1), eadd4909. Fairchild, I., & McMillan, E. (2007). Speleothems as indicators of wet and dry periods. International Journal of Speleology, 36(2), 69-74. Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., & E.I.M.F. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75(1-4), 105-153. Fohlmeister, J., Voarintsoa, N. R. G., Lechleitner, F. A., Boyd, M., Brandtstätter, S., Jacobson, M. J., & L. Oster, J. (2020). Main controls on the stable carbon isotope composition of speleothems. Geochimica et Cosmochimica Acta, 279, 67-87. Gadgil, S. (2003). The Indian Monsoon and Its Variability. Annual Review of Earth and Planetary Sciences, 31(1), 429-467. Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., & Hamelin, B. (2001). Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta, 65(20), 3443-3457. Goede, A., Green, D. C., & Harmon, R. S. (1986). Late Pleistocene palaeotemperature record from a Tasmanian speleothem. Australian Journal of Earth Sciences, 33(3), 333-342. Grimes, K. (2001). Karst Features of Christmas Island (Indian Ocean). Helictite, 37, 41-58. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. Han, W., Vialard, J., McPhaden, M. J., Lee, T., Masumoto, Y., Feng, M., & de Ruijter, W. P. M. (2014). Indian Ocean Decadal Variability: A Review. Bulletin of the American Meteorological Society, 95(11), 1679-1703. Hendy, C. H. (1971). Isotopic Geochemistry of Speleothems-1. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 35(8), 801-824. Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/235U Systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610-1614. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision Measurement of Half-Lives and Specific Activities of U235 and U238. Physical Review C, 4(5), 1889-1906. Kaars, S. v. d., Wang, X., Kershaw, P., Guichard, F., & Setiabudi, D. A. (2000). A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: patterns of vegetation, climate, and biomass burning in Indonesia and northern Australia. Paleogeography, Palaeoclimatology, Palaeoecology, 155(1-2), 135-153. Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., & Swingedouw, D. (2013). Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Climate of the Past, 9(2), 935-953. Kim, S.-T., & O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461-3475. Lachniet, M. S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28(5-6), 412-432. Lewis, S. C., Gagan, M. K., Ayliffe, L. K., Zhao, J.-x., Hantoro, W. S., Treble, P. C., Hellstrom, J. C., LeGrande, A. N., Kelley, M., Schmidt, G. A., & Suwargadi, B. W. (2011). High-resolution stalagmite reconstructions of Australian–Indonesian monsoon rainfall variability during Heinrich stadial 3 and Greenland interstadial 4. Earth and Planetary Science Letters, 303(1-2), 133-142. Liu, S., Shi, X., Wong, K.-T., Chen, M.-T., Ye, W., Zhang, H., Cao, P., Li, J., Li, X., Khokiattiwong, S., & Kornkanitnan, N. (2022). Synchronous millennial surface-stratified events with AMOC and tropical dynamic changes in the northeastern Indian Ocean over the past 42 ka. Quaternary Science Reviews, 284. Liu, S., Ye, W., Cao, P., Zhang, H., Chen, M.-T., Li, X., Li, J., Pan, H.-J., Khokiattiwong, S., Kornkanitnan, N., & Shi, X. (2021). Paleoclimatic responses in the tropical Indian Ocean to regional monsoon and global climate change over the last 42 kyr. Marine Geology, 438. Lo, L., Shen, C.-C., Lu, C.-J., Chen, Y.-C., Chang, C.-C., Wei, K.-Y., Qu, D., & Gagan, M. K. (2014). Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry. Journal of Asian Earth Sciences, 81, 115-122. McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(7-8), 901-918. McGee, D., Donohoe, A., Marshall, J., & Ferreira, D. (2014). Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters, 390, 69-79. McGee, D., Ferreira, D., Marshall, J., & Donohoe, A. (2013). The Relationship between ITCZ Location and Cross-Equatorial Atmospheric Heat Transport: From the Seasonal Cycle to the Last Glacial Maximum. Journal of Climate, 26(11), 3597-3618. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), 834-837. Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., & Luckge, A. (2014). North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76-80. Nguyen, D. C., Chen, Y.-G., Chiang, H.-W., Shen, C.-C., Wang, X., Doan, L. D., Yuan, S., Ahmad Lone, M., Yu, T.-L., Lin, Y., & Kuo, Y.-T. (2020). A decadal-resolution stalagmite record of strong Asian summer monsoon from northwestern Vietnam over the Dansgaard–Oeschger events 2–4. Journal of Asian Earth Sciences: X, 3. Nguyen, D. C., Lee, S.-Y., Chen, Y.-G., Chiang, H.-W., Shen, C.-C., Wang, X., Doan, L. D., & Lin, Y. (2022). Precipitation response to Heinrich Event-3 in the northern Indochina as revealed in a high-resolution speleothem record. Journal of Asian Earth Sciences: X, 7. Philander, S. G. H., Gu, D., Lambert, G., Li, T., Halpern, D., Lau, N. C., & Pacanowski, R. C. (1996). Why the ITCZ Is Mostly North of the Equator. Journal of Climate, 9(12), 2958-2972. Pico, T., McGee, D., Russell, J., & Mitrovica, J. X. (2020). Recent Constraints on MIS 3 Sea Level Support Role of Continental Shelf Exposure as a Control on Indo‐Pacific Hydroclimate. Paleoceanography and Paleoclimatology, 35(8). Rudzka, D., McDermott, F., Baldini, L. M., Fleitmann, D., Moreno, A., & Stoll, H. (2011). The coupled δ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions. Geochimica et Cosmochimica Acta, 75(15), 4321-4339. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360-363. Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., & Patzold, J. (2011). Forcing of wet phases in southeast Africa over the past 17,000 years. Nature, 480(7378), 509-512. Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45-53. Scholz, D., & Hoffmann, D. L. (2011). StalAge – An algorithm designed for construction of speleothem age models. Quaternary Geochronology, 6(3-4), 369-382. Scroxton, N., Gagan, M. K., Ayliffe, L. K., Hantoro, W. S., Hellstrom, J. C., Cheng, H., Edwards, R. L., Zhao, J. X., Suwargadi, B. W., & Rifai, H. (2022). Antiphase response of the Indonesian-Australian monsoon to millennial-scale events of the last glacial period. Sci Rep, 12(1), 20214. Shen, C.-C., Chiu, H.-Y., Chiang, H.-W., Chu, M.-F., Wei, K.-Y., Steinke, S., Chen, M.-T., Lin, Y.-S., & Lo, L. (2007). High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry. Chemical Geology, 236(3-4), 339-349. Shen, C.-C., Wu, C.-C., Cheng, H., Lawrence Edwards, R., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., & Spötl, C. (2012). High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71-86. Shen, C. C., Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff, J. A., & Thomas, R. B. (2003). Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Anal Chem, 75(5), 1075-1079. Stoll, H. M., Vance, D., & Arevalos, A. (2007). Records of the Nd isotope composition of seawater from the Bay of Bengal: Implications for the impact of Northern Hemisphere cooling on ITCZ movement. Earth and Planetary Science Letters, 255(1-2), 213-228. Sung, M.-K., Kwon, W.-T., Baek, H.-J., Boo, K.-O., Lim, G.-H., & Kug, J.-S. (2006). A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation. Geophysical Research Letters, 33(21). Them, T. R., Schmidt, M. W., & Lynch-Stieglitz, J. (2015). Millennial-scale tropical atmospheric and Atlantic Ocean circulation change from the Last Glacial Maximum and Marine Isotope Stage 3. Earth and Planetary Science Letters, 427, 47-56. Tremaine, D. M., Froelich, P. N., & Wang, Y. (2011). Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta, 75(17), 4929-4950. van der Kaars, S., Bassinot, F., De Deckker, P., & Guichard, F. (2010). Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83,000 years: The record from marine core BAR94-42. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1-2), 52-78. van der Kaars, S., & Dam, R. (1997). Vegetation and climate change in West-Java, Indonesia during the last 135,000 years. Quaternary International, 37, 67-71. van der Kaars, W. A., & Dam, M. A. C. (1995). A 135,000-year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 117(1-2), 55-72. Waelbroeck, C., Lougheed, B. C., Vazquez Riveiros, N., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., Wacker, L., Abbott, P., Dumoulin, J. P., Thil, F., Eynaud, F., Rossignol, L., Fersi, W., Albuquerque, A. L., Arz, H., Austin, W. E. N., Came, R., Carlson, A. E., . . . Ziegler, M. (2019). Consistently dated Atlantic sediment cores over the last 40 thousand years. Sci Data, 6(1), 165. Waliser, D. E., & Gautier, C. (1993). A Satellite-derived Climatology of the ITCZ. Journal of Climate, 6(11), 2162-2174. Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451-14510. Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401(6751), 356-360. Thesis Edwards, R. L. (1988). High Precision Thorium-230 Ages of Corals and the Timing of Sea Level Fluctuations in the Late Quaternary. Ph.D. thesis, California Institute of Technology, USA. Online sources HYSPLIT model access viaNational Oceanic and Atmospheric Administration website. URL: https://www.ready.noaa.gov/HYSPLIT.php Climate Statistics for Australian Locations. URL:http://www.bom.gov.au Global Network for Isotopes in Precipitation of the International Atomic Energy Agency website. URL:https://nucleus.iaea.org/wiser | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88453 | - |
dc.description.abstract | 在數年至數十年時間尺度上,印度洋區域尤其是東熱帶印度洋地區的水文氣候,被印度洋偶極震盪(Indian Ocean Dipole, IOD)現象影響;於軌道尺度下的變化,則是受到間熱帶輻和帶(Inter Tropical Convergence Zone, ITCZ)位移所主導。然而在百年至千年尺度的氣候變化中,IOD及ITCZ對此區域降水的影響迄今尚未明瞭。本研究利用取自聖誕島Upper Daniel Roux Cave(南緯十度二十六分,東經一百零五度三十九分)的石筍為材料,利用鈾釷定年技術建立年代模式,並以碳氧同位素分析,重建過去三萬六千年至兩萬五千年間的數十年至百年解析度的降水紀錄變化。石筍同位素資料通過Hendy Test測試,表明應可以記錄區域主要的水文氣候變化。結果顯示氧同位素(δ18O)介於-5.1至-2.8‰之間,受到雨量效應的影響;碳同位素與氧同位素有一定的相關性,反映出受降雨影響了生物活動力與植被的覆蓋率;而碳氧同位素紀錄可以反應該區域的水文氣候狀況。δ18O紀錄顯示從36.0 ka (千年) 的-3‰劇烈下降到35.2 ka的-5‰並保持穩定狀態,直到34.2 ka時急劇增加到-3.7‰。隨後自33.8 ka的-3.0‰減少到32.5 ka的-5.1‰,緊接著保持-5到-4‰之間的震盪到29.3 ka為止。在29.3-26.3 ka從-4‰緩增到-3‰的期間,於28 ka夾雜一段約400年的-3‰高峰值,最終δ18O從26.3 ka的-2.8‰轉變為25.6 ka的-4.5‰。其中有2個降水量較高的區域在35.8-34.2和28.1-27.6 ka (δ18O:-5‰),3個乾燥區域在34.1-33.5、28.7-28.1和26.8-26.1 ka (δ18O:-3‰) 。此石筍δ18O指示的降水變化與位於赤道東印度洋北部,且同樣受到ITCZ影響降雨的蘇門答臘島外的海洋沉積物岩心SO189-119KL (3°31’N)和SO189-39KL (0°47’S) (Mohtadi et al., 2014),有著千年尺度上的反相關。這種現象表明,末次冰期東印度洋千年尺度的降水變化主要受ITCZ位移控制,而非受到類似IOD事件影響。 | zh_TW |
dc.description.abstract | Indian Ocean Dipole (IOD) oscillation affects the hydroclimatic condition in the Pan-Indian Ocean territory, especially precipitation in the eastern tropical Indian Ocean realm, on annual-decadal scales, even the variation of Inter Tropical Convergence Zone (ITCZ) shift is the dominant factor over the orbital scale. However, the effects of IOD and ITCZ on the regional precipitation on the centennial-millennial scale in the glacial time are obscure. Here we present the replicate stalagmite carbon and oxygen isotope records covering 36-25 thousand years ago (ka, relative to AD 1950), anchored with 30 U-Th ages, from Upper Daniel Roux Cave on Christmas Island (10°26′S, 105°39′E), eastern Indian Ocean, to provide a multidecadal-to-centennial-resolved precipitation evolution. Isotopic data pass the “Hendy Test” and can preserve the original hydroclimatic signals. Stalagmite δ18O records, ranging from -5.1 to -2.8‰, were mainly controlled by the “amount effect”. δ13C data agree with δ18O records and this agreement reflects the variation of precipitation-triggered bioactivity and vegetation cover associated with changes in hydroclimatic conditions. The δ18O record shows a sharp decrease from -3‰ at 36.0 ka to -5‰ at 35.2 ka and keeps this plateau of -5‰ until a sharp increase to -3.7‰ at 34.2 ka. It then decreases from -3.0‰ at 33.8 ka to -5.1‰ at 32.5 ka, followed by stable values hovering around -5 to -4‰ from 32.5 to 29.3 ka, an abrupt increase to -3‰ during 29.3 -26.3 ka with an 18O-depletion 400-yr peak centered at 28.0 ka, and a final 18O-depletion shift from -2.8‰ at 26.3 ka to -4.5‰ at 25.6 ka. Two intervals with relatively high precipitation (δ18O: -5‰) are observed at 35.8-34.2 ka and 28.1-27.6 ka, and three drought intervals (δ18O: -3‰) at 34.1-33.5, 28.7-28.1 and 26.8-26.1 ka. The stalagmite δ18O-inferred precipitation-variation shows a general millennial-scale anti-phase symmetrical relationship of this southern tropical ITCZ sector with the planktonic foraminiferal proxy-inferred seawater δ18O records of marine sediment cores SO189-119KL (3°31′N) and SO189-39KL (0°47′S) (Mohtadi et al., 2014), located in the northern sector of the eastern equatorial Indian Ocean, off Sumatra Island. This general anti-phase concurrency suggests that the eastern Indian Ocean millennial precipitation change in the last glacial time could be mainly controlled by the ITCZ shift, instead of IOD-like variability, on the sub-orbital scale. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:22:29Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:22:29Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii Abstract iii 摘要 v CONTENTS vi LIST OF FIGURES viii Chapter 1 Introduction 1 Chapter 2 Regional settings and methods 9 2.1 Study site and material 9 2.2 Experiment 15 2.2.1 Subsampling for U-Th dating and C/O isotopic analysis 15 2.2.2 Labware for U-Th dating chemical procedure 18 2.2.3 U-Th chemistry 20 2.2.4 U-Th isotopic analysis 24 2.2.5 Stable isotope analysis of oxygen and carbon 25 2.2.6 Coeval subsamples for Hendy Test 29 Chapter 3 Results 31 3.1 U-Th dating results and age model 31 3.2 Oxygen and carbon stable isotope records 34 3.2.1 Hendy Test 34 3.2.2 Oxygen and carbon isotope time series 36 Chapter 4 Discussion 41 4.1 Interpretation of stalagmite proxies 41 4.1.1 Controls on carbon isotope 41 4.1.2 Controls on oxygen isotope 45 4.2 Millennial scale hydroclimate evolution in the tropical eastern Indian Ocean during 36-25 ka 54 4.3 Multidecadal-centennial scale hydroclimate evolution in the tropical eastern Indian Ocean during 36-25 ka 57 Chapter 5 Conclusions 61 References 63 Appendix (I) U-Th dating results for stalagmites UDR16-03/16-04 72 Appendix (II) Stable oxygen and carbon data for Hendy Test 76 Appendix (III) δ13C records 77 Appendix (IV) δ18O records 84 | - |
dc.language.iso | en | - |
dc.title | 石筍指示三萬六千年至兩萬五千年間東熱帶印度洋氣候紀錄 | zh_TW |
dc.title | Stalagmite-inferred paleoclimate records in the eastern tropical Indian Ocean during 36-25 thousand years ago | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李時雨;米泓生 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Yu Lee;Horng-sheng Mii | en |
dc.subject.keyword | 石筍,東熱帶印度洋,間熱帶輻和帶,印度洋偶極震盪, | zh_TW |
dc.subject.keyword | Stalagmite,eastern tropical Indian Ocean,ITCZ,IOD, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202302356 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-01 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2028-08-05 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。