請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88420
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴飛羆 | zh_TW |
dc.contributor.advisor | Feipei Lai | en |
dc.contributor.author | 王正次 | zh_TW |
dc.contributor.author | Cheng-Tzu Wang | en |
dc.date.accessioned | 2023-08-15T16:13:13Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-25 | - |
dc.identifier.citation | [1] Kohn MD, Sassoon AA, Fernando ND. 2016.Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res 474:1886-1893.
[2] Puig-Junoy J, Ruiz Zamora A. 2015. Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44:531-541. [3] Magliano M. Obesity and arthritis. Menopause Int. 2008 Dec;14(4):149-54. doi: 10.1258/mi.2008.008018. PMID: 19037063. [4] Davies AP, Calder DA, Marshall T, Glasgow MM. Plain radiography in the degenerate knee. A case for change. Journal of Bone and Joint Surgery 1999; 81(4):632–635, Jul, 1999. [5] Abdullah SS, Rajasekaran MP. Do Weight-Bearing Knee Digital Radiographs Help to Track the Severity of OA? Indian J Orthop. 2021 Nov 13;56(4):664-671. doi: 10.1007/s43465-021-00560-w. PMID: 35342524; PMCID: PMC8921390. [6] Lotke PA, Ecker ML, Barth P, Lonner JH. Subchondral magnetic resonance imaging changes in early osteoarthrosis associated with tibial osteonecrosis. Arthroscopy 2000; 16: 76-81. [7] Norio Yamanaka, Toshiaki Takahashi, Norikazu Ichikawa, Hiroshi Yamamoto. Posterior-anterior weight-bearing radiograph in 15 degrees knee fexion in medial osteoarthritis. Journal of Skeletal Radiology 2003;32:28–34, Nov 3, 2003. [8] Guermazi A, Zaim S, Taouli B, et al. MR findings in knee osteoarthritis. Eur Radiol 2003; 13: 1370-86. [9] Kellgren JH, Lawrence JS. 1957. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494-502. [10] Kessler S, Guenther KP, Puhl W. Scoring prevalence and severity in gonarthritis: the suitability of the Kellgren & Lawrence scale. Clin Rheumatol. 1998;17(3):205-9. [11] Gossec L, Jordan JM, Mazzuca SA, Lam MA, Suarez-Almazor ME, Renner JB, Lopez-Olivo MA, Hawker G, Dougados M, Maillefert JF; OARSI-OMERACT task force, ’’total articular replacement as outcome measure in OA’’. Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI-OMERACT task force. Osteoarthritis Cartilage. 2008 Jul;16(7):742-8. Epub 2008 Apr 15. [12] Wright RW; MARS Group. Osteoarthritis Classification Scales: Interobserver Reliability and Arthroscopic Correlation. J Bone Joint Surg Am. 2014 Jul 16;96(14):1145-1151. doi: 10.2106/JBJS.M.00929. Epub 2014 Jul 16. PMID: 25031368; PMCID: PMC4083772. [13] Manninen P, Riihimäki H, Heliövaara M, Mäkelä P. Overweight, gender and knee osteoarthritis. Int J Obes Relat Metab Disord. 1996 Jun;20(6):595-7. [14] Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2010 Jan;18(1):24-33. [15] Kulm S, Kolin DA, Langhans MT, Kaidi AC, Elemento O, Bostrom MP, Shen TS. Characterization of Genetic Risk of End-Stage Knee Osteoarthritis Treated with Total Knee Arthroplasty: A Genome-Wide Association Study. J Bone Joint Surg Am. 2022 Oct 19;104(20):1814-1820. [16] Meng W, Adams MJ, Palmer CNA; 23andMe Research Team; Shi J, Auton A, Ryan KA, Jordan JM, Mitchell BD, Jackson RD, Yau MS, McIntosh AM, Smith BH. Genome-wide association study of knee pain identifies associations with GDF5 and COL27A1 in UK Biobank. Commun Biol. 2019 Aug 28;2:321. [17] Joseph GB, McCulloch CE, Nevitt MC, Neumann J, Gersing AS, Kretzschmar M, Schwaiger BJ, Lynch JA, Heilmeier U, Lane NE, Link TM. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging. 2018 Jun;47(6):1517-1526 [18] Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthritis Cartilage. 2019 Jul;27(7):1002-1010. [19] Bini SA. 2018. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J Arthroplasty 33:2358-2361. [20] Lui E, Maruyama M, Guzman RA, et al. 2021. Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head. J Orthop Res.doi: 10.1002/jor.25150. [21] Antony J, McGuinness K, O’Connor NE, et al. 2016. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks 23rd. pp. 1195–1200. [22] Tiulpin A, Thevenot J, Rahtu E, et al. 2018. Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach. Sci Rep 8:1727. [23] Thomas KA, Kidzinski L, Halilaj E, et al. 2020. Automated Classification of Radiographic Knee Osteoarthritis Severity Using Deep Neural Networks. Radiol Artif Intell 2:e190065. [24] Swiecicki A, Li N, O'Donnell J, et al. 2021. Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists. Comput Biol Med 133:104334. [25] Hootman J, Macera C, Helmick C, Blair S. Influence of physical activity-related joint stress on the risk of self-reported hip/knee osteoarthritis: a new method to quantify physical activity. Prev Med 2003;36:636e44. [26] Manninen P, Helio¨vaara M, Riihima¨ki H, Suoma I. Physical workload and the risk of severe knee osteoarthritis. Scand J Work Environ Health 2002;28:25e32. [27] Sutton AJ, Muir KR, Mockett S, Fentem P. A caseecontrol study to investigate the relation between low and moderate levels of physical activity and osteoarthritis of the knee using data collected as part of the Allied Dunbar National Fitness Survey. Ann Rheum Dis 2001;60:756e64. [28] Thelin N, Holmberg S, Thelin A. Knee injuries account for the sports-related increased risk of knee osteoarthritis. Scand J Med Sci Sports 2006;16:329e3351. Yoshimura N, Nishioka S, Kinoshita H, Hori N, Nishioka T, Ryujin M, et al. Risk factors for knee osteoarthritis in Japanese women: heavy weight, previous joint injuries, and occupational activities. J Rheumatol 2004;31:157e62. [29] Yoshimura N, Kinoshita H, Hori N, Nishioka T, Ryujin M, Mantani Y, et al. Risk factors for knee osteoarthritis in Japanese men: a case control study. Mod Rheumatol 2006;16:24e9. [30] Collins JE, Katz JN, Dervan EE, Losina E. Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2014 May;22(5):622-30. doi: 10.1016/j.joca.2014.03.009. Epub 2014 Mar 21. PMID: 24662734; PMCID: PMC4028704. [31] D’Souza JC, Werner AW, Keyserling WM, Gillespie B, Rabourn R, Ulin S, et al. Occupational activities and knee osteoarthritis: an analysis of the third National Health and Nutrition Examination Survey (NHANES III) using expert ratings of job categories. Am J Ind Med 2008;51:37e46. [32] Hochberg M, Lethbridge C, Tobin J. Bone mineral density and osteoarthritis: data from the Baltimore Longitudinal Study of Aging. Osteoarthritis Cartilage 2004;12:S45e8. [33] Borrero S, Kwoh CK, Sartorius J, Ibrahim SA. Brief report: gender and total knee/hip arthroplasty utilization rate in the VA system. J Gen Intern Med 2006;21(Suppl 3):S54e7. [34] Soeroso J, Dans LF, Amarillo ML, Santoso GH, Kalim H. Risk factors of symptomatic osteoarthritis of the knee at a hospital in Indonesia. APLAR J Rheumatol 2005;8:106e13. [35] Sowers M, Karvonen-Gutierrez CA, Jacobson JA, Jiang Y, Yosef M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am 2011; 93: 241-51. [36] Muraki S, Oka H, Akune T, et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: the ROAD study. Osteoarthritis Cartilage 2009; 17:1137-43. [37] Zhang Y, Hunter DJ, Nevitt MC,et al.Association of squatting with increased prevalence of radiographic tibiofemoral knee osteoarthritis: the Beijing Osteoarthritis Study. Arthritis Rheum 2004; 50: 1187-92. [38] Harms S, Larson R, Sahmoun AE, Beal JR. Obesity increases the likelihood of total joint replacement surgery among younger adults. Int Orthop 2007;31:23e6. [39] Godziuk K, Prado CM, Woodhouse LJ, Forhan M. The impact of sarcopenic obesity on knee and hip osteoarthritis: a scoping review. BMC Musculoskelet Disord. 2018 Jul 28;19(1):271. doi: 10.1186/s12891-018-2175-7. PMID: 30055599; PMCID: PMC6064616. [40] Georgiev T, Angelov AK. Modifiable risk factors in knee osteoarthritis: treatment implications. Rheumatol Int. 2019; 39(7): 1145-1157. doi:10.1007/s00296-019-04290-z [41] Reyes C, Leyland KM, Peat G, Cooper C, Arden NK, Prieto-Alhambra D. Association Between Overweight and Obesity and Risk of Clinically Diagnosed Knee, Hip, and Hand Osteoarthritis: A Population-Based Cohort Study. Arthritis Rheumatol. 2016;68(8):1869-1875. doi:10.1002/art.39707 [42] Sridhar MS, Jarrett CD, Xerogeanes JW, Labib SA. Obesity and symptomatic osteoarthritis of the knee. J Bone Joint Surg Br. 2012;94(4):433-440. doi:10.1302/0301-620X.94B4.27648 [43] Yoshimura N, Muraki S, Oka H, et al. Association of Knee Osteoarthritis with the Accumulation of Metabolic Risk Factors Such as Overweight, Hypertension, Dyslipidemia, and Impaired Glucose Tolerance in Japanese Men and Women: The ROAD Study. J Rheumatol 2011; 35: 921-30. [44] Hame SL, Alexander RA. Knee osteoarthritis in women. Curr Rev Musculoskelet Med. 2013;6(2):182-187. doi:10.1007/s12178-013-9164-0 [45] O’Connor MI. Osteoarthritis of the hip and knee: sex and gender differences. Orthop Clin N Am. 2006;37:559–68. [46] Srikanth VK, Fryer B, Math JL, Zhai G, Winzenberg TM, Hosmer D, et al. A meta-analysis of sex differences prevalence, incidence, and severity of osteoarthritis. Osteoarthr Cartil. 2005;13:769–8. [47] O’Connor MI. Sex differences in osteoarthritis of the hip and knee. J Am Acad Orthop Surg. 2007;15:S23–5. [48] O’Connor MI, Hooten EG. Gender disparities in knee osteoarthritis and TKA. Clin Orthop Relat Res. 2011;469:1883–5. [49] Thomas SG, Pagura SM, Kenney D. Physical activity and its relationship to physical performance in patients with end stage. [50] Conley S, Rosenberg A, Crowninshield R. The female knee: anatomic variations. J Am Acad Orthop Surg. 2007;15:S31–6. [51] Chapell JD, Yu B, Kirkendall DT, Garret WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30:261–7. [52] Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37:124–9. [53] Mendiquichia J, Ford KR, Quatman CE, Alentorn-Geil E, Hewett TE. Sex differences in proximal control of the knee joint. Sports Med. 2011;41:541–57. [54] Zhang W, McWilliams DF, Ingham SL, Doherty SA, Muthuri S, Muir KR, Doherty M. Nottingham knee osteoarthritis risk prediction models. Ann Rheum Dis. 2011 Sep;70(9):1599-604. [55] Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, Guermazi A, Kijowski R. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthritis Cartilage. 2020 Apr;28(4):428-437. [56] Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, Cho K, Chang G, Deniz CM. Prediction of Total Knee Replacement and Diagnosis of Osteoarthritis by Using Deep Learning on Knee Radiographs: Data from the Osteoarthritis Initiative. Radiology. 2020 Sep;296(3):584-593. [57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010. [58] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations, Vienna, Austria, 2021. [59] Y. Bazi, L. Bashmal, M.M.A. Rahhal, R.A. Dayil, N.A. Ajlan, Vision Transformers for Remote Sensing Image Classifcation, Remote Sensing. 13 (3) (2021). [60] Tanzi L, Audisio A, Cirrincione G, Aprato A, Vezzetti E. Vision Transformer for femur fracture classification. Injury. 2022;53(7):2625-2634. doi:10.1016/j.injury.2022.04.013 [61] Tummala S, Kadry S, Bukhari SAC, Rauf HT. Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling. Curr Oncol. 2022;29(10):7498-7511. Published 2022 Oct 7. doi:10.3390/curroncol29100590 [62] Xu Q, Xu QQ, Shi N, Dong LN, Zhu H, Xu K. A multitask classification framework based on vision transformer for predicting molecular expressions of glioma. Eur J Radiol. 2022;157:110560. doi:10.1016/j.ejrad.2022.110560 [63] Goncalves FB, Rocha FA, Albuquerque RP, et al. 2016. Reproducibility assessment of different descriptions of the Kellgren and Lawrence classification for osteoarthritis of the knee. Rev Bras Ortop 51:687-691. [64] Norman B, Pedoia V, Noworolski A, et al. 2019. Applying Densely Connected Convolutional Neural Networks for Staging Osteoarthritis Severity from Plain Radiographs. J Digit Imaging 32:471-477. [65] Schwartz AJ, Clarke HD, Spangehl MJ, et al. 2020. Can a Convolutional Neural Network Classify Knee Osteoarthritis on Plain Radiographs as Accurately as Fellowship-Trained Knee Arthroplasty Surgeons? J Arthroplasty 35:2423-2428. [66] Jacobs CA, Vranceanu AM, Thompson KL, Lattermann C. Rapid Progression of Knee Pain and Osteoarthritis Biomarkers Greatest for Patients with Combined Obesity and Depression: Data from the Osteoarthritis Initiative. Cartilage. 2020 Jan;11(1):38-46. doi: 10.1177/1947603518777577. [67] Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. IEEE/CVF Int. Conf. Comput. Vis. 2021, 2021, 10012–10022. [68] Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H.; Ai, F. Training data-efficient image transformers & distillation through attention. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Conference. 13–18 July 2020. [69] Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in Transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88420 | - |
dc.description.abstract | 本篇研究的主要目標是要運用深度學習模型來做退化性膝關節炎分類以及疾病進展之預測,尤其著重在實際臨床場景的表現。我們使用公開資料庫 (Osteoarthritis Initiative, OAI) 作為深度學習模型訓練基礎。在分類模型中,使用數量達到8,964張膝蓋X光影像,其中926張被當作測試資料;我們也使用了亞東醫學中心的246張X光影像作外部驗證。除此之外,公開資料庫的測試資料及亞東醫學中心的資料也由三位資深臨床醫師判讀,包括兩位骨科醫師及一位影像科醫師。為了量化模型及醫師們的判讀結果,我們應用了可視化圖像、正確率、觀察者信度、F1 score、精確度、召回率、特異度及判讀手術適應症等指標。在疾病預測模型中,模型基礎為Vision Transformer (ViT),使用5,565位參與者的膝蓋X光影像及臨床資訊, 其中578個為測試資料;亞東醫學中心的274位病人的X光影像及臨床資訊作為外部驗證。判讀模型預測結果,我們應用了可視化圖像、正確率、敏感度、特異度及勝算比等指標,並與傳統疾病風險因子做比較。經過訓練後,分類模型在判斷OAI資料庫的分類正確率有78%,在外部驗證資料的判讀也與臨床醫師高度相關。值得注意的是,我們發現在模型判讀失敗的公開資料裡,臨床醫師彼此間的判讀結果也不大一致,這可能是因為部分資料本來就具有爭議性。在判讀手術適應症的指標,模型的判讀結果甚至比臨床醫師更好。在疾病預測模型中,我們使用了影像輸入資料及臨床輸入資料,根據資料量的多寡而有不同輸入組合,最後選用了單一影像及精簡的臨床資料 (年紀、性別、身體質量指數) 輸入來做外部驗證。疾病預測模型在OAI資料庫有74.1%正確率,敏感度及特異度,在外部驗證資料有71.2%,敏感度及特異度;與傳統風險因子相比,模型預測結果的勝算比明顯較高,在OAI資料庫為23.87,在外部驗證資料為5.92。整體而言,在判讀退化性膝關節炎的分類能力,我們設計的深度學習模型表現不輸給臨床醫師,而且能成功應用於實際臨床場景;以ViT為基礎的預測模型比傳統風險因子相比能更準確的預測疾病進展,且在次分析中發現模型疾病有進展的族群中表現較好,這可能幫助我們及早介入以避免疾病惡化到必須接受手術的程度。 | zh_TW |
dc.description.abstract | The present study aimed to develop deep-learning-based models to classify and predict knee osteoarthritis (OA) using Kellgren-Lawrence (KL) classification based on knee radiographs.
A model using deep convolutional neural network (CNN) was developed, aiming to classify radiographs with knee osteoarthritis (OA). The model was trained by Osteoarthritis Initiative (OAI) dataset (4,796 participants in total), with 962 images reserved for testing purposes. In order to validate the model's performance, an additional set of 246 knee radiographs from the Far Eastern Memorial Hospital (FEMH) was applied.The evaluation of the model's performance involved expert assessment by experienced specialist, including one musculoskeletal radiologist and two orthopedic surgeons. Images from OAI and FEMH were assessed by the specialists. In order to quantify the model's performance, multiple metrics were used, including inter-observer agreement, F1 score, precision, recall, accuracy, specificity, and the model's ability to identify surgical candidates. We also applied attention maps to demonstrate the interpretability of the OA classification model. In the design of the prediction model, a Vision-Transformer-based approach was employed. The model was trained using a baseline dataset of 5,565 knee radiographs from the OAI, with 578 images reserved for testing purposes. Each knee radiograph in the dataset was associated with a corresponding Kellgren-Lawrence (KL) stage determined through a 48-month follow-up. Additionally, 274 cases from our institute (FEMH) were applied for the purpose of external validation. The data input for the model included a combination of single or paired images, as well as relevant clinical factors, both comprehensive and essential. To quantify the performance of the prediction model, several metrics were utilized, including the area under the receiver operating characteristics curve (AUROC), accuracy, odds ratio, sensitivity, specificity, and the model's ability to identify the cases with advanced KL stage. The classification model demonstrated an impressive accuracy of 78% and exhibited consistent inter-observer agreement for both the OAI dataset (К value between 0.80 and 0.86) and the externally validated images (К value between 0.81 and 0.83). However, in cases where the model misclassified images, we observed a lower inter-observer agreement (К value between 0.47 and 065). Notably, the model outperformed the surgeons and radiologist in identifying surgical candidates (KL 3 and KL 4 ), achieving F1 score of 0.923. In cases with OA progression, the AUROC to identifying surgical candidates was 0.844, 0.804, 0.766 and 0.718 in the combination of single image with essential factors, single image with full factors, pairing images with essential factors and pairing image with full factors, respectively. In OAI testing set using the simplest input, the AUROC of identifying OA progression was 0.808, with 74.1% accuracy, 91.8% sensitivity and 71% specificity. In external validation, the AUROC of identifying OA progression was 0.709, with 71.2% accuracy, 72.2% sensitivity and 70.3% specificity. Positive model prediction had an odds ratio of 23.87 (CI: 11.24~50.67) in OAI and 5.92 (CI: 3.50~10.03) in external validation.The classification model exhibited comparable performance to specialists in identifying surgical candidates and demonstrated consistent results across open databases and real-life radiographs. However, the misclassification of knee OA images led to a notable discrepancy, mainly attributed to a considerably lower inter-observer agreement. The prediction model can provide a reliable prediction result in knee OA cases with the advantages of simplicity and flexibility. The model performance was excellent in progression cases, potentially making the early intervention in OA patients more efficiently. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:13:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:13:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Literature Review 6 2.1 Deep Learning-based OA Classification 6 2.2 Prediction of Knee Osteoarthritis 7 2.2.1 Clinical Factors 7 2.2.2 Using Models to Predict knee OA Progression 9 2.2.3 Transformer 10 Chapter 3 Methods 16 3.1 Data Collection 16 3.2 Joint Localization 17 3.3 OA Classification 18 3.3.1 Basic process of classification model 19 3.3.2 Data Description 20 3.3.3 Surgeon and radiologist assessment 21 3.3.4 Classification Model Architecture 21 3.3.5 Evaluation of Model Performance 22 3.3.6 Evaluation of Model Performance – OAI testing set 24 3.3.7 Evaluation of Model Performance – External validation 25 3.4 Prediction of OA Progression 26 3.4.1 Radiographic data and Clinical risk factors 27 3.4.2 Model Architecture and Algorithm of OA Prediction 29 3.4.3 Evaluation of model performance 36 3.5 Statistics 38 3.6 Ethics 38 Chapter 4 Results – OA Classification 39 4.1 Model Performance in OAI Testing Set 39 4.1.1 Visualization by Attention map 40 4.1.2 Comparison between model and specialists 41 4.1.3 Investigation of inter-observer agreement 41 4.1.4 Integration of clinical parameters 43 4.2 Real-World Images for External Validation 43 Chapter 5 Results – Prediction of OA Progression 46 5.1 Select the Proper Combination 46 5.2 Model Performance in OAI and External Validation 48 5.2.1 Comparing the performance between OAI and External Validation 48 5.2.2 Performance Comparison between model and traditional factors 49 Chapter 6 Discussion 51 6.1 OA Classification 51 6.2 Prediction of OA Progression 55 6.3 Limitations 59 Chapter 7 Conclusion & Future Work 60 REFERENCE 64 | - |
dc.language.iso | en | - |
dc.title | 深度學習判讀退化性關節炎分級與疾病進展風險 | zh_TW |
dc.title | Deep Learning-based Classification and Progression Prediction of Knee Osteoarthritis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 傅揪善;趙坤茂;呂育道;林永松;陳啟煌;林明燦;邱冠明;張至宏 | zh_TW |
dc.contributor.oralexamcommittee | Chiou-Shann Fuh;Kun-Mao Chao;Yuh-Dauh Lyuu;Yeong-Sung Lin;Chi-Huang Chen;Ming-Tsain Lin;Kuan-Ming Chiu;Chih-Hung Chang | en |
dc.subject.keyword | 深度學習,X光影像,退化性關節炎,膝關節,外部驗證, | zh_TW |
dc.subject.keyword | deep learning,X-ray,osteoarthritis,knee joints,external validation, | en |
dc.relation.page | 72 | - |
dc.identifier.doi | 10.6342/NTU202301959 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-07-26 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。