Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一薰zh_TW
dc.contributor.advisorI-Hsuan Hongen
dc.contributor.author李岳鴻zh_TW
dc.contributor.authorYue-Hong Lien
dc.date.accessioned2023-08-09T16:45:47Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationAbdel-Gawad, A., & Ratner, S. (2007). Adaptive optimization of hyperparameters in L2-regularised logistic regression.
Ahmed, F., & Kim, K.-Y. (2017). Data-driven weld nugget width prediction with decision tree algorithm. Procedia Manufacturing, 10, 1009-1019.
Ashby, M. (2000). Multi-objective optimization in material design and selection. Acta materialia, 48(1), 359-369.
Bakır, B., Batmaz, İ., Güntürkün, F., İpekçi, İ. A., Köksal, G., & Özdemirel, N. E. (2008). Defect cause modeling with decision tree and regression analysis. International Journal of Industrial and Manufacturing Engineering, 2(12), 1334-1337.
Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural computation, 12(8), 1889-1900.
Bengio, Y., & Grandvalet, Y. (2003). No unbiased estimator of the variance of k-fold cross-validation. Advances in neural information processing systems, 16.
Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in neural information processing systems, 24.
Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. International conference on machine learning,
Blockeel, H., De Raedt, L., & Ramon, J. (2000). Top-down induction of clustering trees. arXiv preprint cs/0011032.
Braha, D., & Shmilovici, A. (2003). On the use of decision tree induction for discovery of interactions in a photolithographic process. IEEE transactions on semiconductor manufacturing, 16(4), 644-652.
Candanedo, I. S., Nieves, E. H., González, S. R., Martín, M. T. S., & Briones, A. G. (2018). Machine learning predictive model for industry 4.0. Knowledge Management in Organizations: 13th International Conference, KMO 2018, Žilina, Slovakia, August 6–10, 2018, Proceedings 13,
Chen, C., Liu, Y., Kumar, M., & Qin, J. (2018). Energy consumption modelling using deep learning technique—a case study of EAF. Procedia CIRP, 72, 1063-1068.
Chien, C.-F., Diaz, A. C., & Lan, Y.-B. (2014). A data mining approach for analyzing semiconductor MES and FDC data to enhance overall usage effectiveness (OUE). International Journal of Computational Intelligence Systems, 7(sup2), 52-65.
Demissie, A., Zhu, W., & Belachew, C. T. (2017). A multi-objective optimization model for gas pipeline operations. Computers & Chemical Engineering, 100, 94-103.
Diakaki, C., Grigoroudis, E., & Kolokotsa, D. (2008). Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy and buildings, 40(9), 1747-1754.
Dua, D. a. G., Casey. (2019). UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
Durbhaka, G. K., & Selvaraj, B. (2016). Predictive maintenance for wind turbine diagnostics using vibration signal analysis based on collaborative recommendation approach. 2016 International conference on advances in computing, communications and informatics (ICACCI),
Fürnkranz, J. (1997). Pruning algorithms for rule learning. Machine learning, 27, 139-172.
Fischetti, M., & Fraccaro, M. (2019). Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks. Computers & Operations Research, 106, 289-297.
Gakii, C., & Jepkoech, J. (2019). A classification model for water quality analysis using decision tree.
Gonzalez, S., & Miikkulainen, R. (2020). Improved training speed, accuracy, and data utilization through loss function optimization. 2020 IEEE Congress on Evolutionary Computation (CEC),
Hashem, S., & Schmeiser, B. (1995). Improving model accuracy using optimal linear combinations of trained neural networks. IEEE Transactions on neural networks, 6(3), 792-794.
He, Y., Wu, P., Li, Y., Wang, Y., Tao, F., & Wang, Y. (2020). A generic energy prediction model of machine tools using deep learning algorithms. Applied Energy, 275, 115402.
Hess, K. R., Abbruzzese, M. C., Lenzi, R., Raber, M. N., & Abbruzzese, J. L. (1999). Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clinical Cancer Research, 5(11), 3403-3410.
Hong, A., & Chen, A. (2012). Piecewise regression model construction with sample efficient regression tree (SERT) and applications to semiconductor yield analysis. Journal of Process Control, 22(7), 1307-1317.
Hong, S., & Zhou, Z. (2012). Application of Gaussian process regression for bearing degradation assessment. 2012 6th International Conference on New Trends in Information Science, Service Science and Data Mining (ISSDM2012),
Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014). A comparative study of decision tree ID3 and C4. 5. International Journal of Advanced Computer Science and Applications, 4(2), 13-19.
Jain, A., Smarra, F., Behl, M., & Mangharam, R. (2018). Data-driven model predictive control with regression trees—an application to building energy management. ACM Transactions on Cyber-Physical Systems, 2(1), 1-21.
Jang, H. (2019). A decision support framework for robust R&D budget allocation using machine learning and optimization. Decision Support Systems, 121, 1-12.
Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2021). Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International, 2, 100110.
Jena, S. (2013). Multi-Objective Optimization of the Design Parameters of a Shell and Tube Type Heat Exchanger Based on Economic and Size Consideration
Kalsoom, T., Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors, 20(23), 6783.
Kanawaday, A., & Sane, A. (2017). Machine learning for predictive maintenance of industrial machines using IoT sensor data. 2017 8th IEEE international conference on software engineering and service science (ICSESS),
Kaya, H., Tüfekci, P., & Uzun, E. (2019). Predicting CO and NOx emissions from gas turbines: novel data and a benchmark PEMS. Turkish Journal of Electrical Engineering and Computer Sciences, 27(6), 4783-4796.
Keerthi, S., Sindhwani, V., & Chapelle, O. (2006). An efficient method for gradient-based adaptation of hyperparameters in SVM models. Advances in neural information processing systems, 19.
Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. Annual meeting of the society for academic emergency medicine in San Francisco, California,
Milanović, M., & Stamenković, M. (2016). CHAID decision tree: Methodological frame and application. Economic Themes, 54(4), 563-586.
Osei-Bryson, K.-M. (2007). Post-pruning in decision tree induction using multiple performance measures. Computers & Operations Research, 34(11), 3331-3345.
Pessach, D., Singer, G., Avrahami, D., Ben-Gal, H. C., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290.
Rai, R., Tiwari, M. K., Ivanov, D., & Dolgui, A. (2021). Machine learning in manufacturing and industry 4.0 applications. In (Vol. 59, pp. 4773-4778): Taylor & Francis.
Rodriguez, J. D., Perez, A., & Lozano, J. A. (2009). Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE transactions on pattern analysis and machine intelligence, 32(3), 569-575.
Ronowicz, J., Thommes, M., Kleinebudde, P., & Krysiński, J. (2015). A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm. European Journal of Pharmaceutical Sciences, 73, 44-48.
Schütze, A., Helwig, N., & Schneider, T. (2018). Sensors 4.0–smart sensors and measurement technology enable Industry 4.0. Journal of Sensors and Sensor systems, 7(1), 359-371.
Shamrat, F. J. M., Chakraborty, S., Billah, M. M., Das, P., Muna, J. N., & Ranjan, R. (2021). A comprehensive study on pre-pruning and post-pruning methods of decision tree classification algorithm. 2021 5th International conference on trends in electronics and informatics (ICOEI),
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 25.
Song, Y., Schwing, A. G., Zemel, R. S., & Urtasun, R. (2015). Direct loss minimization for training deep neural nets. arXiv preprint arXiv:1511.06411.
Struyf, J., & Džeroski, S. (2006). Constraint based induction of multi-objective regression trees. Knowledge Discovery in Inductive Databases: 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers 4,
Tayman, J., & Swanson, D. A. (1999). On the validity of MAPE as a measure of population forecast accuracy. Population Research and Policy Review, 18, 299-322.
Valera, V. A., Walter, B. A., Yokoyama, N., Koyama, Y., Iiai, T., Okamoto, H., & Hatakeyama, K. (2007). Prognostic groups in colorectal carcinoma patients based on tumor cell proliferation and classification and regression tree (CART) survival analysis. Annals of surgical oncology, 14, 34-40.
Wang, Q., Liu, F., & Wang, X. (2014). Multi-objective optimization of machining parameters considering energy consumption. The International Journal of Advanced Manufacturing Technology, 71, 1133-1142.
Watanabe, S. (2023). Tree-structured Parzen estimator: Understanding its algorithm components and their roles for better empirical performance. arXiv preprint arXiv:2304.11127.
Wilkinson, L. (1992). Tree structured data analysis: AID, CHAID and CART. Retrieved February, 1, 2008.
Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, S.-H. (2019). Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology, 17(1), 26-40.
Xie, H., & Shang, F. (2014). The study of methods for post-pruning decision trees based on comprehensive evaluation standard. 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International journal of production research, 56(8), 2941-2962.
Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471.
Yang, C.-C., Prasher, S. O., Enright, P., Madramootoo, C., Burgess, M., Goel, P. K., & Callum, I. (2003). Application of decision tree technology for image classification using remote sensing data. Agricultural Systems, 76(3), 1101-1117.
Yi, Q., Li, C., Tang, Y., & Chen, X. (2015). Multi-objective parameter optimization of CNC machining for low carbon manufacturing. Journal of Cleaner Production, 95, 256-264.
Zhu, F., Wang, Z., & Lv, M. (2016). Multi-objective optimization method of precision forging process parameters to control the forming quality. The International Journal of Advanced Manufacturing Technology, 83, 1763-1771.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88370-
dc.description.abstract在現代化的製程中,製程參數的設定通常會影響多個製程目標,因此如何設定合適的製程參數以達到決策者期望的製程目標成為一個具有挑戰性的問題。本研究提出一個數學規劃模型將多目標最佳化方法與決策樹模型相結合。我們以決策樹作為後設模型用於預測目標與製程參數之間的關係,並透過數學最佳化模型整合決策樹的預測結果和其他的製程要求,以提供適當的製程參數設定建議。透過案例研究,我們不僅證明了我們的模型具備有效性,並將其與基於多目標決策樹建構的方法進行比較。根據顯示的結果,我們提出的採用多個單一目標決策樹的方法所提供的解決方案的品質優於傳統的使用單一多目標決策樹的方法。此外,建議的參數設定為決策者提供了三種決策偏好選項,以協助他們根據製程目標偏好選擇最合適的參數設定。zh_TW
dc.description.abstractThis paper introduces an innovative approach to tackle the challenge of determining process parameter settings in order to achieve multiple process goals. We propose a mathematical programming approach that integrates a multi-objective formulation with decision tree models. The decision tree models predict different targets, and the mathematical model combines the outputs from the trees with other process requirements. The case study demonstrates the effectiveness of our model and compares its performance to a method based on multi-objective decision tree. The results reveal that our method, employing multiple single-objective decision trees, returns the superior solution than the conventional approach utilizing a single multi-objective decision tree. The suggested outcomes provide decision-makers with three preferences to assist them in selecting the most suitable option based on their target preferences.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:45:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:45:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
第二章 研究方法 7
2.1 決策樹 7
2.1.1 決策樹建構 7
2.1.2 超參數最佳化 10
2.2 數學最佳化模型 11
2.2.1 模型符號定義 12
2.2.2 模型限制式 13
第三章 數值分析 15
3.1 資料準備 15
3.2 單一目標決策樹預測模型 21
3.3 數學模型求解結果 23
3.4 多目標決策樹預測模型 24
3.5 求解能力表現 27
第四章 結論與建議 30
附錄 31
參考文獻列表 39
-
dc.language.isozh_TW-
dc.subject參數設置zh_TW
dc.subject決策樹zh_TW
dc.subject多目標最佳化zh_TW
dc.subjectmulti-objective optimizationen
dc.subjectdecision treeen
dc.subjectparameter tuningen
dc.title整合決策樹與多目標最佳化方法的參數決策過程zh_TW
dc.titleDecision Trees and Multi-Objective Optimization for Parameters Decision-Making Processesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee藍俊宏;陳家正zh_TW
dc.contributor.oralexamcommitteeJun-Hong Lan;Jia-Zheng Chenen
dc.subject.keyword決策樹,參數設置,多目標最佳化,zh_TW
dc.subject.keyworddecision tree,parameter tuning,multi-objective optimization,en
dc.relation.page43-
dc.identifier.doi10.6342/NTU202302042-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2028-07-25-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved