請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88294
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉 | zh_TW |
dc.contributor.advisor | Shang-Lien Lo | en |
dc.contributor.author | 蔡涵涵 | zh_TW |
dc.contributor.author | Han-Han Tsai | en |
dc.date.accessioned | 2023-08-09T16:24:33Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-09 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-14 | - |
dc.identifier.citation | Alfantazi, A. M., & Moskalyk, R. R. (2003). Processing of indium: a review. Minerals Engineering, 16(8), 687-694.
Amato, A., & Beolchini, F. (2019). End‐of‐life CIGS photovoltaic panel: A source of secondary indium and gallium. Progress in Photovoltaics: Research and Applications, 27(3), 229-236. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pip.3082?download=true Ananthakumar, S., Kumar, J. R., & Babu, S. M. (2019). Third-Generation Solar Cells: Concept, Materials and Performance - An Overview. In S. Rajendran, M. Naushad, K. Raju, & R. Boukherroub (Eds.), Emerging Nanostructured Materials for Energy and Environmental Science (pp. 305-339). Springer International Publishing. https://doi.org/10.1007/978-3-030-04474-9_7 Askari, M., Mirzaei Mahmoud Abadi, V., & Mirhabibi, M. (2015). Types of Solar Cells and Application. American Journal of Optics and Photonics, 3, 2015. https://doi.org/10.11648/j.ajop.20150305.17 Bouchama, I., Djessas, K., Djahli, F., & Bouloufa, A. (2011). Simulation approach for studying the performances of original superstrate CIGS thin films solar cells. Thin Solid Films, 519(21), 7280-7283. https://doi.org/https://doi.org/10.1016/j.tsf.2011.01.182 Boyd, R. H. (1985). Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer, 26(3), 323-347. https://doi.org/https://doi.org/10.1016/0032-3861(85)90192-2 bp. (2022). bp Statistical Review of World Energy. British Petroleum. Bremaud, D., Rudmann, D., Bilger, G., Zogg, H., & Tiwari, A. N. (2005, 3-7 Jan. 2005). Towards the development of flexible CIGS solar cells on polymer films with efficiency exceeding 15%. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., Chelvanathan, P., Hossain, M. I., & Amin, N. (2010). Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Current Applied Physics, 10(3, Supplement), S387-S391. https://doi.org/https://doi.org/10.1016/j.cap.2010.02.018 Chopra, K. L., Paulson, P. D., & Dutta, V. (2004). Thin-film solar cells: an overview [https://doi.org/10.1002/pip.541]. Progress in Photovoltaics: Research and Applications, 12(2-3), 69-92. https://doi.org/https://doi.org/10.1002/pip.541 Cui, J., & Forssberg, E. (2003). Mechanical recycling of waste electric and electronic equipment: a review. Journal of hazardous materials, 99(3), 243-263. https://doi.org/https://doi.org/10.1016/S0304-3894(03)00061-X Cyrs, W. D., Avens, H. J., Capshaw, Z. A., Kingsbury, R. A., Sahmel, J., & Tvermoes, B. E. (2014). Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels. Energy Policy, 68, 524-533. https://doi.org/https://doi.org/10.1016/j.enpol.2014.01.025 Davis, G., McKinney, J., Broadhurst, M., & Roth, S. (1978). Electric‐field‐induced phase changes in poly (vinylidene fluoride). Journal of Applied Physics, 49(10), 4998-5002. Efaz, E. T., Rhaman, D., Imam, S. A., Bashar, K., Kabir, F., Mourtaza, E., Syed, N., & Mozahid, F. (2021). A review of primary technologies of thin-film solar cells. EPA. (2020). Waste solar photovoltaic panel recycling, cleaning and disposal information system. https://pvis.epa.gov.tw/pvis/info/Plan EPA. (2023). Amounts of Municipal Waste Generated in the Nation. Retrieved 3/30 from https://data.epa.gov.tw/dataset/detail/STAT_P_126 Erdey, L., Gal, S., & Liptay, G. (1964). Thermoanalytical properties of analytical-grade reagents: ammonium salts. Talanta, 11(6), 913-940. Goffard, J., Cattoni, A., Mollica, F., Jubault, M., Colin, C., Guillemoles, J.-F., Lincot, D., Naghavi, N., & Collin, S. (2015). NANOSTRUCTURED BACK MIRROR FOR ULTRA-THIN CIGS SOLAR CELL. Gu, S., Fu, B., Dodbiba, G., Fujita, T., & Fang, B. (2018). Promising Approach for Recycling of Spent CIGS Targets by Combining Electrochemical Techniques with Dehydration and Distillation. ACS Sustainable Chemistry & Engineering, 6(5), 6950-6956. https://doi.org/10.1021/acssuschemeng.8b00787 Gulkowski, S., Zdyb, A., & Dragan, P. (2019). Experimental Efficiency Analysis of a Photovoltaic System with Different Module Technologies under Temperate Climate Conditions. Applied Sciences, 9(1), 141. https://www.mdpi.com/2076-3417/9/1/141 Gustafsson, A. M., Björefors, F., Steenari, B.-M., & Ekberg, C. (2015a). Investigation of an electrochemical method for separation of copper, indium, and gallium from pretreated CIGS solar cell waste materials. The Scientific World Journal, 2015. Gustafsson, A. M., Foreman, M. R. S., & Ekberg, C. (2014). Recycling of high purity selenium from CIGS solar cell waste materials. Waste Management, 34(10), 1775-1782. https://www.sciencedirect.com/science/article/pii/S0956053X14000063?via%3Dihub Gustafsson, A. M., Steenari, B.-M., & Ekberg, C. (2015b). Evaluation of high-temperature chlorination as a process for separation of copper, indium and gallium from CIGS solar cell waste materials. Separation Science and Technology, 50(1), 1-9. https://www.tandfonline.com/doi/abs/10.1080/01496395.2014.949350 Gustafsson, A. M., Steenari, B.-M., & Ekberg, C. (2015c). Recycling of CIGS solar cell waste materials: separation of copper, indium, and gallium by high-temperature chlorination reaction with ammonium chloride. Separation Science and Technology, 50(15), 2415-2425. https://www.tandfonline.com/doi/abs/10.1080/01496395.2015.1053569 Hsiang, H.-I., Chiang, C.-Y., Hsu, W.-H., Chen, W.-S., & Chang, J.-E. (2016). Leaching and re-synthesis of CIGS nanocrystallites from spent CIGS targets. Advanced Powder Technology, 27(3), 914-920. https://www.sciencedirect.com/science/article/pii/S0921883116000601 Hu, D., Ma, B., Li, X., Lv, Y., Chen, Y., & Wang, C. (2022). Innovative and sustainable separation and recovery of valuable metals in spent CIGS materials. Journal of Cleaner Production, 350, 131426. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131426 IEA. (2016). End-of-Life Solar PV Panels. IEA. (2023a). Snapshot of Global PV Markets. International Energy Agency. IEA. (2023b). TRENDS IN PHOTOVOLTAIC APPLICATIONS. ISE. (2023). PHOTOVOLTAICS REPORT (I. Fraunhofer Institute for Solar Energy Systems, Ed.). Jung, S., Ahn, S., Yun, J. H., Gwak, J., Kim, D., & Yoon, K. (2010). Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique. Current Applied Physics, 10(4), 990-996. https://doi.org/https://doi.org/10.1016/j.cap.2009.11.082 Karthikeyan, V., Vijayachamundeeswari, S. P., Kalainathan, S., Ahsan, N., Thirumalaisamy, L., & Okada, Y. (2022). A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Solar Energy, 234, 81-102. https://doi.org/10.1016/j.solener.2022.01.070 Kashyap, V., & Taylor, P. (2022). Extraction and recovery of zinc and indium from residue rich in zinc ferrite. Minerals Engineering, 176, 107364. https://doi.org/https://doi.org/10.1016/j.mineng.2021.107364 Kim, K., Kim, J., Gang, M. G., Kim, S.-H., Song, S., Cho, Y., Shin, D., Eo, Y.-J., Jeong, I., Ahn, S. K., Cho, A., Kim, J., Yoon, S., Choi, P.-P., Jo, W., Kim, J. H., Gwak, J., & Yun, J. H. (2019). A simple and robust route toward flexible CIGS photovoltaic devices on polymer substrates: Atomic level microstructural analysis and local opto-electronic investigation. Solar Energy Materials and Solar Cells, 195, 280-290. https://doi.org/https://doi.org/10.1016/j.solmat.2019.03.008 Kwak, J. I., Nam, S.-H., Kim, L., & An, Y.-J. (2020). Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of hazardous materials, 392, 122297. Kylner, A. (1999). The chemical bath deposited CdS/Cu (In, Ga) Se2 interface as revealed by X‐ray photoelectron spectroscopy. Journal of the Electrochemical Society, 146(5), 1816. Li, X., Ma, B., Hu, D., Zhao, Q., Chen, Y., & Wang, C. (2022). Efficient separation and purification of indium and gallium in spent Copper indium gallium diselenide (CIGS). Journal of Cleaner Production, 339, 130658. https://www.sciencedirect.com/science/article/pii/S0959652622002980 Lim, W. C., Lee, J., Won, S., & Lee, Y. (2012). Characterization of Cu (InGa) Se2 (CIGS) thin films in solar cell devices. Surface and interface analysis, 44(6), 724-728. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sia.4820?download=true Liu, F.-W., Cheng, T.-M., Chen, Y.-J., Yueh, K.-C., Tang, S.-Y., Wang, K., Wu, C.-L., Tsai, H.-S., Yu, Y.-J., & Lai, C.-H. (2022). High-yield recycling and recovery of copper, indium, and gallium from waste copper indium gallium selenide thin-film solar panels. Solar Energy Materials and Solar Cells, 241, 111691. Loferski, J. J. (1993). The first forty years: A brief history of the modern photovoltaic age. Progress in Photovoltaics: Research and Applications, 1(1), 67-78. https://doi.org/https://doi.org/10.1002/pip.4670010109 Lu, F., Xiao, T., Lin, J., Ning, Z., Long, Q., Xiao, L., Huang, F., Wang, W., Xiao, Q., Lan, X., & Chen, H. (2017). Resources and extraction of gallium: A review. Hydrometallurgy, 174, 105-115. https://doi.org/https://doi.org/10.1016/j.hydromet.2017.10.010 Lv, Y., Xing, P., Ma, B., Liu, B., Wang, C., Zhang, Y., & Zhang, W. (2019). Separation and recovery of valuable elements from spent CIGS materials. ACS Sustainable Chemistry & Engineering, 7(24), 19816-19823. Ma, X., Liu, D., Yang, L., Zuo, S., & Zhou, M. (2013). Molybdenum (Mo) back contacts for CIGS solar cells. Eighth International Conference on Thin Film Physics and Applications, Majewski, P., Al-shammari, W., Dudley, M., Jit, J., Lee, S.-H., Myoung-Kug, K., & Sung-Jim, K. (2021). Recycling of solar PV panels- product stewardship and regulatory approaches. Energy Policy, 149, 112062. https://doi.org/https://doi.org/10.1016/j.enpol.2020.112062 Mathew, X., Enriquez, J. P., Romeo, A., & Tiwari, A. N. (2004). CdTe/CdS solar cells on flexible substrates. Solar Energy, 77(6), 831-838. https://doi.org/https://doi.org/10.1016/j.solener.2004.06.020 Matsui, T., Bidiville, A., Maejima, K., Sai, H., Koida, T., Suezaki, T., Matsumoto, M., Saito, K., Yoshida, I., & Kondo, M. (2015). High-efficiency amorphous silicon solar cells: Impact of deposition rate on metastability. Applied Physics Letters, 106(5), 053901. https://doi.org/10.1063/1.4907001 Mercer, C. N. (2015). Indium: bringing liquid-crystal displays into focus [Report](2015-3012). (Fact Sheet, Issue. U. S. G. Survey. http://pubs.er.usgs.gov/publication/fs20153012 Morales-Acevedo, A. (2009). Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells. Solar Energy Materials and Solar Cells, 93(1), 41-44. https://doi.org/https://doi.org/10.1016/j.solmat.2008.02.015 Moskalyk, R. R. (2003). Gallium: the backbone of the electronics industry. Minerals Engineering, 16(10), 921-929. https://doi.org/https://doi.org/10.1016/j.mineng.2003.08.003 Mughal, M. A., Engelken, R., & Sharma, R. (2015). Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells. Solar Energy, 120, 131-146. https://doi.org/https://doi.org/10.1016/j.solener.2015.07.028 Muñoz-García, M. A., Marin, O., Alonso-García, M. C., & Chenlo, F. (2012). Characterization of thin film PV modules under standard test conditions: Results of indoor and outdoor measurements and the effects of sunlight exposure. Solar Energy, 86(10), 3049-3056. https://doi.org/https://doi.org/10.1016/j.solener.2012.07.015 Muteri, V., Cellura, Curto, D., Franzitta, Longo, S., Mistretta, & Parisi, M. L. (2020). Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies, 13, 252. https://doi.org/10.3390/en13010252 Nain, P., & Kumar, A. (2020). Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Management, 114, 351-361. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., & Sugimoto, H. (2019). Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9(6), 1863-1867. https://doi.org/10.1109/JPHOTOV.2019.2937218 Orgassa, K., Schock, H. W., & Werner, J. H. (2003). Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells. Thin Solid Films, 431-432, 387-391. https://doi.org/https://doi.org/10.1016/S0040-6090(03)00257-8 Powalla, M., Witte, W., Jackson, P., Paetel, S., Lotter, E., Wuerz, R., Kessler, F., Tschamber, C., Hempel, W., Hariskos, D., Menner, R., Bauer, A., Spiering, S., Ahlswede, E., Friedlmeier, T. M., Blázquez-Sánchez, D., Klugius, I., & Wischmann, W. (2014). CIGS Cells and Modules With High Efficiency on Glass and Flexible Substrates. IEEE Journal of Photovoltaics, 4(1), 440-446. https://doi.org/10.1109/JPHOTOV.2013.2280468 Rocchetti, L., & Beolchini, F. (2015). Recovery of valuable materials from end-of-life thin-film photovoltaic panels: environmental impact assessment of different management options. Journal of Cleaner Production, 89, 59-64. Romero, M., & Steinfeld, A. (2012). Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science, 5(11), 9234-9245. Rudmann, D., Brémaud, D., Da Cunha, A., Bilger, G., Strohm, A., Kaelin, M., Zogg, H., & Tiwari, A. (2005). Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films, 480, 55-60. Saga, T. (2010). Advances in crystalline silicon solar cell technology for industrial mass production. npg asia materials, 2(3), 96-102. https://www.nature.com/articles/am201082.pdf Sai, H., Matsui, T., & Matsubara, K. (2016). Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell. Applied Physics Letters, 109(18), 183506. https://doi.org/10.1063/1.4966996 Salhi, B. (2022). The Photovoltaic Cell Based on CIGS: Principles and Technologies. Materials, 15(5), 1908. https://mdpi-res.com/d_attachment/materials/materials-15-01908/article_deploy/materials-15-01908.pdf?version=1646368223 Schanche, J.-S. (2003). Microwave synthesis solutions from personal chemistry. Molecular diversity, 7(2-4), 293. Sharma, S., Jain, K. K., & Sharma, A. (2015). Solar cells: in research and applications—a review. Materials Sciences and Applications, 6(12), 1145. Sim, H., Lee, J., Cho, S., Cho, E.-S., & Kwon, S. J. (2015). A study on the band structure of ZnO/CdS heterojunction for CIGS solar-cell application. JSTS: Journal of Semiconductor Technology and Science, 15(2), 267-275. Smith, K. S., & Huyck, H. L. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. The environmental geochemistry of mineral deposits, 6, 29-70. Taraba, M., Adamec, J., Danko, M., Drgona, P., & Urica, T. (2019). Properties measurement of the thin film solar panels under adverse weather conditions. Transportation Research Procedia, 40, 535-540. https://doi.org/https://doi.org/10.1016/j.trpro.2019.07.077 Theocharis, M., Tsakiridis, P. E., Kousi, P., Hatzikioseyian, A., Zarkadas, I., Remoundaki, E., & Lyberatos, G. (2021). Hydrometallurgical Treatment for the Extraction and Separation of Indium and Gallium from End-of-Life CIGS Photovoltaic Panels. Materials Proceedings, 5(1), 51. Thirugnanasambandam, M., Iniyan, S., & Goic, R. (2010). A review of solar thermal technologies. Renewable and Sustainable Energy Reviews, 14(1), 312-322. https://doi.org/https://doi.org/10.1016/j.rser.2009.07.014 Thuery, J. (1992). Microwaves: industrial, scientific, and medical applications. Artech House Microwave Library. USGS. (2022). Final List of Critical Minerals. Wada, T., Kohara, N., Nishiwaki, S., & Negami, T. (2001). Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells. Thin Solid Films, 387(1-2), 118-122. Ward, A. (2016). Dielectric materials for advanced applications. https://doi.org/10.13140/RG.2.1.3481.5600 Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global status of recycling waste solar panels: A review. Waste Management, 75, 450-458. https://doi.org/https://doi.org/10.1016/j.wasman.2018.01.036 Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., & Yamamoto, K. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5), 17032. https://doi.org/10.1038/nenergy.2017.32 Zimmermann, Y.-S., Niewersch, C., Lenz, M., Kül, Z. h. Z., Corvini, P. F.-X., Schäffer, A., & Wintgens, T. (2014). Recycling of indium from CIGS photovoltaic cells: Potential of combining acid-resistant nanofiltration with liquid–liquid extraction. Environmental science & technology, 48(22), 13412-13418. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88294 | - |
dc.description.abstract | 有鑒於全球暖化與環保意識高漲,裝設再生能源儼然成為改善氣候變遷的重要目標,太陽能因此成為各國推動綠色能源的主力,使得全球太陽能板裝置容量快速增加。然而,隨之而來的廢棄太陽能板處置將是一大問題,根據國際能源總署預估,2030 年時全球太陽能板廢棄物可能達到 800 萬噸,到 2050 年時可能達 到 7800 萬噸,可見發展太陽能板廢棄回收再利用有其重要性。
在現今的太陽能市場當中,晶矽太陽能電池仍是主流,其餘市場則由薄膜太 陽能電池佔據;薄膜銅銦鎵硒 (CIGS) 太陽能板中的光吸收層由銅、銦、鎵、硒 四種元素所組成,其中金屬鎵與金屬銦已被歐盟訂定為關鍵原材料,主要用於半 導體與液晶顯示器的製造。由於兩者在地殼存量皆稀少,且資源集中在少數地 區,所以如果能從廢棄太陽能板當中回收鎵、銦再供給製造產業,將能減低廢棄 物所帶來的環境衝擊,也能確保太陽能板供應鏈的永續。 本研究使用微波熱裂解等方式進行銅銦鎵硒太陽能板的前處理,以有效去除 太陽能板中的有機質,以利後續回收流程進行。研究結果顯示,在微波功率 250 瓦、40 分鐘的操作條件下,CIGS 太陽能板的失重率及可達 48.1%,經過磨碎與 篩分後,可將金屬鎵的回收率從 2.70% 提升至 65.4%。 在鎵回收實驗中,高溫氯化反應在 400°C 下,即可達到 97.97% 的回收率;然而,考量到回收產物純度與反應參數最佳化後,最適合的反應條件是 300°C、氮氣流量 150 mL/min.、氯化氨加藥量重量比 1:3,反應時間 2 小時,其回收率為65.4%,回收產物中鎵的金屬佔比為 98.0% 。在銦回收實驗中,高溫氯化反應在560°C 下,則可從去鎵殘渣中回收 93.85% 的銦;然而,考量回收產物純度後,在氮氣流量 150 mL/min.、氯化氨加藥量重量比 1:3,反應時間 2 小時的條件下,最適合的反應溫度是 400°C,此時銦回收率為 72.40%,回收產物中銦的金屬佔比為58.0% 。 | zh_TW |
dc.description.abstract | Increasing concern over global warming and depletion of fossil fuels have led to a concentrated effort to develop alternative energy sources, such as solar energy. However, proper management of end-of-life solar panels is imperative, highlighting the need for effective recycling and disposal methods.
Gallium and indium are globally recognized as critical materials due to their scarcity within the Earth’s crust and the difficulty in refining. Major applications of gallium and indium are in the semiconductor industry, where they are used to produce the photovoltaic (PV) layer for copper indium gallium selenide (CIGS) solar cells and other electronic components. With the yearly installed PV capacity significantly increasing in recent years, the issue of solar panel waste has become urgent. Recycling critical materials from waste CIGS solar panels can not only reduce environmental harm, but also ensure a sustainable supply chain. In this study, a recycling process was developed for waste CIGS solar panels. The process includes two main steps: microwave-induced pyrolysis as pretreatment and a pyrometallurgical chlorination process to recycle gallium and indium. The study showed that a weight loss percentage of 48.1 wt% could be achieved at a power level of 250 W for 40 minutes during the microwave-induced pyrolysis process. The overall pretreatment process significantly enhanced the gallium recovery rate from 2.70 to 65.4% in the chlorination process. In the gallium recycling process, an significant gallium recovery rate of 97.97% could be achieved at 400°C during the pyrometallurgical chlorination process. Through optimization studies, an operating temperature of 300°C was identified as the optimal condition for gallium recovery, enabling the production of high-purity gallium products. In the indium recycling process, 93.85% of the indium could be recovered from the gallium separation residue at 560°C during the pyrometallurgical chlorination process. Through optimization, an operating temperature of 400°C was identified as the optimal condition for indium recovery, allowing the production of high-purity indium products. These serial processes demonstrate a direct recycling of valuable materials from waste CIGS solar panels, showing promise for efficient and sustainable resource recovery. Additionally, this is the first research using a pyrometallurgical recycling process to recycle critical raw materials from CIGS solar panels. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:24:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-09T16:24:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Objectives 5 Chapter 2 Literature Review 7 2.1 Solar Cell 7 2.2 Classification and Development of Different Types of Solar Cell 9 2.2.1 First Generation Solar Cells 9 2.2.2 Second Generation Solar Cells 10 2.2.3 Third Generation Solar Cells 11 2.3 CIGS Solar Cell 13 2.3.1 The Window Layer 13 2.3.2 The Buffer Layer 14 2.3.3 The Absorber in CIGS 14 2.3.4 The Back Contact 15 2.3.5 The Substrate 16 2.4 Recycling of CIGS Solar Panel 17 2.4.1 Status of Waste Solar Panel 17 2.4.2 Critical Raw Materials in CIGS Solar Panel 18 2.4.3 Hydrometallurgy separation and recovery of valuable components 19 2.4.4 Pyrometallurgy separation and recovery of valuable components 22 2.4.5 Electrometallurgy separation and recovery of valuable components 24 2.5 Pretreatment Process of CIGS Solar Panel 25 2.6 Microwave-induced Pyrolysis 27 2.6.1 Mechanisms of Microwave Irradiation 27 2.6.2 Advantages of Microwave Pyrolysis 28 2.7 Element Composition of CIGS Solar Materials 30 Chapter 3 Materials and Methods 32 3.1 Research Flowchart 32 3.2 Materials 33 3.3 Methods 35 3.3.1 Pretreatment of CIGS Solar Panel 35 3.3.2 Recycling of Gallium 35 3.3.3 Recycling of Indium 37 3.4 Instruments 38 3.4.1 Microwave pyrolysis equipment 38 3.4.2 Tube Furnace 40 3.4.3 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 41 3.4.4 Microwave Assisted Acid Digestion System 43 3.4.5 Thermogravimetric Analysis (TGA) 44 3.4.6 Scanning Electron Microscope (SEM) Analysis 45 3.4.7 X-ray Diffractometer (XRD) Analysis 45 Chapter 4 Results and Discussion 48 4.1 Pretreatment 48 4.1.1 Mechanical separation 48 4.1.2 Thermal Gravimetric Analysis 49 4.1.3 Microwave-induced pyrolysis 50 4.1.4 Characterization of the pretreated samples 57 4.2 Recycling of Gallium 64 4.2.1 Optimization of the Gallium Recycling Process 64 4.2.2 The Effects of Pretreatment Process 71 4.2.3 Analysis of Residue from Gallium Separation 72 4.3 Recycling of Indium 76 4.3.1 Optimization of the Indium Recycling Process 76 4.3.2 Analysis of Residue from Indium Separation 80 Chapter 5 Conclusions and Recommendations 86 5.1 Conclusions 86 5.2 Recommendations 88 References 89 Appendix A 96 Appendix B 98 | - |
dc.language.iso | en | - |
dc.title | 以高溫氯化法從廢棄銅銦鎵硒太陽能板中回收金屬 鎵、銦 | zh_TW |
dc.title | Recycling of Gallium and Indium from Waste CIGS Solar Panel with Pyrometallurgical Chlorination Process | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃于峯;郭繼汾;李育輯 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Fong Huang;Jeff Kuo;Yu-Ji Li | en |
dc.subject.keyword | 回收技術,銅銦鎵硒太陽能板,微波熱裂解,高溫氯化法,火法冶金, | zh_TW |
dc.subject.keyword | Recycling,Gallium,Indium,waste CIGS solar panels,Microwave-induced Pyrolysis,Chlorination,Pyrometallurgy, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU202301561 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-17 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。