Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88339
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊國鑫zh_TW
dc.contributor.advisorKuo-Hsin Yangen
dc.contributor.author傅雅萱zh_TW
dc.contributor.authorYa-Hsuan Fuen
dc.date.accessioned2023-08-09T16:37:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-26-
dc.identifier.citationAASHTO (2002). Standard Specifications for Highway Bridges, 17th edn. American Association of State Highway and Transportation Officials, Washington, DC, USA.
Alexiew D., Brokemper D., Lothspeich S. (2005): Geotextile Encased Columns (GEC): load capacity, geotextile selection and pre-design graphs. Proc. Geofrontiers 2005, Austin.
Alexiew, D., Raithel, M., Küster, V., Bau-Aktiengesellschaft, J. M., and Detert, O. (2012).15 years of experience with geotextile encased granular columns as foundation system.
Almeida, M. S. S., Hosseinpour, I., Riccio, M., and Alexiew, D. (2015). Behavior of geotextile encased granular columns supporting test embankment on soft deposit. Journal of Geotechnical and Geoenvironmental Engineering. 141(3), 04014116.
Araújo, G., Palmeira, E., & Cunha, R. (2009). Geosynthetic encased columns in a tropical collapsible porous clay.
ASTM D3080. (2011). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions”, ASTM International, USA.
ASTM D4595. (2017). “Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method”, ASTM International, USA.
ASTM D5084. (2008). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, USA.
ASTM D5321. (2008). Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. ASTM International, USA.
ASTM D6836. (2008). Standard test methods for determination of the soil water characteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge: ASTM International, West Conshohocken, PA, USA.
Blaber, J., Adair, B., and Antoniou, A. (2015). Ncorr: Open-source 2D digital image correlation Matlab software. Experimental Mechanics. 55(6), 1105-1122.
Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations. Physical Review, 4(4), 345-376.
Cengiz, C., Kilic, I. E., and Guler, E. (2019). On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads. Geotextiles and Geomembranes, 47(2), 193–202.
Chen, J. F., Li, L. Y., Xue, J. F., and Feng, S. Z. (2015). Failure mechanism of geosynthetic encased stone columns in soft soils under embankment. Geotextiles and Geomembranes, 43, 424–431.
Chen, J. F., Wang, X. T., Xue, J. F., Zeng, Y., and Feng, S. Z. (2018). Uniaxial compression behavior of geotextile encased stone columns. Geotextiles and Geomembranes, 46(3), 277-283.
Chong, S. Y., Kassim, K. A., Lee, M. L., and Lau, S. H. (2018). Geotextile Encapsulation as Protection to Lime Column under Shear Load. E3S Web Conf., 65, 06005.
Decourt, L. (1996). Foundation Failure Based on Stiffness Concept. São Paulo. III SEFE: Vol. 1, p. 215-224. (In Portuguese).
Finch H.J.S., Samuel A.M., and Lane G.P.F. (2014). 3 - Soils and soil management. In: Lockhart & Wiseman’s crop husbandry including grassland (ninth edition). Woodhead Publishing, Cambridge, UK.
Fukuzono, T. (1985) A new method for predicting the failure time of a slope. In: Proceedings of the fourth international conference and field workshop on landslides. Tokyo: Japan Landslide Society, pp. 145–150.
Gallage, C., Abeykoon, T., and Uchimura, T. (2021). Instrumented model slopes to investigate the effects of slope inclination on rainfall-induced landslides. Soils and Foundations, 61.
Ghazavi, M., and Nazari Afshar, J. (2013). Bearing capacity of geosynthetic encased stone columns. Geotextiles and Geomembranes, 38, 26-36.
Hajiazizi, M., & Nasiri, M. (2018). Earth Slopes Reinforced by Stone Column and Geotextile. Geotechnical Engineering.
Hasan, M., and Samadhiya, N. K. (2017). Performance of geosynthetic-reinforced granular piles in soft clays: model tests and numerical analysis. Computers and Geotechnics, 87, 178–187.
Hong, Y. S., Wu, C. S., and Yu, Y. S. (2016). Model tests on geotextile-encased granular columns under 1-g and undrained conditions. Geotextiles and Geomembranes, 44(1), 13-27.
Kempfert, H. G. (1996). Embankment foundation on geotextile-coated sand columns in soft ground. In Proc. 1st European Geosynthetic Conference, Maastricht (pp. 245-250).
Kwan, J.S.H., Chan, M.H.C., and Shum, W.W.L. (2013). A review of slope-specific early warning systems for rain-induced landslides. GEO Report, No. 316
Langhaar, H. L. (1951). Dimensional analysis and theory of models. Krieger.
Liu, J.-K., Chang, K.-T., Rau, J.-Y., Hsu, W.-C., Liao, Z.-Y., Lau, C.-C., & Shih, T.-Y. (2009). The geomorphometry of rainfall-induced landslides in Taiwan obtained by airborne lidar and digital photography.
Malarvizhi, S.N., Ilamparuthi, K., 2007. Comparative study on the behavior of encased stone column and conventional stone column. Soils Found. 47 (5), 873–885.
Mohapatra, S. R., Rajagopal, K., and Sharma, J. (2016). Direct shear tests on geosynthetic-encased granular columns. Geotextiles and Geomembranes, 44, 396–405.
Nasiri, M., Hajiazizi, M., Nemati, E., Bavali, M., and Sharifipour, M. (2018). Optimal Location of Stone Column in Stabilization of Sand Slope: An Experimental and 3D Numerical Investigation. Scientia Iranica.
Vanapalli, S., Fredlund, D., Pufahl, D., & Clifton, A. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian geotechnical journal, 33(3), 379-392.
Van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, No. 5, 892–898.
Viswanadham, B. V. S., and Konig, D. (2004). Studies on scaling and instrumentation of a geogrid. Geotextiles and Geomembranes, 22(5), 307-328.
Yoo, W., Kim, B.-I., & Cho, W. (2015). Model test study on the behavior of geotextile-encased sand pile in soft clay ground. KSCE Journal of Civil Engineering, 19(3), 592-601.
Zhang, L. L., Zhang, J., Zhang, L. M., & Tang, W. H. (2011). Stability analysis of rainfall-induced slope failure: a review. Proceedings of the Institution of Civil Engineers -Geotechnical Engineering, 164(5), 299-316.
陳榮河、紀柏全 (2010),“模型邊坡試驗之因次分析”,地工技術,125,7-14。
劉文龍,羅纨,賈忠華,卜凡敏,潘延鑫,唐雙成,袁黃春,李山 (2013),“黄河三角洲暗管排水土工布外包濾料的試驗研究”,農業工程學報,29(18) ,109-116.
呂昕臻,(2019),“加勁擋土牆以含細粒料之回填土在降雨作用下之行為及改善方 法評估”,碩士論文,國立臺灣大學,台北。
曾婷苓,(2020),“加勁擋土牆受降雨入滲作用下之物理模型試驗研究”,碩士論文, 國立臺灣大學,台北。
蔣榮,(2022),“柔性加勁基礎抗斷層錯動引致地表變形之研究”,博士論文,國立臺灣大學,台北。
蔣榮,楊國鑫,吳俊緯,洪勇善,阮仲如 (2022) “柔性加勁基礎減緩逆斷層錯動引致之地表變形”,地工技術,172,73-84。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88339-
dc.description.abstract加勁砂樁(Geosynthetic Encased Column, GEC)目前主要應用於基礎結構下方,由於其加勁材料的約束作用,使其能增強柱體的剪切強度和承載能力。然而,加勁砂樁具有機械和排水功能,使其適用於滲流區域。除此之外,它們的彈性使其能夠容忍大變形,增強了邊坡的穩定性。因此,本研究旨在探討在滲流條件下利用加勁砂樁穩定邊坡的能力。
本研究通過一系列模型試驗(reduced model tests)研究了受滲流影響的加勁砂樁穩定邊坡的性能,以評估其作為防止邊坡滑動的有效性,為此,在模型試驗中,總共進行了五次模型試驗,以研究未經加固邊坡和加勁砂樁穩定的邊坡在滲流作用下的行為。研究評估自然邊坡以及加勁砂樁穩定邊坡在加勁砂樁不同填充砂的情況以及樁底部位在兩種不同地質環境(砂岩和頁岩)中對水壓分布、邊坡變形、剪切應變發展與加勁砂樁機制的影響。試驗結果將其破壞模式分作三類敘述:(1)天然邊坡的快速滑動;(2)加勁砂樁穩定邊坡提供土壤剪力強度增強;(3)加勁砂樁穩定邊坡中水位的延遲發展。試驗結果顯示,增加填充土壤的勁度及樁底部位在砂岩中(有排水功能)的加勁砂樁能夠提高牆體穩定性,並減少邊坡變形。基於這些結果,本研究討論了加勁砂樁作為替代的邊坡穩定結構,加勁砂樁穩定邊坡的性能是由土壤剪切強度(機械功能)和垂直排水特性(水力功能)的綜合效應所改善。
zh_TW
dc.description.abstractThe proposition of employing Geosynthetic Encased Columns (GECs) for slope stabilization under seepage conditions holds significant promise. GECs offer both mechanical and hydraulic functions, making them suitable for areas with rising groundwater levels. Their flexibility allows them to tolerate large deformations, enhancing slope stability. The study aims to examine GECs' potential effectiveness in seepage environments. This approach could provide an alternative flexible measure for slope stabilization. A series of reduced model tests were conducted to evaluate the performance of GEC stabilized slopes affected by seepage and to assess their effectiveness in preventing slope failure.
To this end, model tests were performed to examine the behavior of unreinforced and GEC stabilized slopes subject to seepage, with five model tests conducted. In the conducted model tests, a simulated slope with a height of 5 m was employed to represent a prototype scenario under seepage conditions, where the groundwater level reached a maximum of 4 m. The study of GEC stabilized slopes evaluated the influence of different infilled materials in GECs and the installation of GEC toes in two distinct geological contexts: sandstone and shale. Digital image analysis (DIA) techniques were employed to determine the slope surface profile and analyze shear strain propagation at various groundwater levels. The phreatic surface level was also monitored and studied. The results of the tests categorized the failure modes into three groups: (1) rapid failure of natural slope; (2) enhanced shear strength provided by GEC stabilized slope; and (3) postponed development of the phreatic surface level in GEC stabilized slope. The tests revealed that increasing the stiffness of the infilled soil and GECs with drainage function (bedrock of sandstone) demonstrated improved efficiency in enhancing wall stability and reducing slope deformation. Based on these findings, the research discusses GEC stabilized slopes as alternative slope stabilization structures, specifically in large slope deformation. The improved performance of GEC stabilized slopes is attributed to the combined effects of soil shear strength (mechanical function) and vertical drainage property (hydraulic function).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:37:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:37:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
Table of Contents IV
List of Tables VII
List of Figures VIII
Chapter 1: Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 4
1.3 Research Layout 5
Chapter 2: Literature Review 7
2.1 Basic Principles of GEC 7
2.1.1 Introduction of GEC 7
2.1.2 Benefits of GEC 8
2.2 Behavior of GECs 9
2.3.1 Bearing Capacity of GECs under Vertical Loading 9
2.3.2 Deformation Behavior of GECs under Lateral Force 13
2.3 Multifunctional Applications in GECs 17
2.4 Scaling Laws 21
2.4.1 Similitude Law 21
2.4.2 Dimensional Analysis 22
Chapter 3: Material Properties 25
3.1 Soil Properties 25
3.1.1 Physical Properties of Soil 26
3.1.2 Engineering Properties of Soil 29
3.1.3 Unsaturated Properties of Soil 30
3.2 Reinforcement Properties 34
Chapter 4: Model Tests and Test Program 37
4.1 Model Test Design 37
4.1.1 Model Similarity 37
4.1.2 Test Models 38
4.1.3 Model Preparation 42
4.1.4 Groundwater Level 48
4.2 Instrumentation 50
4.2.1 Specifications and Calibrations of Measuring Devices 50
4.2.2 Digital Image Analysis 54
4.3 Test Procedures and Test Repeatability 60
4.3.1 Test Procedures 60
4.3.2 Test Repeatability 61
Chapter 5: Experimental Results of GEC Stabilized Slopes subjected to Seepage 63
5.1 Natural Slope 64
5.2 GEC Reinforced Slope 73
5.2.1 Test GECf 73
5.2.2 Test GECc 81
5.3 GEC Reinforced Slope with Drainage 90
5.3.1 Test GECf with drainage 90
5.3.2 Test GECc with drainage 96
5.4 Discussion 102
5.4.1 Mode of Slope Failure 102
5.4.2 Clogging of Geotextile 104
Chapter 6: Overall Comparison 106
6.1 Phreatic Surface Level 107
6.2 Slope Settlement 109
6.3 Discharge Capacity of GEC 112
Chapter 7: Conclusions and Design Recommendations 113
7.1 Conclusions 113
7.2 Design Recommendations 114
References 115
-
dc.language.isoen-
dc.subject機械與水力功能zh_TW
dc.subject縮模實驗zh_TW
dc.subject滲流zh_TW
dc.subject加勁砂樁zh_TW
dc.subject邊坡穩定zh_TW
dc.subject破壞機制zh_TW
dc.subjectSlope stabilizationen
dc.subjectModel testen
dc.subjectFailure modeen
dc.subjectSeepageen
dc.subjectGeosynthetic Encased Columnsen
dc.subjectMechanical and hydraulic functionen
dc.title加勁砂樁穩固邊坡受滲流作用之模型試驗zh_TW
dc.titleModel Tests on Geosynthetic Encased Column Stabilized Slopes subjected to Seepageen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee翁孟嘉;何嘉浚 ;蔣榮zh_TW
dc.contributor.oralexamcommitteeMeng-Chia Weng;Chia-Chun Ho;Jung Chiangen
dc.subject.keyword加勁砂樁,邊坡穩定,滲流,破壞機制,縮模實驗,機械與水力功能,zh_TW
dc.subject.keywordGeosynthetic Encased Columns,Slope stabilization,Seepage,Model test,Failure mode,Mechanical and hydraulic function,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202301984-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
9.66 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved