Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88283
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一薰zh_TW
dc.contributor.advisorI-Hsuan Hongen
dc.contributor.author潘乃綸zh_TW
dc.contributor.authorNai-Lun Panen
dc.date.accessioned2023-08-09T16:21:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationAdcock, T. A., Draper, S., & Nishino, T. (2015). Marine energy generation–a review of hydrodynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 229(7), 755-771.
Baidowi, A., & Koenhardono, E. S. (2021, June). Harnesssing Technology Maintenance Process of Tidal Energy Converter. In Journal of Physics: Conference Series (Vol. 1908, No. 1, p. 012034). IOP Publishing.
Behera, M. R., & Tkalich, P. (2014). Assessment of kinetic tidal energy resources using SELFE. The International Journal of Ocean and Climate Systems, 5(3), 141-149.
Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization (Vol. 28). Princeton university press.
Brutto, O. A. L., Guillou, S. S., Thiébot, J., & Gualous, H. (2016). Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio. Renewable energy, 99, 347-359.
Derakhshan, S., Ashoori, M., & Salemi, A. (2017). Experimental and numerical study of a vertical axis tidal turbine performance. Ocean Engineering, 137, 59-67.
Everest, F. A., & Pohlmann, K. C. (2022). Master handbook of acoustics. McGraw-Hill Education.
Gaurier, B., Carlier, C., Germain, G., Pinon, G., & Rivoalen, E. (2020). Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance. Renewable Energy, 148, 1150-1164.
Hastie, G. D., Russell, D. J., Lepper, P., Elliott, J., Wilson, B., Benjamins, S., & Thompson, D. (2018). Harbour seals avoid tidal turbine noise: Implications for collision risk. Journal of Applied Ecology, 55(2), 684-693.
Hsu, P. C., Lee, H. J., & Lu, C. Y. (2021). Impacts of the Kuroshio and Tidal Currents on the
Hydrological Characteristics of Yilan Bay, Northeastern Taiwan. Remote Sensing, 13(21), 4340
Lauren Ross (2019). Harnessing the Power of the Ocean Currents.
Lloyd, T. P., Turnock, S. R., & Humphrey, V. F. (2011, January). Modelling techniques for underwater noise generated by tidal turbines in shallow waters. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 44373, pp. 777-785).
Lloyd, T. P., Humphrey, V. F., & Turnock, S. R. (2011). Noise modelling of tidal turbine arrays for environmental impact assessment.
Lossent, J., Lejart, M., Folegot, T., Clorennec, D., Di Iorio, L., & Gervaise, C. (2018). Underwater operational noise level emitted by a tidal current turbine and its potential impact on marine fauna. Marine Pollution Bulletin, 131, 323-334.
Malinka, C. E., Gillespie, D. M., Macaulay, J. D., Joy, R., & Sparling, C. E. (2018). First in situ passive monitoring for marine mammals during operation of a tidal turbine in Ramsey Sound, Wales. Marine Ecology Progress Series, 590, 247-266.
Melikoglu, M. (2018). Current status and future of ocean energy sources: A global review. Ocean Engineering, 148, 563-573.
Munaweera Thanthirige, T. R., Goggins, J., Flanagan, M., & Finnegan, W. (2023). A State-of-the-Art Review of Structural Testing of Tidal Turbine Blades. Energies, 16(10), 4061.
Nuernberg, M., & Tao, L. (2018). Experimental study of wake characteristics in tidal turbine arrays. Renewable Energy, 127, 168-181.
Orhan, K., & Mayerle, R. (2017). Assessment of the tidal stream power potential and impacts of tidal current turbines in the Strait of Larantuka, Indonesia. Energy Procedia, 125, 230-239.
Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(5), 571-587.
Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222-234.
Roc, T., Greaves, D., Thyng, K. M., & Conley, D. C. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95-111.
Rudi Nurdiansyah., I-Hsuan Hong., Jack C.P. Su. (2023) Marine Current Turbines Installation Problem against Parameters Ambiguity. Computers & Industrial Engineering.
Sinha, A., Malo, P., & Deb, K. (2017). A review on bilevel optimization: From classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation, 22(2), 276-295.
Schmitt, P., Elsaesser, B., Coffin, M., Hood, J., & Starzmann, R. (2015, September). Field testing a full-scale tidal turbine part 3: Acoustic characteristics. In European Wave and Tidal Energy Conference 2015.
Segura, E., Morales, R., Somolinos, J. A., & López, A. (2017). Techno-economic challenges of tidal energy conversion systems: Current status and trends. Renewable and Sustainable Energy Reviews, 77, 536-550.
Ward, S. L., Green, J. M., & Pelling, H. E. (2012). Tides, sea-level rise and marine energy extraction on the European shelf. Ocean Dynamics, 62, 1153-1167.
Zhou, Z., Benbouzid, M., Charpentier, J. F., Scuiller, F., & Tang, T. (2017). Developments in large marine current turbine technologies–A review. Renewable and Sustainable Energy Reviews, 71, 852-858.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88283-
dc.description.abstract海洋發電機的設置問題主要目的是在通過與電網連接的電纜最佳化發電效率。同時確保環境永續性,包括渦輪機的噪音及海流能量的耗散等因素。為了處理模糊參數(ambiguous parameters),我們採用貪婪啟發式演算法(Greedy Heuristic Algorithm, GHA)應用於建立在雙層最佳化模型(Bi-level optimization model)上的海洋發電機的設置問題(BO-MCTIP)的所有場景中,其中上層模型決定海洋渦輪機的設置個數及佈局,下層模型決定與電網連結的拓樸結構。我們透過貪婪啟發式演算法得出的解,使用遺憾的大中取大的準則(Maximum relative regret decision rule)得到穩健解。最後將模型應用在台灣東南部的黑潮發電測試場作為個案研究。zh_TW
dc.description.abstractThe optimization of tidal turbine layout is to optimize the power efficiency with cable connection to the power grid while ensuring environmental sustainability including the factors of acoustic noise emissions and marine energy dissipation. To deal with ambiguous parameters, we employ the Greedy Heuristic Algorithm (GHA) to all scenarios of the proposed bi-level optimization model for solving the Marine Current Turbine Installation Problem (BO-MCTIP), where the upper level determines the installation layout with sustainability consideration and the lower level decides the connection topology to the power grid. We use the min-max relative regret decision rule to obtain the robust solution through the BO-MCTIP solutions. We apply this model to a numerical analysis conducted in the marine farm located in the southeastern region of Taiwan.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:21:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:21:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Content iii
List of Figures iv
List of Tables vi
1 Introduction 1
2 BO-MCTIP model 8
2.1 The analytical acoustic noise emissions 10
2.2 The analytical marine energy dissipation model 12
2.3 The mathematical model for BO-MCTIP 13
2.3.1 Upper-level model 14
2.3.2 Lower-level model 16
3. Solution Approach 17
4. Numerical analysis 24
4.1 Site and MCT Description 24
4.2 Input Data and ambiguous parameters 26
4.3 Results 28
5. Conclusions 34
References 36
-
dc.language.isoen-
dc.subject浮游式渦輪機zh_TW
dc.subject環境永續zh_TW
dc.subject設置問題zh_TW
dc.subject雙層最佳化模型zh_TW
dc.subjectEnvironmental sustainabilityen
dc.subjectLayout problemen
dc.subjectFloating tidal turbineen
dc.subjectBi-level optimizationen
dc.title確保環境永續性下的穩健最佳化浮游式渦輪機設置zh_TW
dc.titleRobust Optimization of Floating Marine Turbines Layout with Environmental Sustainabilityen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇哲平;郭振華;黃奎隆zh_TW
dc.contributor.oralexamcommitteeZhe-Ping Su ;Jen-Hwa Guo;Kwei-Long Huangen
dc.subject.keyword環境永續,設置問題,浮游式渦輪機,雙層最佳化模型,zh_TW
dc.subject.keywordEnvironmental sustainability,Layout problem,Floating tidal turbine,Bi-level optimization,en
dc.relation.page39-
dc.identifier.doi10.6342/NTU202302015-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2028-07-24-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved