請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88335完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周銘翊 | zh_TW |
| dc.contributor.advisor | Ming-Yi Chou | en |
| dc.contributor.author | 施尚武 | zh_TW |
| dc.contributor.author | Shang-Wu Shih | en |
| dc.date.accessioned | 2023-08-09T16:36:01Z | - |
| dc.date.available | 2024-04-20 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | Al-Awqati Q, Gao XB (2011) Differentiation of intercalated cells in the kidney. Physiology 26 266-272.
Alaynick WA, Way JM, Wilson SA, Benson WG, Pei L, Downes M, Yu R, Jonker JW, Holt JA, Rajpal DK, Li H, Stuart J, McPherson R, Remlinger KS, Chang CY, McDonnell DP, Evans RM, Billin AN (2010) ERRγ regulates cardiac, gastric, and renal potassium homeostasis. Mol Endocrinol 24 299-309. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34 494-515. Attaphitaya S, Park K, Melvin JE (1999) Molecular cloning and functional expression of a rat Na+/H+ exchanger (NHE5) highly expressed in brain. J Biol Chem 274 4383-4388. Audet-Walsh É, Giguére V (2015) The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin 36 51-61. Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142 155-175. Avella M, Berhaut J, Payan P (1994) Primary culture of gill epithelial cells from the sea bass Dicentrarchus Labrax. In Vitro Cell Dev Biol Anim 30 41-49. Barra JA, Pequeux A, Humbert W (1983) A morphological study on gills of a crab acclimated to fresh water. Tissue Cell 15 583-596. Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am J Physiol 277 1385-1391. Bury NR, Jie L, Flik G, Lock RA, Bonga SEW (1998) Cortisol protects against copper induced necrosis and promotes apoptosis in fish gill chloride cells in vitro. Aquat Toxicol 40 193-202. Castañeda-Bueno M, Vázquez N, Bustos-Jaimes I, Hernández D, Rodríguez-Lobato E, Pacheco-Alvarez D, Cariño-Cortés R, Moreno E, Bobadilla NA, Gamba G (2010) A single residue in transmembrane domain 11 defines the different affinity for thiazides between the mammalian and flounder NaCl transporters. Am J Physiol Renal Physiol 299 1111-1119. Chang WJ, Wang YF, Hu HJ, Wang JH, Lee TH, Hwang PP (2013) Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio). Front Zool 10 1-12. Chuang HJ, Chiu L, Yan JJ, Chang CY, Tang YH, Chou MY, Yu HT, Hwang PP (2023) Responses of medaka (Oryzias latipes) ammonia production and excretion to overcome acidified environments. J Hazard Mater 445 130539. Clifford AM, Tresguerres M, Goss GG, Wood CM (2022) A novel K+‐dependent Na+ uptake mechanism during low pH exposure in adult zebrafish (Danio rerio): New tricks for old dogma. Acta Physiol 234 13777. Crevet L, Vanacker JM (2020) Regulation of the expression of the estrogen related receptors (ERRs). Cell Mol Life Sci 77 4573-4579. Dymowska AK, Boyle D, Schultz AG, Goss GG (2015) The role of acid-sensing ion channels in epithelial Na+ uptake in adult zebrafish (Danio rerio). TJ Exp Biol 218 1244-1251. Dymowska AK, Schultz AG, Blair SD, Chamot D, Goss GG (2014) Acid-sensing ion channels are involved in epithelial Na+ uptake in the rainbow trout Oncorhynchus mykiss. Am J Physiol Cell Physiol 307 255-265. Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K, Hirose S (2007) Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol 292 470-480. Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295 704-713. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85 97-177. Giguère V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29 677-696. Giguère V, Yang N, Segui P, Evans RM (1988) Identification of a new class of steroid hormone receptors. Nature 331 91-94. Guan Y, Dong J, Tackett L, Meyer JW, Shull GE, Montrose MH (2006) NHE2 is the main apical NHE in mouse colonic crypts but an alternative Na+-dependent acid extrusion mechanism is upregulated in NHE2-null mice. Am J Physiol Gastrointest Liver Physiol 291 689-699. Guh YJ, Hwang PP (2017) Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen Comp Endocrinol 251 12-20. Guh YJ, Yang CY, Liu ST, Huang CJ, Hwang PP (2016) Oestrogen-related receptor α is required for transepithelial H+ secretion in zebrafish. Proc Biol Sci 283 20152582. Harvey BJ (1992) Energization of sodium absorption by the H+-ATPase pump in mitochondria-rich cells of frog skin. J Exp Biol 172 289-309. Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na+-Cl- co-transporter involved in ion uptake in a teleost fish. J Exp Biol 211 2584-2599. Horng JL, Lin LY, Hwang PP (2009a) Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296 682-692. Horng JL, Yu LL, Liu ST, Chen PY, Lin LY (2017) Potassium regulation in medaka (Oryzias latipes) larvae acclimated to fresh water: passive uptake and active secretion by the skin cells. Sci Rep 7 16215. Horng JL, Lin LY, Huang CJ, Katoh F, Kaneko T, Hwang PP (2007) Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292 2068-2076. Horng JL, Hwang PP, Shih TH, Wen ZH, Lin CS, Lin LY (2009b) Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol Cell Physiol 297 845-854. Hsu HH, Lin LY, Tseng YC, Horng JL, Hwang PP (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357 225-243. Huang CY, Lee W, Lin HC (2008) Functional differentiation in the anterior gills of the aquatic air-breathing fish, Trichogaster leeri. J Comp Physiol B 178 111-121. Huang CY, Lin CH, Lin HC (2015) Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis. Comp Biochem Physiol A Mol Integr Physiol 185 24-32. Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148 479-497. Hwang PP, Chou MY (2013) Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465 1233-1247. Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301 28-47. Inokuchi M, Hiroi J, Watanabe S, Hwang PP, Kaneko T (2009) Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J Exp Biol 212 1003-1010. Ishimatsu A, Itazawa Y, Takeda T (1979) On the circulatory systems of the snakeheads Channa maculata and C. argus with reference to bimodal breathing. Jpn J Ichthyol 26 167-180. Ito Y, Kato A, Hirata T, Hirose S, Romero MF (2014) Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes. Am J Physiol Regul Integr Comp Physiol 306 315-327. Ito Y, Kobayashi S, Nakamura N, Miyagi H, Esaki M, Hoshijima K, Hirose S (2013) Close association of carbonic anhydrase (CA2a and CA15a), Na+/H+ exchanger (NHE3b), and ammonia transporter Rhcg1 in zebrafish ionocytes responsible for Na+ uptake. Front Physiol 4 59. Karnaky KJ Jr, Degnan KJ, Zadunaisky JA (1977) Chloride transport across isolated opercular epithelium of killifish: a membrane rich in chloride cells. Science 195 203-205. Kerstetter TH, Kirschner LB, Rafuse DD (1970) On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri). J Gen Physiol 56 342-359. Kirschner LB, Greenwald L, Kerstetter TH (1973) Effect of amiloride on sodium transport across body surfaces of freshwater animals. Am J Physiol 224 832-837. Kumai Y, Perry SF (2011) Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. Am J Physiol Regul Integr Comp Physiol 301 1517-1528. Kumai Y, Bahubeshi A, Steele S, Perry SF (2011) Strategies for maintaining Na+ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water. Comp Biochem Physiol A Mol Integr Physiol 160 52-62. Laurent P, Dunel S (1980) Morphology of gill epithelia in fish. Am J Physiol 238 147-159. Lee YC, Yan JJ, Cruz SA, Horng JL, Hwang PP (2011) Anion exchanger 1b, but not sodium-bicarbonate co-transporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 300 295-307. Lewis L, Kwong RWM (2018) Zebrafish as a model system for investigating the compensatory regulation of ionic balance during metabolic acidosis. Int J Mol Sci 19 1087. Lin CC, Lin LY, Hsu HH, Thermes V, Prunet P, Horng JL, Hwang PP (2012) Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 302 283-291. Lin CH, Hu HJ, Hwang PP (2016) Cortisol regulates sodium homeostasis by stimulating the transcription of sodium-chloride transporter (NCC) in zebrafish (Danio rerio). Mol Cell Endocrinol 422 93-102. Lin CH, Chang HC, Liu ST, Hu HJ (2023) Vitamin D regulates ion regulation by affecting the ionocyte differentiation in zebrafish (Danio rerio) larvae. Front Mar Sci 10 1141116. Lin CH, Tsai IL, Su CH, Tseng DY, Hwang PP (2011) Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D3 metabolism. PLoS One 6 23689. Lin CH, Shih TH, Liu ST, Hsu HH, Hwang PP (2015) Cortisol regulates acid secretion of H+-ATPase-rich ionocytes in zebrafish (Danio rerio) embryos. Front Physiol 6 328. Lin CH, Liu ST, Wang YC, Tsou YL, Hu HJ (2022) Vitamin D regulates transepithelial acid secretion in zebrafish (Danio rerio) larvae. Front Mar Sci 9 990502. Lin LY, Horng JL, Kunkel JG, Hwang PP (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290 371-378. Lin LY, Pang W, Chuang WM, Hung GY, Lin YH, Horng JL (2013) Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 305 1060-1068. Lin TY, Liao BK, Horng JL, Yan JJ, Hsiao CD, Hwang PP (2008) Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294 1250-1260. Liu ST, Tsung L, Horng JL, Lin LY (2013) Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 305 242-251. Liu ST, Horng JL, Chen PY, Hwang PP, Lin LY (2016) Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism. Sci Rep 6 1-13. Luquet CM, Rosa GA, Ferrari CC, Genovese G, Pellerano GN (2000) Gill morphology of the intertidal estuarine crab Chasmagnathus granulatus Dana, 1851 (Decapoda, Grapsidae) in relation to habitat and respiratory habits. Crustaceana 73 53-67. Marshall WS, Bryson SE, Darling P, Whitten C, Patrick M, Wilkie M, Wood CM, Buckland‐Nicks J (1997) NaCl transport and ultrastructure of opercular epithelium from a freshwater‐adapted euryhaline teleost, Fundulus heteroclitus. J Exp Zool 277 23-37. Marshall WS (2003) Rapid regulation of NaCl secretion by estuarine teleost fish: coping strategies for short-duration freshwater exposures. Biochim Biophys Acta 1618 95-105. Masereel B, Pochet L, Laeckmann D (2003) An overview of inhibitors of Na+/H+ exchanger. Eur J Med Chem 38 547-554. Mazon AF, Fernandes M, Nolasco M, Severi W (1998) Functional morphology of gills and respiratory area of two active rheophilic fish species, Plagioscion squamosissimus and Prochilodus scrofa. J Fish Biol 52 50-61. McCormick SD, Hasegawa S, Hirano T (1992) Calcium uptake in the skin of a freshwater teleost. Proc Natl Acad Sci USA 89 3635-3638. Moreno E, Cristóbal PS, Rivera M, Vázquez N, Bobadilla NA, Gamba G (2006) Affinity-defining domains in the Na+-Cl- co-transporter: A different location for Cl-and thiazide binding. J Biol Chem 281 17266-17275. Moreno E, Pacheco-Alvarez D, Chávez-Canales M, Elizalde S, Leyva-Ríos K, Gamba G (2023) Structure-function relationships in the sodium chloride co-transporter. Front Physiol 14 1118706. Nagarajan G, Adimoolam A, Alkhamis YA, Mathew RT, Chang CF (2022) Localization of the neuropeptide arginine vasotocin and its receptor in the osmoregulatory organs of black porgy, Acanthopagrus schlegelii: gills, kidneys, and intestines. Int J Mol Sci 23 13421. Nakada T, Westhoff CM, Kato A, Hirose S (2007) Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21 1067-1074. Nikolovska K, Seidler UE, Stock C (2022) The role of plasma membrane sodium/hydrogen exchangers in gastrointestinal functions: proliferation and differentiation, fluid/electrolyte transport and barrier integrity. Front Physiol 13 899286. Notch EG, Shaw JR, Coutermarsh BA, Dzioba M, Stanton BA (2011) Morpholino gene knockdown in adult Fundulus heteroclitus: role of SGK1 in seawater acclimation. PLoS One 6 29462. Olson KR, Roy PK, Ghosh TK, Munshi JS (1994) Microcirculation of gills and accessory respiratory organs from the air‐breathing snakehead fish, Channa punctata, C. gachua, and C. marulius. Anat Rec 238 92-107. Olson KR (1991) Vasculature of the fish gill: anatomical correlates of physiological functions. J Electron Microsc Tech 19 389-405. Onken H, McNamara JC (2002) Hyperosmoregulation in the red freshwater crab Dilocarcinus pagei (Brachyura, Trichodactylidae): structural and functional asymmetries of the posterior gills. J Exp Biol 205 167-175. Pisam M, Prunet P, Boeuf G, Rambourg A (1988) Ultrastructural features of chloride cells in the gill epithelium of the Atlantic salmon, Salmo salar, and their modifications during smoltification. Am J Anat 183 235-244. Rahmati N, Kunzelmann K, Xu J, Barone S, Sirianant L, De Zeeuw CI, Soleimani M (2013) Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V-H+-ATPase. Pflugers Arch 465 1583-1597. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9 676-682. Schnell S, Stott LC, Hogstrand C, Wood CM, Kelly SP, Pärt P, Owen SF, Bury NR (2016) Procedures for the reconstruction, primary culture and experimental use of rainbow trout gill epithelia. Nat Protoc 11 490-498. Seidler U, Nikolovska K (2011) SLC26 family of anion transporters in the gastrointestinal tract: expression, function, regulation, and role in disease. Compr Physiol 9 839-872. Shen WP, Horng JL, Lin LY (2011) Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am J Physiol Regul Integr Comp Physiol 300 858-868. Shih TH, Horng JL, Hwang PP, Lin LY (2008) Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295 1625-1632. Shih TH, Horng JL, Lai YT, Lin LY (2013) Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol 304 1130-1138. Shih TH, Horng JL, Liu ST, Hwang PP, Lin LY (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol 302 84-93. Shir-Mohammadi K, Perry SF (2020) Expression of ion transport genes in ionocytes isolated from larval zebrafish (Danio rerio) exposed to acidic or Na+-deficient water. Am J Physiol Regul Integr Comp Physiol 319 412-427. Sonoda J, Laganière J, Mehl IR, Barish GD, Chong LW, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F, Lee CH, Giguère V, Evans RM (2007) Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev 21 1909-1920. Takei Y, Hiroi J, Takahashi H, Sakamoto T (2014) Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 307 778-792. Tong SK, Lee HL, Lee YC, Wu LC, Tsou YL, Lu SW, Shih SW, Hwang PP, Chou MY (2020) Arginine vasopressin modulates ion and acid/base balance by regulating cell numbers of sodium chloride co-transporter and H+-ATPase rich ionocytes. Int J Mol Sci 21 3957. Tremblay AM, Giguère V (2007) The NR3B subgroup: an ovERRview. Nucl Recept Signal 5 05009. Tremblay AM, Dufour CR, Ghahremani M, Reudelhuber TL, Giguère V (2010) Physiological genomics identifies estrogen-related receptor α as a regulator of renal sodium and potassium homeostasis and the renin-angiotensin pathway. Mol Endocrinol 24 22-32. Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C Toxicol Pharmacol 148 419-429. Tseng YC, Yan JJ, Furukawa F, Chen RD, Lee JR, Tsou YL, Liu TY, Tang YH, Hwang PP (2022) Teleostean fishes may have developed an efficient Na+ uptake for adaptation to the freshwater system. Front Physiol 13 947958. Tseng YC, Yan JJ, Furukawa F, Hwang PP (2020) Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger‐mediated ammonia excretion in fish? Bioessays 42 1900161. Verbost PM, Bryson SE, Bonga SE, Marshall WS (1997) Na+-dependent Ca2+ uptake in isolated opercular epithelium of Fundulus heteroclitus. J Comp Physiol B 167 205-212. Vincourt JB, Jullien D, Amalric F, Girard JP (2003) Molecular and functional characterization of SLC26a11, a sodium‐independent sulfate transporter from high endothelial venules. FASEB J 17 890-892. Waldmann R, Lazdunski M (1998) H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8 418-424. Wang D, Wang Y, Liu FQ, Yuan ZY, Mu JJ (2016) High salt diet affects renal sodium excretion and ERRα expression. Int J Mol Sci 17 480. Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP (2009) Role of SLC12A10.2, a Na+-Cl- cotransporter-like protein, in a Cl- uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296 1650-1660. Wang YF, Yan JJ, Tseng YC, Chen RD, Hwang PP (2015) Molecular physiology of an extra-renal Cl- uptake mechanism for body fluid Cl- homeostasis. Int J Biol Sci 11 1190-1203. Wichmann L, Althaus M (2020) Evolution of epithelial sodium channels: current concepts and hypotheses. Am J Physiol Regul Integr Comp Physiol 319 387-400. Wilson JM, Laurent P (2002) Fish gill morphology: inside out. J Exp Zool 293 192-213. Wu SC, Horng JL, Liu ST, Hwang PP, Wen ZH, Lin CS, Lin LY (2010) Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298 237-250. Xu J, Barone S, Li H, Holiday S, Zahedi K, Soleimani M (2011) Slc26a11, a chloride transporter, localizes with the vacuolar H+-ATPase of A-intercalated cells of the kidney. Kidney Int 80 926-937. Yan JJ, Hwang PP (2019) Novel discoveries in acid-base regulation and osmoregulation: a review of selected hormonal actions in zebrafish and medaka. Gen Comp Endocrinol 277 20-29. Yan JJ, Chou MY, Kaneko T, Hwang PP (2007) Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293 1814-1823. Yan JJ, Lee YC, Tsou YL, Tseng YC, Hwang PP (2020) Insulin-like growth factor 1 triggers salt secretion machinery in fish under acute salinity stress. J Endocrinol 246 277-288. Zhao J, Lupino K, Wilkins BJ, Qiu C, Liu J, Omura Y, Allred AL, McDonald C, Susztak K, Barish GD, Pei L (2018) Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease. Proc Natl Acad Sci USA 115 4910-4919. Zimmer AM, Perry SF (2022) Physiology and aquaculture: A review of ion and acid‐base regulation by the gills of fishes. Fish Fish 23 874-898. Zimmer AM, Shir-Mohammadi K, Kwong RWM, Perry SF (2020) Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (Danio rerio) using CRISPR/Cas9 gene editing. J Exp Biol 223 215111. Zimmer AM, Dymowska AK, Kumai Y, Goss GG, Perry SF, Kwong RWM (2018) Assessing the role of the acid-sensing ion channel ASIC4b in sodium uptake by larval zebrafish. Comp Biochem Physiol A Mol Integr Physiol 226 1-10. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88335 | - |
| dc.description.abstract | 離子調節器官的分子與生理功能分析在魚類生理學研究是至關重要的。硬骨魚的鰓富含離子細胞,是最主要之離子調節器官,負責運輸鹽類及排除體內多餘的酸和含氮廢物。由於成魚鰓的結構複雜,且鰓腔外有鰓蓋阻隔,過去並沒有任何方法可以直接、活體測定鰓的功能,而先前離子調節之活體功能分析多著重於皮膚表皮(胚胎、仔魚時期之離子調節器官),並推測皮膚表皮的離子調節機制與鰓相似。然而,在缺乏鰓上活體功能分析的情況下,這樣的推論或許並不合適。本研究旨在重新審視硬骨魚鰓上的離子調節機制,不僅希望在鰓上建立活體電生理測定平台來探討相關運輸機制,更預期透過單細胞轉錄體分析找到未知且重要的離子運輸蛋白或調控因子,進而活體鑑定其功能。
第一章主要將掃描式離子選擇電極技術(SIET)應用到斑馬魚的鰓上,建立活體電生理測定平台。藉由此技術,首次證明了鰓上排氫、排銨與鈉吸收的功能,也意外發現斑馬魚四對鰓的功能強弱不同。此外,搭配各類抑制劑處理,證實了離子細胞中氫離子幫浦(VHA)、鈉氫交換蛋白(NHE)、鈉氯共轉運蛋白(NCC)的功能,奠定了斑馬魚鰓上排酸與鈉吸收的路徑。第二章主要透過單細胞轉錄體分析,於斑馬魚和印度青鱂魚鰓上分別發掘到新的運輸蛋白(SLC26a11)和轉錄因子(ERRγ2)專一地表現在離子細胞上。在酸適應後之成年斑馬魚中,以vivo-morpholino弱化其SLC26a11的表現會降低其鰓的排氫能力,說明SLC26a11參與斑馬魚的酸適應機制。而透過morpholino弱化青鱂魚胚胎ERRγ2的表現會減弱其離子細胞吸收鈉、氯離子的能力,以及NCC1之表現,說明ERRγ2能藉由調控運輸蛋白的表現來協助青鱂魚在淡水的適應。第三章主要進一步探討第一章在斑馬魚四對鰓功能差異的發現。藉由表現量分析、細胞計數與外部型質測量,發現四對鰓存在離子調節的功能性分功,其第一、二對鰓主要負責排氫、排銨的功能,第三、四對鰓則主要負責鈉離子的吸收,而在面對酸逆境時,四對鰓與排酸相關的運輸蛋白表現皆會上升至一致,這說明四對鰓皆具有很好的可塑性,更暗示其存在不同的離子調節機制。綜合以上,本研究不僅為魚類生理學提供一個全新的平台去測定鰓的功能,更闡述了鰓上複雜的離子調節機制與深入探討的重要性。 | zh_TW |
| dc.description.abstract | Molecular and physiological analyses in ionoregulatory organs are essential for fish physiology study. Teleost gills rich in ionocytes are the most important ionoregulatory organs for salt transport and excretion of acid and nitrogenous waste. Owing to adult gills exhibiting a complex structure and the opercular covering outside of the gill cavity, there were no direct methods for in vivo functional assays in the gills. Previous in vivo evidence on ion-transporting function was mostly obtained in the skin (ionoregulatory organ in embryonic/larval stages), and it was speculated that adult gills and embryonic/larval skin share similar ionoregulatory mechanisms. However, without in vivo functional evidence from the gills, this presumption is too premature. The present study aims to revisit branchial ionoregulatory mechanisms in teleosts. Not just to establish an in vivo electrophysiological platform on the gills and investigate branchial functions, the present study expects to explore novel transporters or regulators essential for ion regulation using single-cell transcriptome analysis, and further identifies their functional roles.
In Chapter 1, the scanning ion-selective electrode technique (SIET) was applied to zebrafish gills for establishing a platform for in vivo electrophysiological detection. For the first time, the present study proved the functions of H+ excretion, NH4+ excretion, and Na+ uptake. By treating with different inhibitors, the functions of several transporters, vacuolar-type H+ ATPase (VHA), Na+/H+ exchanger (NHE), and Na+-Cl- co-transporter (NCC) were further proven, which consolidated the pathways for acid excretion and Na+ uptake in zebrafish gills. In Chapter2, a novel transporter (SLC26a11) and transcription factor (estrogen-related receptor γ2, ERRγ2) were explored using single-cell transcriptome analysis, which are specifically expressed in gill ionocytes of zebrafish and Indian medaka, respectively. Knockdown of SLC26a11 (by vivo-morpholino) decreased branchial H+ excretion in acid-acclimated zebrafish, suggesting that SLC26a11 is involved in acid acclimation mechanisms in adult zebrafish. Knockdown of ERRγ2 in medaka embryos reduced Na+ and Cl- uptake capacities of ionocytes, and also down-regulated the expression of NCC1, suggesting that ERRγ2 controls the expression of specific transporters for FW acclimation. In Chapter 3, the functional differences between four gill arches (discovered in Chapter 1) were further investigated. By expression analysis, cell counting, morphological measurement, the present study demonstrated a functional division between gill arches. The 1st – 2nd gill arches are major for H+ and NH4+ excretion, and the 3rd – 4th gill arches for Na+ uptake. When encountering acidifying environments, expression of the transporters related to acid excretion within four gill arches would be elevated and maintained at similar levels, which means the four gill arches possessing a high plasticity and also implies distinct ionoregulatory mechanisms. Taken together, the present study not only provides a new detecting platform for branchial functions in fish physiology, but also elucidates the complexity of ionoregulatory mechanisms in the gills and the importance of further investigation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:36:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:36:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii Contents v List of Tables vi List of Figures vii List of Abbreviations x Backgrounds 1 Purposes 9 Materials and Methods 10 Chapter 1 An in vivo electrophysiological approach to study ion regulation in teleost gills 20 Chapter 2 Novel regulatory factors essential for teleost ion regulation 35 Chapter 3 Functional division of ion regulation between teleost gill arches 47 Conclusions and Perspectives 59 References 61 Tables 75 Figures 81 Appendix 139 | - |
| dc.language.iso | en | - |
| dc.subject | 硬骨魚鰓 | zh_TW |
| dc.subject | 電生理 | zh_TW |
| dc.subject | 活體功能分析 | zh_TW |
| dc.subject | 離子調節 | zh_TW |
| dc.subject | 鰓的功能性分工 | zh_TW |
| dc.subject | teleost gills | en |
| dc.subject | in vivo functional assay | en |
| dc.subject | electrophysiology | en |
| dc.subject | ion regulation | en |
| dc.subject | functional division of the gills | en |
| dc.title | 重新審視硬骨魚鰓的離子調節機制:活體功能分析的新進展 | zh_TW |
| dc.title | Revisiting the ionoregulatory mechanisms in teleost gills: New progress in in vivo functional assays | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 黃鵬鵬 | zh_TW |
| dc.contributor.coadvisor | Pung-Pung Hwang | en |
| dc.contributor.oralexamcommittee | 曾庸哲;張清風;林惠真;兵藤晋 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Che Tseng;Ching-Fong Chang;Hui-Chen Lin;Susumu Hyodo | en |
| dc.subject.keyword | 硬骨魚鰓,離子調節,鰓的功能性分工,活體功能分析,電生理, | zh_TW |
| dc.subject.keyword | teleost gills,ion regulation,functional division of the gills,in vivo functional assay,electrophysiology, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202302040 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
