請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡進發 | zh_TW |
| dc.contributor.advisor | Jing-Fa Tsai | en |
| dc.contributor.author | 林伯松 | zh_TW |
| dc.contributor.author | Po-Sung Lin | en |
| dc.date.accessioned | 2023-08-09T16:37:58Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-24 | - |
| dc.identifier.citation | Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111.
Council, G. W. E. (2023). GWEC Global Wind Report 2023. 4C Offshore (2023). Global offshore wind speeds rankings. Retrieved from https://www.4coffshore.com/windfarms/windspeeds.aspx (May 23,2023) Chang, P. C., Yang, R. Y., & Lai, C. M. (2015). Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan. Energies, 8(3), 1685-1700. 經濟部能源局 (2022)。淨零 12 項關鍵戰略行動計劃 (草案) 關鍵戰略 1-風電/光電。檢自: https://www.ndc.gov.tw/Content_List.aspx?n=6BA5CC3D71A1BF6F (May 23,2023) Guo, Y., Wang, H., & Lian, J.(2022). Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends. Energy Conversion and Management, 255, 115319. Ma, K. T., Luo, Y., Kwan, C. T. T., & Wu, Y. (2019). Mooring system engineering for offshore structures. Gulf Professional Publishing. 船舶暨海洋產業研發中心(2021)。Hywind Scotland浮式離岸風場。檢自: https://www.soic.org.tw/hywind-scotland浮式離岸風場 (May 23, 2023) 再生能源資訊網(2018)。深海區之風力發電技術 浮動式風力發電介紹。檢自: https://www.re.org.tw/knowledge/more.aspx?cid=201&id=2271 (May 23, 2023) Vestas (2023). V236-15.0 MW™. Retrieved from: https://www.vestas.com/en/products/offshore/V236-15MW (May 25,2023) SIEMENS Gamesa (2023). SG 14-222 DD offshore wind turbine. Retrieved from: https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-sg-14-222-dd (May 25,2023) GE Renewable Energy (2022). Haliade-X offshore wind turbine. Retrieved from: https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine (May 25,2023) Hsu, I. J., Ivanov, G., Ma, K. T., Huang, Z. Z., Wu, H. T., Huang, Y. T., & Chou, M. (2022, June). Optimization of semi-Submersible hull design for floating Offshore wind turbines. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 85932, p. V008T09A065). American Society of Mechanical Engineers. Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2007). Engineering challenges for floating offshore wind turbines (No. NREL/CP-500-38776). National Renewable Energy Lab.(NREL), Golden, CO (United States). Otter, A., Murphy, J., Pakrashi, V., Robertson, A., & Desmond, C. (2022). A review of modelling techniques for floating offshore wind turbines. Wind Energy, 25(5), 831-857. Mortensen, S. M., Laugesen, K., Jensen, J. K., Jessen, K., & Soltani, M. (2018, August). Experimental verification of the hydro-elastic model of a scaled floating offshore wind turbine. In 2018 IEEE Conference on Control Technology and Applications (CCTA) (pp. 1623-1630). IEEE. Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab.(NREL), Golden, CO (United States). Azcona, J., Bouchotrouch, F., González, M., Garciandía, J., Munduate, X., Kelberlau, F., & Nygaard, T. A. (2014, June). Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan. In Journal of Physics: Conference Series (Vol. 524, No. 1, p. 012089). IOP Publishing. Roddier, D., Cermelli, C., Aubault, A., & Weinstein, A. (2010). WindFloat: A floating foundation for offshore wind turbines. Journal of renewable and sustainable energy, 2(3), 033104. Wan, L., Gao, Z., & Moan, T. (2015). Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes. Coastal Engineering, 104, 151-169. 葉德生(2014)。浮式離岸風機系統運動性能實驗之研究。國立臺灣大學 工程科學及海洋工程學系。 馬鵬修(2022)。圓柱單管搭配減搖裝置耐海性能實驗之研究。國立臺灣大學 工程科學及海洋工程學系。 Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., ... & Viselli, A. (2020). IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-75698). National Renewable Energy Lab.(NREL), Golden, CO (United States). Jain, A., Goupee, A. J., Robertson, A. N., Kimball, R. W., Jonkman, J. M., & Swift, A. H. (2012). FAST code verification of scaling laws for DeepCwind floating wind system. In The Twenty-second International Offshore and Polar Engineering Conference. OnePetro. Koken, Michael, (2017). The experimental determination of the moment of inertia of a model airplane. Williams Honors College, Honors Research Projects. 585. Journée, J. M. J., & Massie, W. W. (2001). Offshore hydromechanics. Delft University of Technology. ITTC. (2021). Seakeeping experiments. ITTC–Recommended Procedures. Doong, D. J., Tsai, C. H., Chen, Y. C., Peng, J. P., & Huang, C. J. (2015). Statistical analysis on the long-term observations of typhoon waves in the Taiwan sea. Journal of Marine Science and Technology, 23(6), 8. 蕭登倨(2012)。臺灣海峽航路之海象特性分析。國立高雄海洋科技大學 海事資訊科技研究所。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88342 | - |
| dc.description.abstract | 本研究製作含有錨定系統並搭載IEA 15MW風機的TaidaFloat浮臺1/100縮尺半潛式浮式離岸風機平臺模型,並執行自由衰減實驗與耐海性能實驗。本研究以不同初始運動量進行六自由度運動自由衰減實驗,用以求出各運動方向的自然頻率與不同初始速度與初始角速度對應之阻尼比;耐海性能實驗條件又分為規則波條件與非規則波條件,規則波條件下將執行浮式風機平臺模型在五個不同浪向下的規則波耐海性能實驗,風速條件將以IEA 15MW離岸風機額定轉速下的最大推力反求對應的模型風速,求得在穩定風速條件下浮式風機平臺模型在風浪條件中六自由度運動反應振幅運算子(Response Amplitude Operator, RAO);非規則波條件模擬臺灣海峽50年回歸週期的極端海況條件,求得浮式風機平臺在極端海況下的六自由度運動反應振幅運算子。由自由衰減實驗結果顯示阻尼比對初始速度或初始角速度為二次曲線關係。規則波耐海性能實驗結果顯示,此浮式風機平臺出現俯仰運動造成的縱移運動、橫搖運動造成的橫移運動與起伏運動造成的俯仰運動;此外在90度與180度浪向條件下,將分別出現較大的浮式風機平臺風機輪轂縱移反應振幅運算子,考量風機發電性能與臺灣海峽盛行季風條件,浮式風機平臺與東北季風風向成45度會是較適合的安裝方式。非規則波耐海性能實驗結果顯示,六自由度運動反應振幅運算子峰值主要出現在非規則波峰值頻率與浮臺各運動方向自然頻率附近,唯橫搖反應振幅運算子受到拍擊(Slamming)現象影響產生很多倍頻局部峰值。 | zh_TW |
| dc.description.abstract | This study conducted free decay experiments and seakeeping performance experiments on a 1/100 scale model of the TaidaFloat semi-submersible floating offshore wind turbine platform. This study conducted free decay experiments on six degrees of freedom motion with varying initial momenta. The purpose of the free decay experiments was to determine the natural frequencies of each motion direction and investigate the influence of different initial velocities and initial angular velocities on the damping ratio. Seakeeping performance experiments were conducted under regular wave and irregular wave conditions. Under regular wave conditions, seakeeping performance experiments were conducted under five different wave directions. The model wind speed was determined by considering the maximum thrust of the IEA 15MW wind turbine at its rated rotor speed. The experiments aimed to evaluate the response amplitude operators of the six degrees of freedom motion of the model under stable wind speed and regular wave conditions. Seakeeping performance experiments were conducted under irregular wave conditions to simulate extreme sea conditions corresponding to a 50-year return period in the Taiwan Strait. The objective was to evaluate the response amplitude operators of the model under these extreme sea conditions. The results of the free decay experiments revealed a quadratic relationship between the damping ratio and the initial velocity or angular velocity. The results of the seakeeping performance experiments under regular wave conditions showed the presence of pitch-induced surge, roll-induced sway, and heave-induced pitch motions of the model. Furthermore, under wave conditions at 90 degrees and 180 degrees, the surge RAOs of the hub become evident. Considering the power generation performance of wind turbines and the prevailing monsoon conditions in the Taiwan Strait, it is more suitable to install the floating offshore wind turbine platform at an angle of 45 degrees to the northeast monsoon wind direction. The results of the seakeeping experiments under irregular wave conditions revealed that peak RAOs were observed at the natural frequencies of all six degrees of freedom. The roll RAO exhibited multiple localized peaks at high frequencies due to the occurrence of slamming phenomena. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:37:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:37:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 v 表目錄 ix 符號目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究目的 4 1.4 論文架構 4 第二章 研究方法 5 2.1 縮尺理論 5 2.2 座標系定義 7 2.3 轉動慣量 9 2.4 運動方程式 10 2.4.1 自由衰減運動 11 2.4.2 規則波中運動 15 2.4.3 風力作用 17 2.5 反應振幅運算子 18 2.6 非規則波 20 第三章 實驗系統 22 3.1 模型製作 22 3.2 實驗架構 25 3.2.1 實驗環境 25 3.2.2 量測系統 25 3.2.3 儀器較正 26 3.2.4 實驗條件 28 3.3 實驗程序 29 3.3.1 自由衰減實驗程序 30 3.3.2 規則波耐海性能實驗程序 30 3.3.3 非規則波耐海性能實驗程序 31 第四章 實驗結果與討論 32 4.1 自由衰減實驗結果討論 32 4.2 規則波耐海性能實驗結果討論 32 4.2.1 浮臺座標系縱移反應振幅運算子 33 4.2.2 浮臺座標系橫移反應振幅運算子 33 4.2.3 浮臺座標系起伏反應振幅運算子 34 4.2.4 浮臺座標系橫搖反應振幅運算子 34 4.2.5 浮臺座標系俯仰反應振幅運算子 35 4.2.6 浮臺座標系平擺反應振幅運算子 35 4.2.7 風向座標系縱移與俯仰運動 36 4.3 非規則波耐海性能實驗結果討論 37 第五章 結論與建議 38 5.1 結論 38 5.2 建議 40 參考文獻 41 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 反應振幅運算子 | zh_TW |
| dc.subject | 耐海性能 | zh_TW |
| dc.subject | 自然頻率 | zh_TW |
| dc.subject | 半潛式浮式風機平臺 | zh_TW |
| dc.subject | 自由衰減運動 | zh_TW |
| dc.subject | 阻尼比 | zh_TW |
| dc.subject | Free decay | en |
| dc.subject | Damping ratio | en |
| dc.subject | Seakeeping performance | en |
| dc.subject | Natural frequency | en |
| dc.subject | Semi-submersible floating offshore wind turbine | en |
| dc.subject | Response amplitude operator | en |
| dc.title | TaidaFloat半潛式浮臺搭載IEA 15MW風機耐海性能實驗研究 | zh_TW |
| dc.title | Experimental Study on the Seakeeping Performance of the TaidaFloat Semi-submersible Floating Platform with the IEA 15MW Wind Turbine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林恆山;林宗岳 | zh_TW |
| dc.contributor.oralexamcommittee | Hen-Shan Lin;Tsung-Yueh Lin | en |
| dc.subject.keyword | 半潛式浮式風機平臺,自由衰減運動,自然頻率,阻尼比,耐海性能,反應振幅運算子, | zh_TW |
| dc.subject.keyword | Semi-submersible floating offshore wind turbine,Free decay,Natural frequency,Damping ratio,Seakeeping performance,Response amplitude operator, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202302020 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
