請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/883完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗 | |
| dc.contributor.author | To-Chia Ting | en |
| dc.contributor.author | 丁多加 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:15:04Z | - |
| dc.date.available | 2019-01-29 | |
| dc.date.available | 2021-05-11T05:15:04Z | - |
| dc.date.copyright | 2019-01-29 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-21 | |
| dc.identifier.citation | 王玉婷、田玉娟、李孟諭、陳萬濱與王相華,2014。年初氣溫變化對於福山植物園栽植樹種花期之影響。臺灣生物多樣性研究 16: 63-76。
王玉婷、林奐宇、陳建文與王相華,2015。由館藏標本探討溫度變化對臺灣熱帶及溫帶植物花期之影響。臺灣生物多樣性研究 17: 15-27。 王相華、劉家如、林則桐、陳萬賓、李孟諭與蘇聲欣,2011。福山試驗林樟科及殼斗科植物的開花結實物候。中華林學季刊 44: 349-362。 呂理昌,1990。玉山國家公園植物開花物候之研究。 竺可楨與宛敏渭,1963。物候學。北京。 洪暉程,2009。總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用。碩士,國立中央大學。 夏禹九,2012。太魯閣物候監測。 張乃航、黃吳清標、陳永修、傅昭憲、陳玄武與賴一民,2000。大葉楠香南杜英長尾栲三年的物候現象。臺灣林業科學15: 497-506。 張仲德、王素芬與林登秋,2011。氣候變遷與不同尺度植物物候研究之回顧。 地理學報 63: 1-33。 郭華仁與吳怡君,2008。一九四Ο年在台北之雜草物候學調查(編譯)。雜草學會會刊 29: 153-165。 陳姿彤,2011。以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法。碩士,國立臺灣大學。 曾文柄,1973。物候觀測手冊。中央氣象局,台北。 葉小蓁,1998。時間序列分析與運用,台北。 潘振彰、邱清安、曾彥學、郭礎嘉與曾喜育,2017。雪山雪東線步道蟲媒花植物開花物候及其與溫度之關聯。林業研究季刊 39: 159-176。 謝東佑與邱祈榮,2013。植物物候在氣候變遷研究之回顧與展望。中華林學季刊 46: 391-410 Ahas, R., A. Aasa, A. Menzel, V. G. Fedotova and H. Scheifinger. 2002. Changes in European spring phenology. International Journal of Climatology 22: 1727-1738. Asse, D., I. Chuine, Y. Vitasse, N. G. Yoccoz, N. Delpierre, V. Badeau, A. Delestrade and C. F. Randin. 2018. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology 252: 220-230. Bannister, P. 1978. Flowering and shoot extension in heath plants of different geographical origin. Journal of Ecology 66: 117-131. Canty, A. and B. Ripley. 2017. boot: Bootstrap R (S-Plus) functions, R package version 1.3-20. Chambers, L. E., R. Altwegg, C. Barbraud, et al. 2013. Phenological changes in the southern hemisphere. PLoS One 8: e75514. Chen, X., X. Zhang, J. A. Church, C. S. Watson, M. A. King, D. Monselesan, B. Legresy and C. Harig. 2017. The increasing rate of global mean sea-level rise during 1993–2014. Nature Climate Change 7: 492-495. Chmielewski, F. M. and T. Rotzer. 2001. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology 108: 101-112. Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney and M. D. Schwartz. 2007. Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22: 357-365. Cook, B. I., T. M. Smith and M. E. Mann. 2005. The North Atlantic Oscillation and regional phenology prediction over Europe. Global Change Biology 11: 919-926. Cook, B. I., E. M. Wolkovich and C. Parmesan. 2012. Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America 109: 9000-9005. Crepinsek, Z., F. Stampar, L. Kajfez-Bogataj and A. Solar. 2012. The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. International Journal of Biometeorology 56: 681-694. Crimmins, M. A. and T. M. Crimmins. 2008. Monitoring plant phenology using digital repeat photography. Environmental Management 41: 949-958. Dai, J., Y. Xu, H. Wang and Q. Ge. 2018. Changes of flowering phenology and their response to climate in subtropical zone in China from 1963 to 2012. Phenology 2018 One planet, two hemispheres, many regions. Melbourne, Australia, International Society of Biometeorology Phenology Commission. Dai, J., H. Wang and Q. Ge. 2014. The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology 58: 521-528. De Keyzer, C. W., N. E. Rafferty, D. W. Inouye and J. D. Thomson. 2017. Confounding effects of spatial variation on shifts in phenology. Global Change Biology 23: 1783-1791. Delbart, N., G. Picard, T. Le Toans, L. Kergoat, S. Quegan, I. Woodward, D. Dye and V. Fedotova. 2008. Spring phenology in boreal Eurasia over a nearly century time scale. Global Change Biology 14: 603-614. Donnelly, A., A. Caffarra and B. F. O'neill. 2011. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology 55: 805-817. Dose, V. and A. Menzel. 2006. Bayesian correlation between temperature and blossom onset data. Global Change Biology 12: 1451-1459. Fadón, E. and J. Rodrigo. 2018. Unveiling winter dormancy through empirical experiments. Environmental and Experimental Botany 152: 28-36. Fitter, A. H. and R. S. R. Fitter. 2002. Rapid changes in flowering time in British plants. Science 296: 1689-1691. Fitter, A. H., R. S. R. Fitter, I. T. B. Harris and M. H. Williamson. 1995. Relationships between first flowering date and temperature in the flora of a locality in central England. Functional Ecology 9: 55-60. Flynn, D. F. B. and E. M. Wolkovich. 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist 219: 1353-1362. Forrest, J. and A. J. Miller-Rushing. 2010. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3101-3112. Franks, S. J., S. Sim and A. E. Weis. 2006. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences of the United States of America 104: 1278–1282. Fu, Y. H., S. Piao, M. O. D. Beeck, N. Cong, H. Zhao, Y. Zhang, A. Menzel and I. A. Janssens. 2014. Recent spring phenology shifts in western central Europe based on multiscale observations. Global Ecology and Biogeography 23: 1255-1263. Ge, Q., H. Wang, T. Rutishauser and J. Dai. 2015. Phenological response to climate change in China: a meta-analysis. Global Change Biology 21: 265-274. Gordo, O. and J. J. Sanz. 2009. Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology 15: 1930-1948. Grant, S. A. and R. F. Hunter. 1962. Ecotypic differentiation of Calluna vulgaris(L.) in relation to altitude. New Phytologist 61: 45-55. Guan, B. T. 2014. Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agricultural and Forest Meteorology 194: 1-7. Guo, L., J. Dai, S. Ranjitkar, H. Yu, J. Xu and E. Luedeling. 2013. Chilling and heat requirements for flowering in temperate fruit trees. International Journal of Biometeorology 58: 1195-1206. Hardle, W., J. Horowitz and J.-P. Kreiss. 2003. Bootstrap methods for time series. International Statistical Rivew 71: 435-459. Harrington, C. A., P. J. Gould and J. B. St.Clair. 2010. Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management 259: 798-808. Heide, O. M. 1993. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiology Plantarum 88: 531-540. Helske, J. and P. Luukko. 2016. Rlibeemd: Ensemble empirical mode decomposition (EEMD) and its complete variant (CEEMDAN), R package version 1.3.7 Hájková, L., Z. Hubálek, V. Kožnarová, L. Bartošová and M. Možný. 2017. Flowering of allergenically important plant species in relation to the North Atlantic Oscillation system and thermal time in the Czech Republic. Aerobiologia 34: 157-169. Hänninen, H. 1995. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany 73: 183-199. Hopp, R. J. 1974. Plant phenology observation network. Phenology and seasonality modeling. H. Lieth. New York, Springer-Verlag: 25-43. Huang, N. E. and Z. Wu. 2008. A review on Hilbert‐Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics 46: 1-23. Huang, N. E., Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung and H. H. Liu. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences 454: 903-995. Hubalek, Z. 2016. The North Atlantic Oscillation system and plant phenology. International Journal of Biometeorology 60: 749-756. Hurrell, J. W. 1995. Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269: 676-679. Ibanez, I., R. B. Primack, A. J. Miller-Rushing, E. Ellwood, H. Higuchi, S. D. Lee, H. Kobori and J. A. Silander. 2010. Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3247-3260. James, G., D. Witten, T. Hastie and R. Tibshirani. 2013. An introduction to statistical learning with applications in R, Springer Science+Business Media New York. Körner, C. and D. Basler. 2010. Phenology under global warming. Science 327: 1461-1462. Kahle, D. and H. Wickham. 2013. ggmap: Spatial Visualization with ggplot2. The R Journal 5: 144-161. Keller, F. and C. Körner. 2003. The role of photoperiodism in alpine plant development. Arctic, Antarctic, and Alpine Research 35: 361-368. Laube, J., T. H. Sparks, N. Estrella, J. Hofler, D. P. Ankerst and A. Menzel. 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology 20: 170-182. Lieth, H. 1974. Purposes of a phenology book. Phenology and seasonality modeling. H. Lieth. New York, Springer-Verlag: 3-19. Meier, U. 2001. Growth stages of mono-and dicotyledonous plants. Bonn, Federal Biological Research Centre for Agriculture and Forestry. Menzel, A., T. H. Sparks, N. Estrella, et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969-1976. Menzel, A. 2005. A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorologische Zeitschrift 14: 75-77. Menzel, A., N. Estrella and P. Fabian. 2001. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology 7: 657-666. Miles, W. T., M. Bolton, P. Davis, et al. 2017. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Global Change Biology 23: 1400-1414. Miller-Rushing, A. J., D. W. Inouye and R. B. Primack. 2008. How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. Journal of Ecology 96: 1289-1296. Miller-Rushing, A. J. and D. W. Inouye. 2009. Variation in the impact of climate change on flowering phenology and abundance: An examination of two pairs of closely related wildflower species. American Journal of Botany 96: 1821-1829. Miller-Rushing, A. J. and R. B. Primack. 2008. Global warming and flowering times in Thoreau's concord: A community perspective. Ecological Society of America 89: 332-341. Miller-Rushing, A. J., T. Katsuki, R. B. Primack, Y. Ishii, S. D. Lee and H. Higuchi. 2007. Impact of global warming on a group of releated species and their hybrids: Cherry tree (Rosaceae) flowering at Mt. Takao, Japan. American Journal of Botany 94: 1470-1478. Mulder, C. P., D. T. Iles and R. F. Rockwell. 2017. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Global Change Biology 23: 801-814. Munguia-Rosas, M. A., J. Ollerton, V. Parra-Tabla and J. A. De-Nova. 2011. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecology Letters 14: 511-521. Murray, M. B., M. G. R. Cannell and R. I. Smith. 1989. Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology 26: 693-700. Nagai, S., K. N. Nasahara, T. Inoue, T. M. Saitoh and R. Suzuki. 2016. Review: advances in situ and satellite phenological observations in Japan. International Journal of Biometeorology 60: 615-627. Nagy, L., J. Kreyling, E. Gellesch, C. Beierkuhnlein and A. Jentsch. 2013. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. International Journal of Biometeorology 57: 579-588. Nanninga, C., C. R. Buyarski, A. M. Pretorius and R. A. Montgomery. 2017. Increased exposure to chilling advances the time to budburst in North American tree species. Tree Physiology 37: 1727-1738. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637-669. Pau, S., E. M. Wolkovich, B. I. Cook, T. J. Davies, N. J. B. Kraft, K. Bolmgren, J. L. Betancourt and E. E. Cleland. 2011. Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology 17: 3633-3643. Penuelas, J., I. Filella and P. Comas. 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology 8: 531-544. Phänologie, A. 2013. Beobachtungsanleitung für die Phänologie. Vienna, Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Polgar, C. A. and R. B. Primack. 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist 191: 926-941. Primack, R. B., H. Higuchi and A. J. Miller-Rushing. 2009. The impact of climate change on cherry trees and other species in Japan. Biological Conservation 142: 1943-1949. Prodon, R., P. Geniez, M. Cheylan, F. Devers, I. Chuine and A. Besnard. 2017. A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998-2013 warming slowdown. Global Change Biology 23: 5481-5491. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Romanovskaja, D., E. Bakàienë, A. Raîukas and L. Tripolskaja. 2012. Influence of climate change on the European Hazel (Corylus avellana L.) and Norway Maple (Acer platanoides L.) phenology in Lithuania during the period 1961-2010. Baltic Forestry 18: 228-236. Root, T. L., J. T. Price, K. R.Hall, S. H. Schneider, C. Rosenzweig and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60. Saxe, H., M. G. Cannell, ø. Johnsen, M. G. Ryan and G. Vourlitis. 2001. Tree and forest functioning in response to global warming. New Phytologist 149: 369-399. Schaber, J. and F.-W. Badeck. 2005. Plant phenology in Germany over the 20th century. Regional Environmental Change 5: 37-46. Scheifinger, H., A. Menzel, E. Koch, C. Peter and R. Ahas. 2002. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology 22: 1739-1755. Schwartz, M. D. and B. E. Reiter. 2000. Changes in north American spring. International Journal of Climatology 20: 929–932. Schwartz, M. D., J. L. Betancourt and J. F. Weltzin. 2012. From Caprio's lilacs to the USA National Phenology Network. Frontiers in Ecology and the Environment 10: 324-327. Sparks, T. H., A. Menzel and N. C. Stenseth. 2009. European cooperation in plant phenology. Climate Research 39: 175-177. Tang, J., C. Körner, H. Muraoka, S. Piao, M. Shen, S. J. Thackeray and X. Yang. 2016. Emerging opportunities and challenges in phenology: a review. Ecosphere 7. DOI: 10.1002/ecs2.1436 Templ, B., E. Koch, K. Bolmgren, et al. 2018. Pan European Phenological database (PEP725): a single point of access for European data. International Journal of Biometeorology 62: 1109-1113. Trouet, V. and G. J. Van Oldenborgh. 2013. KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Research 69: 3-13. Vinod, H. D. 2006. Maximum entropy ensembles for time series inference in economics. Journal of Asian Economics 17: 955-978. Vinod, H. D. and J. López-De-Lacalle. 2009. Maximum Entropy Bootstrap for Time Series: The meboot R Package. Journal of Statistical Software 29: 1-19. Vitasse, Y., C. Signarbieux and Y. H. Fu. 2018. Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences of the United States of America 115: 1004-1008. Wadgymar, S. M., J. E. Ogilvie, D. W. Inouye, A. E. Weis and J. T. Anderson. 2018. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. New Phytologist 218: 517-529. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389-395. Walther, G. R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2019-2024. Wielgolaski, F. 2001. Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology 45: 196-202. Wu, X. and H. Liu. 2013. Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982-2006. Global Change Biology 19: 870-880. Wu, Z. and N. E. Huang. 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis 1: 1-41. Wu, Z., N. E. Huang, S. R. Long and C. K. Peng. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America 104: 14889-14894. Zheng, J., Q. Ge and Z. Hao. 2002. Impacts of climate warming on plants phenophases in China in the last 40 years. Chinese Science Bulletin 47: 1826-1831. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/883 | - |
| dc.description.abstract | 近期以來,暖化使部分溫帶地區的開花物候有提早出現的趨勢;然而,不同物種對暖化的反應並不相同,本研究以詳盡地分析方法驗證這件事。
本研究分析德國的榛子(Corylus avellana L.)與帚石楠(Calluna vulgaris L.)在不同測站的始花日期(First flowering dates,FFD)與溫度之距平序列(Anomaly series),分析時間皆為1951至2015年(基底時間為1961至1990年)。本研究同時分析兩物種測站平均的FFD和該區域的溫度距平序列。此外,本研究檢驗榛子的FFD與其對應溫度距平序列兩者與北大西洋震盪(North Atlantic Oscillation)的相關性。 考量物候資料常為非線性(Nonlinear)與非平穩(Nonstationary),本研究使用總體經驗模態分解法(Ensemble empirical mode decomposition)萃取FFD與溫度距平序列的趨勢。為進一步瞭解趨勢的呼應情形和未來可能的演變,本研究估計所萃取趨勢的速度和加速度。最後,本研究使用最大熵值重複置還取樣法(Maximum entropy bootstrap)建立趨勢與這些估算的信賴區間。 結果顯示,榛子的FFD距平序列大多具提前的趨勢,其對應溫度距平序列具上升的趨勢,兩相呼應。不僅如此,所估計的榛子FFD與溫度趨勢之速度與加速度也呼應。相對的,帚石楠的FFD距平序列的趨勢並不呼應溫度距平序列的趨勢。然而,榛子的FFD距平序列的趨勢顯著提前的時間早於與其對應溫度距平序列的趨勢顯著上升的時間,這可能是因為榛子的FFD對溫度變化較敏感。最後,榛子的FFD與其對應溫度距平序列分別和平均一至三月的北大西洋震盪指數呈負與正相關。暖化若持續,榛子的FFD距平序列的趨勢在大部分測站會持續提前。然而,位於最高海拔的測站,其暖化與FFD距平序列提前的趨勢可能趨緩。 | zh_TW |
| dc.description.abstract | Over the past several decades, flowering phenology of many species in some temperate regions has advanced in response to warming. However, species response to warming differently. This thesis intends to analyze the complex relationships between warming and plant flowering.
This study analyzed the first flowering dates (FFD) of hazel (Corylus avellana L.) and heather (Calluna vulgaris L.) and the corresponding temperature anomalies at different phenological observation stations in Germany. The observation period was from 1951 to 2015 (base period 1961- 1990). This study also analyzed the averaged across stations FFD and the corresponding regional temperature anomalies of both species. In addition, this study examined the correlations between the North Atlantic Oscillation and the FFD of hazel and their corresponding temperature anomaly series. Because phenological data are usually nonlinear and nonstationary, this study used ensemble empirical mode decomposition to extract temperature and FFD anomaly trends. In order to thoroughly understand the correspondence between the two anomaly trends and their possible future directions, this study estimated the velocities and accelerations of the extracted trends. Finally, this study used maximum entropy bootstrap to establish confidence intervals of the trends and their estimated velocities and accelerations. The results showed that the advancing trends of FFD anomaly series of hazel corresponded well to the rising trends of the temperature anomaly series. Moreover, the estimated velocities and accelerations of the extracted trends of FFD and temperature anomaly series also corresponded well. In contrast, FFD anomaly trends of heather did not correspond to the temperature anomaly trends. This study also found that time lags existed between the extracted trends of the temperature and FFD anomaly series in hazel with the FFD trends leading. The reason maybe that hazel’s FFD is more sensitive to temperature variations. Lastly, the FFD anomalies of hazel and their corresponding temperature anomalies were negatively and positively correlated with the average January to March North Atlantic Oscillation, respectively. Based on the estimated velocities and accelerations, FFD anomaly trends of hazel will keep advancing in most of the stations if warming continues. As for the highest station, both the warming and the advancing FFD anomaly trends of hazel are likely to slow down in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:15:04Z (GMT). No. of bitstreams: 1 ntu-108-R05625059-1.pdf: 7140039 bytes, checksum: 08ea33c48fa3617b637f4ea9d165e8a1 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 表目次 iii
圖目次 iv 中文摘要 v ABSTRACT vi 第一章 前言 1 第二章 文獻回顧 5 2.1 國外的物候研究 5 2.1.1 歐洲 5 2.1.2 美國 6 2.1.3 亞洲 7 2.1.4 南半球 7 2.2 臺灣的物候研究 8 2.3 驅動溫帶植物春季物候的環境因子 9 2.4 物候與氣象資料的分析方法 9 2.4.1 非線性與非平穩的資料 9 2.4.2 總體經驗模態分解法(Ensemble Empirical Mode Decomposition) 11 2.4.3 趨勢的動態變化 14 2.4.4 最大熵值重複置還取樣法(Maximum Entropy Bootstrap) 14 第三章 研究方法 18 3.1 物候資料 19 3.1.1 資料來源 19 3.1.2 資料特性 20 3.1.3 資料初步分析 22 3.2 氣象資料 23 3.2.1 溫度資料來源 23 3.2.2 場域相關性分析 23 3.2.3 NAO指數資料來源 25 3.3 EEMD的白噪參數與集體大小 26 3.4 趨勢分析 27 第四章 結果 28 4.1 物候資料初步分析 28 4.1.1 榛子 28 4.1.2 帚石楠 30 4.2 榛子和帚石楠FFD距平序列與溫度距平序列的相關性 33 4.3 NAOGS指數與榛子的FFD及JFM Tmax距平序列的相關性 33 4.4 FFD與溫度距平序列的趨勢分析 35 4.4.1 榛子 35 4.4.2 榛子FFD的三十年移動平均 55 4.4.3 帚石楠 57 第五章 討論 67 5.1 物種受暖化的影響不一致 67 5.2 榛子的始花物候、始花物候前數月的溫度和NAOGS指數的關係 68 5.3 榛子FFD距平序列的趨勢領先JFM Tmax距平序列的趨勢 68 5.4 海拔對物候的影響 69 5.5 全測站的代表性 70 第六章 結論 71 參考文獻 72 附錄一 79 附錄二 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最大熵值重複置還取樣法 | zh_TW |
| dc.subject | 暖化 | zh_TW |
| dc.subject | 始花日期 | zh_TW |
| dc.subject | 總體經驗模態分解法 | zh_TW |
| dc.subject | maximum entropy bootstrap | en |
| dc.subject | warming | en |
| dc.subject | first flowering dates (FFD) | en |
| dc.subject | ensemble empirical mode decomposition | en |
| dc.title | 德國的榛子與帚石楠在暖化下的始花日期趨勢 | zh_TW |
| dc.title | Trends of First Flowering Dates of Hazel and Heather in Germany under Warming | en |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴彥任,孫義方 | |
| dc.subject.keyword | 暖化,始花日期,總體經驗模態分解法,最大熵值重複置還取樣法, | zh_TW |
| dc.subject.keyword | warming,first flowering dates (FFD),ensemble empirical mode decomposition,maximum entropy bootstrap, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU201900122 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-01-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 6.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
