Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許永真zh_TW
dc.contributor.advisorYung-jen Hsuen
dc.contributor.author陳俊豪zh_TW
dc.contributor.authorJun-Hao Chenen
dc.date.accessioned2023-08-09T16:28:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-10-
dc.identifier.citationY. S. Abu-Mostafa and A. F. Atiya. Introduction to financial forecasting. Applied intelligence, 6:205–213, 1996.
P. Angelov and A. Sperduti. Challenges in deep learning. 2016.
S. W. Bigalow. The Major Candlesticks Signals. The Candlestick Forum LLC, 2014.
S. J. Brown, W. N. Goetzmann, and A. Kumar. The dow theory: William peter hamilton’s track record reconsidered. The Journal of Finance, 53(4):1311–1333, 1998.
R. Cervelló-Royo, F. Guijarro, and K. Michniuk. Stock market trading rule based on pattern recognition and technical analysis: Forecasting the djia index with intraday data. Expert systems with Applications, 42(14):5963–5975, 2015.
J.-H. Chen and Y.-C. Tsai. Encoding candlesticks as images for pattern classification using convolutional neural networks. Financial Innovation, 6(1):1–19, 2020.
J.-H. Chen and Y.-C. Tsai. Dynamic deep convolutional candlestick learner. arXiv preprint arXiv:2201.08669, 2022.
L. De Haan and J. Kakes. Momentum or contrarian investment strategies: evidence from dutch institutional investors. Journal of Banking & Finance, 35(9):2245–2251, 2011.
X. Ding, Y. Zhang, T. Liu, and J. Duan. Deep learning for event-driven stock prediction. Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
R. D. Edwards, J. Magee, and W. C. Bassetti. Technical analysis of stock trends. CRC press, 2018.
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587, 2014.
W. N. Goetzmann and M. Massa. Daily momentum and contrarian behavior of index fund investors. Journal of Financial and Quantitative Analysis, 37(3):375–389, 2002.
I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cambridge, 2016.
M. Grinblatt, S. Titman, and R. Wermers. Momentum investment strategies, portfolio performance, and herding: A study of mutual fund behavior. The American economic review, pages 1088–1105, 1995.
S. C. Hall. Predicting financial distress. Journal of Financial Service Professionals, 56(3):12, 2002.
B. M. Henrique, V. A. Sobreiro, and H. Kimura. Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124:226–251, 2019.
K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366, 1989.
B. Huang, Y. Huan, L. D. Xu, L. Zheng, and Z. Zou. Automated trading systems statistical and machine learning methods and hardware implementation: a survey. Enterprise Information Systems, 13(1):132–144, 2019.
Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu. Weighted dynamic time warping for time series classification. Pattern recognition, 44(9):2231–2240, 2011.
G. Jocher, A. Chaurasia, and J. Qiu. YOLO by Ultralytics, Jan. 2023.
T. Ko, V. Peddinti, D. Povey, and S. Khudanpur. Audio augmentation for speech recognition. In Sixteenth annual conference of the international speech communication association, 2015.
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.
Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
C.-H. L. Lee, A. Liu, and W.-S. Chen. Pattern discovery of fuzzy time series for financial prediction. IEEE Transactions on Knowledge and Data Engineering, 18(5):613–625, 2006.
K. Lee and G. Jo. Expert system for predicting stock market timing using a candlestick chart. Expert systems with applications, 16(4):357–364, 1999.
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2117–2125, 2017.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.
L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen. Deep learning for generic object detection: A survey. International Journal of Computer Vision, 128(2):261–318, 2020.
S. Nison. Japanese Candlestick Charting Techniques: A Contemporary Guide to the Ancient Investment Techniques of the Far East. New York Institute of Finance, New York, 2001.
L. Perez and J. Wang. The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 779–788, 2016.
J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
R. Rhea. The Dow Theory: An Explanation of its Development and An Attempt to Define its Usefulness as An Aid in Speculation. Fraser, Burlington, VT, 1993.
A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall. The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 35(2):401–449, 2021.
F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato. Machine learning for quantitative finance applications: A survey. Applied Sciences, 9(24):5574, 2019.
J. Schannep. Dow Theory for the 21st Century: Technical Indicators for Improving Your Investment Results. J. Wiley Sons, Hoboken, N.J., 2008.
S. Shen, H. Jiang, and T. Zhang. Stock market forecasting using machine learning algorithms. Department of Electrical Engineering, Stanford University, Stanford, CA, pages 1–5, 2012.
K. Simonyan and A. Zisserman. Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556, 2014.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.
A. Thakkar and K. Chaudhari. A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions. Expert Systems with Applications, 177:114800, 2021.
Y.-C. Tsai, F.-M. Szu, J.-H. Chen, and S. Y.-C. Chen. Financial vision-based reinforcement learning trading strategy. Analytics, 1(1):35–53, 2022.
G. S. Wagner and B. L. Matheny. Trading applications of Japanese candlestick charting, volume 38. John Wiley & Sons, 1993.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable bag-offreebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696, 2022.
Z. Wang and T. Oates. Imaging time-series to improve classification and imputation. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification.Frontiers of Computer Science, 10:96–112, 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88308-
dc.description.abstract近年來,機器學習技術在金融交易中的應用越來越普遍,尤其是深度學習模型。本文旨在通過基於視覺的深度學習技術,幫助技術分析交易員更好地識別和客製化技術交易特徵。我們提出了一個端到端的解決方案,使交易員能夠獨立標記數據並訓練模型,從而解決了傳統基於規則的交易特徵編碼的低效率問題,並且消除了與第三方溝通的需要。在本研究中,我們採用了GAF時間序列編碼方法,並使用了基於視覺的卷積神經網絡(CNN)進行訓練。我們證實了GAF時間序列編碼非常適合用於金融交易數據,即使在每個類別僅有100個樣本的極小數據集下,我們的訓練方法仍然能夠維持出色的訓練效果。此外,我們還將實驗從靜態分類擴展到動態物體檢測,並使用了YOLO version 1模型進行修改,訓練結果遠高於用作比較基準的KNN-DTW模型。最後,我們採用了著名的道氏理論,展示了從標記和檢測到策略結合和儀表板的完整流程。總的來說,我們展示了即使在非常少量的數據和低模型參數下,我們的方法仍然能夠維持高精度和穩定性,非常適合金融交易行業。zh_TW
dc.description.abstractIn recent years, machine learning techniques have been increasingly used in financial trading, especially the deep learning model (1; 16; 39). This paper aims to aid technical analysis traders in better identifying and customizing candlestick patterns using vision-based deep learning techniques. We propose an end-to-end solution that enables traders to label data and train models independently, thus resolving the efficiency issues of traditional rule-based trading pattern coding and eliminating the need for communication with third parties. In this study, we adopted the Gramian Angular Field (GAF) (46) time-series encoding method and trained it with a vision-based convolutional neural network (CNN) (23). We show that the GAF encoding method is highly suitable for financial trading data, and even with a tiny amount of data with only 100 samples per class, our training method could still maintain outstanding training advantages. In addition, we extended the experiment from static classification to dynamic object detection by modifying the YOLO version 1 (33) model, which display a superior performance than the typical KNN-DTW (36; 47) model used as a comparison baseline. Finally, we used the famous Dow theory (9; 15) to show the complete process from labeling and detection to strategy combination. Overall, we demonstrated that our method can maintain high accuracy and stability even with very little data, which is highly suitable for the financial trading industry.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:28:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:28:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
List of Figures ix
Abbreviations xiii
Chapter 1 Introduction 1
Chapter 2 Backgrounds 7
2.1 Candlestick Chart 7
2.2 Candlestick Patterns 9
2.3 The Dow Theory 10
Chapter 3 Preliminaries 13
3.1 Gramian Angular Field (GAF) Encoding 13
3.2 Image Recognition 15
3.2.1 Convolutional Neural Network (CNNs) 15
3.2.2 YOLO 15
Chapter 4 Research Plans 17
4.1 Targets 17
4.1.1 Candlestick Pattern Classification 18
4.1.2 Candlestick Pattern Object Detection 19
4.1.3 Implementation of Strategy 20
Chapter 5 Experiments 23
5.1 Data 23
5.2 Candlestick Pattern Classification 26
5.3 Candlestick Pattern Object Detection 27
5.4 Implementation of Strategy 31
Chapter 6 Results 33
6.1 Candlestick Pattern Classification 33
6.2 Candlestick Pattern Object Detection 39
6.3 Implementation of Strategy 41
Chapter 7 Future Works 47
Chapter 8 Conclusions 49
References 51
-
dc.language.isoen-
dc.subject深度學習zh_TW
dc.subject人工智慧zh_TW
dc.subject卷積神經網路zh_TW
dc.subject金融視覺zh_TW
dc.subject金融科技zh_TW
dc.subjectDeep Learningen
dc.subjectConvolutional Neural Networken
dc.subjectArtificial Intelligenceen
dc.subjectFinancial Visionen
dc.subjectFinTechen
dc.subjectYOLOen
dc.title使用卷積視覺模型進行交易特徵的分類與物件偵測zh_TW
dc.titleUsing Vision-based Convolutional Neural Networks for Candlestick Pattern Classification and Object Detectionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.coadvisor蔡芸琤zh_TW
dc.contributor.coadvisorYun-Cheng Tsaien
dc.contributor.oralexamcommittee陸裕豪;張智星;呂育道zh_TW
dc.contributor.oralexamcommitteeU-Hou Lok;Jyh-Shing Jang;Yuh-Dauh Lyuuen
dc.subject.keyword金融視覺,金融科技,深度學習,人工智慧,卷積神經網路,zh_TW
dc.subject.keywordFinancial Vision,FinTech,Deep Learning,Artificial Intelligence,Convolutional Neural Network,YOLO,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202301396-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2028-07-06-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved