Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88265Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳慧文 | zh_TW |
| dc.contributor.advisor | Hui-Wen Chen | en |
| dc.contributor.author | 邱軍達 | zh_TW |
| dc.contributor.author | Chun-Ta Chiu | en |
| dc.date.accessioned | 2023-08-09T16:16:46Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-24 | - |
| dc.identifier.citation | Ahearn, J.M., Fischer, M.B., Croix, D., Goerg, S., Ma, M., Xia, J., Zhou, X., Howard, R.G., Rothstein, T.L., Carroll, M.C., 1996. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4, 251-262.
Allen, C.D., Cyster, J.G., 2008. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 20, 14-25. Alsenz, J., Becherer, J.D., Nilsson, B., Lambris, J.D., 1990. Structural and functional analysis of C3 using monoclonal antibodies. Curr Top Microbiol Immunol 153, 235-248. Anand, P., Stahel, V.P., 2021. Correction to: The safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg 15, 22. Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O'Connell, A.M., Simons, D., Blomquist, P.B., Zaidi, A., Nash, S., Iwani Binti Abdul Aziz, N., Thelwall, S., Dabrera, G., Myers, R., Amirthalingam, G., Gharbia, S., Barrett, J.C., Elson, R., Ladhani, S.N., Ferguson, N., Zambon, M., Campbell, C.N.J., Brown, K., Hopkins, S., Chand, M., Ramsay, M., Lopez Bernal, J., 2022. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 386, 1532-1546. Ansel, K.M., Ngo, V.N., Hyman, P.L., Luther, S.A., Förster, R., Sedgwick, J.D., Browning, J.L., Lipp, M., Cyster, J.G., 2000. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309-314. Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael, N., Creech, C.B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P., Janes, H., Follmann, D., Marovich, M., Mascola, J., Polakowski, L., Ledgerwood, J., Graham, B.S., Bennett, H., Pajon, R., Knightly, C., Leav, B., Deng, W., Zhou, H., Han, S., Ivarsson, M., Miller, J., Zaks, T., 2021. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 384, 403-416. Bahl, K., Senn, J.J., Yuzhakov, O., Bulychev, A., Brito, L.A., Hassett, K.J., Laska, M.E., Smith, M., Almarsson, Ö., Thompson, J., Ribeiro, A.M., Watson, M., Zaks, T., Ciaramella, G., 2022. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol Ther 30, 2874. Bai, Z., Cao, Y., Liu, W., Li, J., 2021. The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses 13. Bajénoff, M., Germain, R.N., 2009. B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells. Blood 114, 4989-4997. Banchereau, J., Steinman, R.M., 1998. Dendritic cells and the control of immunity. Nature 392, 245-252. Becherer, J.D., Alsenz, J., Lambris, J.D., 1990. Molecular aspects of C3 interactions and structural/functional analysis of C3 from different species. Curr Top Microbiol Immunol 153, 45-72. Becherer, J.D., Lambris, J.D., 1988. Identification of the C3b receptor-binding domain in third component of complement. J Biol Chem 263, 14586-14591. Blakney, A.K., McKay, P.F., Yus, B.I., Aldon, Y., Shattock, R.J., 2019. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther 26, 363-372. Bloom, K., van den Berg, F., Arbuthnot, P., 2021. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 28, 117-129. Bogers, W.M., Oostermeijer, H., Mooij, P., Koopman, G., Verschoor, E.J., Davis, D., Ulmer, J.B., Brito, L.A., Cu, Y., Banerjee, K., Otten, G.R., Burke, B., Dey, A., Heeney, J.L., Shen, X., Tomaras, G.D., Labranche, C., Montefiori, D.C., Liao, H.X., Haynes, B., Geall, A.J., Barnett, S.W., 2015. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 211, 947-955. Bournazos, S., Ravetch, J.V., 2015. Fcγ receptor pathways during active and passive immunization. Immunol Rev 268, 88-103. Bournazos, S., Wang, T.T., Dahan, R., Maamary, J., Ravetch, J.V., 2017. Signaling by Antibodies: Recent Progress. Annu Rev Immunol 35, 285-311. Brandys, P., Montagutelli, X., Merenkova, I., Barut, G.T., Thiel, V., Schork, N.J., Trüeb, B., Conquet, L., Deng, A., Antanasijevic, A., Lee, H.-K., Valière, M., Sindhu, A., Singh, G., Herold, J., 2022a. A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice. Frontiers in Immunology 13. Brandys, P., Montagutelli, X., Merenkova, I., Barut, G.T., Thiel, V., Schork, N.J., Trüeb, B., Conquet, L., Deng, A., Antanasijevic, A., Lee, H.K., Valière, M., Sindhu, A., Singh, G., Herold, J., 2022b. A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice. Front Immunol 13, 912898. Butt, T.R., Edavettal, S.C., Hall, J.P., Mattern, M.R., 2005. SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43, 1-9. Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S.M., Walsh, R.M., Jr., Rawson, S., Rits-Volloch, S., Chen, B., 2020. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586-1592. Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R., Chen, X., Zhang, N., Wang, Y., Wang, P., Zhao, L., Sun, H., Yu, L., Yang, S., Niu, X., Xiao, T., Gu, Q., Shao, F., Hao, X., Xu, Y., Jin, R., Shen, Z., Wang, Y., Xie, X.S., 2023. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 614, 521-529. Carter, J., Zhang, J., Dang, T.L., Hasegawa, H., Cheng, J.D., Gianan, I., O'Neill, J.W., Wolfson, M., Siu, S., Qu, S., Meininger, D., Kim, H., Delaney, J., Mehlin, C., 2010. Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells. Protein Sci 19, 357-362. CDC, 2021. COVID-19: SARS-CoV-2 variant classifications and definitions. Chatterjee, B., Smed-Sörensen, A., Cohn, L., Chalouni, C., Vandlen, R., Lee, B.C., Widger, J., Keler, T., Delamarre, L., Mellman, I., 2012. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 120, 2011-2020. Chaudhary, N., Weissman, D., Whitehead, K.A., 2021. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 20, 817-838. Chen, L., Liu, W., Zhang, Q., Xu, K., Ye, G., Wu, W., Sun, Z., Liu, F., Wu, K., Zhong, B., Mei, Y., Zhang, W., Chen, Y., Li, Y., Shi, M., Lan, K., Liu, Y., 2020. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect 9, 313-319. Cheng, L., Wang, Q., Li, G., Banga, R., Ma, J., Yu, H., Yasui, F., Zhang, Z., Pantaleo, G., Perreau, M., Zurawski, S., Zurawski, G., Levy, Y., Su, L., 2018. TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. The Journal of Clinical Investigation 128, 4387-4396. Chiuppesi, F., Salazar, M.D., Contreras, H., Nguyen, V.H., Martinez, J., Park, Y., Nguyen, J., Kha, M., Iniguez, A., Zhou, Q., Kaltcheva, T., Levytskyy, R., Ebelt, N.D., Kang, T.H., Wu, X., Rogers, T.F., Manuel, E.R., Shostak, Y., Diamond, D.J., Wussow, F., 2020. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun 11, 6121. Chu, L., Montefiori, D., Huang, W., Nestorova, B., Chang, Y., Carfi, A., Edwards, D.K., Oestreicher, J., Legault, H., Girard, B., Pajon, R., Miller, J.M., Das, R., Leav, B., McPhee, R., 2021. Immune Memory Response After a Booster Injection of mRNA-1273 for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). medRxiv, 2021.2009.2029.21264089. Cohen, J., 2021. What went wrong with CureVac's mRNA vaccine? Science 372, 1381-1381. Coléon, S., Wiedemann, A., Surénaud, M., Lacabaratz, C., Hue, S., Prague, M., Cervantes-Gonzalez, M., Wang, Z., Ellis, J., Sansoni, A., Pierini, C., Bardin, Q., Fabregue, M., Sharkaoui, S., Hoest, P., Dupaty, L., Picard, F., El Hajj, M., Centlivre, M., Ghosn, J., Thiébaut, R., Cardinaud, S., Malissen, B., Zurawski, G., Zarubica, A., Zurawski, S.M., Godot, V., Lévy, Y., 2022. Design, immunogenicity, and efficacy of a pan-sarbecovirus dendritic-cell targeting vaccine. EBioMedicine 80, 104062. Corti, D., Purcell, L.A., Snell, G., Veesler, D., 2021. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 184, 4593-4595. Costa, S., Almeida, A., Castro, A., Domingues, L., 2014. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5, 63. Dagan, N., Barda, N., Kepten, E., Miron, O., Perchik, S., Katz, M.A., Hernán, M.A., Lipsitch, M., Reis, B., Balicer, R.D., 2021. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. New England Journal of Medicine 384, 1412-1423. Dai, L., Zheng, T., Xu, K., Han, Y., Xu, L., Huang, E., An, Y., Cheng, Y., Li, S., Liu, M., Yang, M., Li, Y., Cheng, H., Yuan, Y., Zhang, W., Ke, C., Wong, G., Qi, J., Qin, C., Yan, J., Gao, G.F., 2020. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell 182, 722-733.e711. Dangi, T., Class, J., Palacio, N., Richner, J.M., Penaloza MacMaster, P., 2021. Combining spike- and nucleocapsid-based vaccines improves distal control of SARS-CoV-2. Cell Rep 36, 109664. Du, L., Zhao, G., He, Y., Guo, Y., Zheng, B.J., Jiang, S., Zhou, Y., 2007. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 25, 2832-2838. Dykman, T.R., Cole, J.L., Iida, K., Atkinson, J.P., 1983. Structural heterogeneity of the C3b/C4b receptor (Cr 1) on human peripheral blood cells. J Exp Med 157, 2160-2165. Elia, U., Rotem, S., Bar-Haim, E., Ramishetti, S., Naidu, G.S., Gur, D., Aftalion, M., Israeli, M., Bercovich-Kinori, A., Alcalay, R., Makdasi, E., Chitlaru, T., Rosenfeld, R., Israely, T., Melamed, S., Abutbul Ionita, I., Danino, D., Peer, D., Cohen, O., 2021. Lipid Nanoparticle RBD-hFc mRNA Vaccine Protects hACE2 Transgenic Mice against a Lethal SARS-CoV-2 Infection. Nano Lett 21, 4774-4779. Erdei, A., Isaák, A., Török, K., Sándor, N., Kremlitzka, M., Prechl, J., Bajtay, Z., 2009. Expression and role of CR1 and CR2 on B and T lymphocytes under physiological and autoimmune conditions. Mol Immunol 46, 2767-2773. Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Liu, J., Zhao, D., Li, Y., 2022. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 7, 94. FDA 2021. FDA Authorizes Pfizer-BioNTech COVID-19 Vaccine for Emergency Use in Children 5 through 11 Years of Age. FDA, 2023a. Moderna COVID-19 Vaccines. FDA, 2023b. Pfizer-BioNTech COVID-19 Vaccines. Fischer, M.B., Goerg, S., Shen, L., Prodeus, A.P., Goodnow, C.C., Kelsoe, G., Carroll, M.C., 1998. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582-585. Fishelson, Z., 1991. Complement C3: a molecular mosaic of binding sites. Mol Immunol 28, 545-552. Gallie, D.R., 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5, 2108-2116. Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li, J., Gong, X., Lou, X., Shi, W., Wu, D., Zhang, H., Zhu, L., Deng, W., Li, Y., Lu, J., Li, C., Wang, X., Yin, W., Zhang, Y., Qin, C., 2020. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77-81. Garin, A., Meyer-Hermann, M., Contie, M., Figge, M.T., Buatois, V., Gunzer, M., Toellner, K.M., Elson, G., Kosco-Vilbois, M.H., 2010. Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation. Immunity 33, 84-95. Godot, V., Tcherakian, C., Gil, L., Cervera-Marzal, I., Li, G., Cheng, L., Ortonne, N., Lelièvre, J.-D., Pantaleo, G., Fenwick, C., Centlivre, M., Mouquet, H., Cardinaud, S., Zurawski, S.M., Zurawski, G., Milpied, P., Su, L., Lévy, Y., 2020. TLR-9 agonist and CD40-targeting vaccination induces HIV-1 envelope-specific B cells with a diversified immunoglobulin repertoire in humanized mice. PLOS Pathogens 16, e1009025. Graham, J.P., Authie, P., Yu, C.I., Zurawski, S.M., Li, X.H., Marches, F., Flamar, A.L., Acharya, A., Banchereau, J., Palucka, A.K., 2016. Targeting dendritic cells in humanized mice receiving adoptive T cells via monoclonal antibodies fused to Flu epitopes. Vaccine 34, 4857-4865. Granados-Riveron, J.T., Aquino-Jarquin, G., 2021. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 142, 111953. Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., Lambrecht, B.N., 2014. The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14, 94-108. Hajj, K.A., Whitehead, K.A., 2017. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials 2, 17056. Hajnik, R.L., Plante, J.A., Liang, Y., Alameh, M.G., Tang, J., Bonam, S.R., Zhong, C., Adam, A., Scharton, D., Rafael, G.H., Liu, Y., Hazell, N.C., Sun, J., Soong, L., Shi, P.Y., Wang, T., Walker, D.H., Sun, J., Weissman, D., Weaver, S.C., Plante, K.S., Hu, H., 2022. Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models. Sci Transl Med 14, eabq1945. Hanson, G., Coller, J., 2018. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19, 20-30. Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S.J., Robertson, D.L., 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19, 409-424. Hashem, A.M., Gravel, C., Chen, Z., Yi, Y., Tocchi, M., Jaentschke, B., Fan, X., Li, C., Rosu-Myles, M., Pereboev, A., He, R., Wang, J., Li, X., 2014. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus. J Immunol 193, 722-734. Hassett, K.J., Benenato, K.E., Jacquinet, E., Lee, A., Woods, A., Yuzhakov, O., Himansu, S., Deterling, J., Geilich, B.M., Ketova, T., Mihai, C., Lynn, A., McFadyen, I., Moore, M.J., Senn, J.J., Stanton, M.G., Almarsson, Ö., Ciaramella, G., Brito, L.A., 2019. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol Ther Nucleic Acids 15, 1-11. Heesters, B.A., Chatterjee, P., Kim, Y.A., Gonzalez, S.F., Kuligowski, M.P., Kirchhausen, T., Carroll, M.C., 2013. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38, 1164-1175. Heesters, B.A., Myers, R.C., Carroll, M.C., 2014. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14, 495-504. Helmy, K.Y., Katschke, K.J., Jr., Gorgani, N.N., Kljavin, N.M., Elliott, J.M., Diehl, L., Scales, S.J., Ghilardi, N., van Lookeren Campagne, M., 2006. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915-927. Hsieh, C.L., Goldsmith, J.A., Schaub, J.M., DiVenere, A.M., Kuo, H.C., Javanmardi, K., Le, K.C., Wrapp, D., Lee, A.G., Liu, Y., Chou, C.W., Byrne, P.O., Hjorth, C.K., Johnson, N.V., Ludes-Meyers, J., Nguyen, A.W., Park, J., Wang, N., Amengor, D., Maynard, J.A., Finkelstein, I.J., McLellan, J.S., 2020. Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes. bioRxiv. Hyde, J.L., Diamond, M.S., 2015. Innate immune restriction and antagonism of viral RNA lacking 2׳-O methylation. Virology 479-480, 66-74. Irvine, D.J., Aung, A., Silva, M., 2020. Controlling timing and location in vaccines. Adv Drug Deliv Rev 158, 91-115. Kalnin, K.V., Plitnik, T., Kishko, M., Zhang, J., Zhang, D., Beauvais, A., Anosova, N.G., Tibbitts, T., DiNapoli, J., Ulinski, G., Piepenhagen, P., Cummings, S.M., Bangari, D.S., Ryan, S., Huang, P.-W.D., Huleatt, J., Vincent, D., Fries, K., Karve, S., Goldman, R., Gopani, H., Dias, A., Tran, K., Zacharia, M., Gu, X., Boeglin, L., Abysalh, J., Vargas, J., Beaulieu, A., Shah, M., Jeannotte, T., Gillis, K., Chivukula, S., Swearingen, R., Landolfi, V., Fu, T.-M., DeRosa, F., Casimiro, D., 2021. Immunogenicity and efficacy of mRNA COVID-19 vaccine MRT5500 in preclinical animal models. npj Vaccines 6, 61. Karikó, K., Muramatsu, H., Ludwig, J., Weissman, D., 2011. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39, e142. Kastenmüller, W., Kastenmüller, K., Kurts, C., Seder, R.A., 2014. Dendritic cell-targeted vaccines--hope or hype? Nat Rev Immunol 14, 705-711. Kedmi, R., Veiga, N., Ramishetti, S., Goldsmith, M., Rosenblum, D., Dammes, N., Hazan-Halevy, I., Nahary, L., Leviatan-Ben-Arye, S., Harlev, M., Behlke, M., Benhar, I., Lieberman, J., Peer, D., 2018. A modular platform for targeted RNAi therapeutics. Nat Nanotechnol 13, 214-219. Kelsoe, G., 1996. Life and death in germinal centers (redux). Immunity 4, 107-111. Kennedy, R.B., Ovsyannikova, I.G., Palese, P., Poland, G.A., 2020. Current Challenges in Vaccinology. Front Immunol 11, 1181. Kinoshita, T., Thyphronitis, G., Tsokos, G.C., Finkelman, F.D., Hong, K., Sakai, H., Inoue, K., 1990. Characterization of murine complement receptor type 2 and its immunological cross-reactivity with type 1 receptor. Int Immunol 2, 651-659. Kontermann, R.E., 2011. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22, 868-876. Kormann, M.S.D., Hasenpusch, G., Aneja, M.K., Nica, G., Flemmer, A.W., Herber-Jonat, S., Huppmann, M., Mays, L.E., Illenyi, M., Schams, A., Griese, M., Bittmann, I., Handgretinger, R., Hartl, D., Rosenecker, J., Rudolph, C., 2011. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology 29, 154-157. Kosco-Vilbois, M.H., 2003. Are follicular dendritic cells really good for nothing? Nature Reviews Immunology 3, 764-769. Krautler, N.J., Kana, V., Kranich, J., Tian, Y., Perera, D., Lemm, D., Schwarz, P., Armulik, A., Browning, J.L., Tallquist, M., Buch, T., Oliveira-Martins, J.B., Zhu, C., Hermann, M., Wagner, U., Brink, R., Heikenwalder, M., Aguzzi, A., 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150, 194-206. Kustin, T., Harel, N., Finkel, U., Perchik, S., Harari, S., Tahor, M., Caspi, I., Levy, R., Leshchinsky, M., Ken Dror, S., Bergerzon, G., Gadban, H., Gadban, F., Eliassian, E., Shimron, O., Saleh, L., Ben-Zvi, H., Keren Taraday, E., Amichay, D., Ben-Dor, A., Sagas, D., Strauss, M., Shemer Avni, Y., Huppert, A., Kepten, E., Balicer, R.D., Netzer, D., Ben-Shachar, S., Stern, A., 2021. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nature Medicine 27, 1379-1384. Kwon, H., Kim, M., Seo, Y., Moon, Y.S., Lee, H.J., Lee, K., Lee, H., 2018. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 156, 172-193. Le Bert, N., Tan, A.T., Kunasegaran, K., Tham, C.Y.L., Hafezi, M., Chia, A., Chng, M.H.Y., Lin, M., Tan, N., Linster, M., Chia, W.N., Chen, M.I., Wang, L.F., Ooi, E.E., Kalimuddin, S., Tambyah, P.A., Low, J.G., Tan, Y.J., Bertoletti, A., 2020. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462. Le, T., Sun, C., Chang, J., Zhang, G., Yin, X., 2022. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 14. Li, Y., Du, L., Qiu, H., Zhao, G., Wang, L., Zhou, Y., Jiang, S., Gao, J., 2013. A recombinant protein containing highly conserved hemagglutinin residues 81-122 of influenza H5N1 induces strong humoral and mucosal immune responses. Biosci Trends 7, 129-137. Liang, Q., Wang, Y., Zhang, S., Sun, J., Sun, W., Li, J., Liu, Y., Li, M., Cheng, L., Jiang, Y., Wang, R., Zhang, R., Yang, Z., Ren, Y., Chen, P., Gao, P., Yan, H., Zhang, Z., Zhang, Q., Shi, X., Wang, J., Liu, W., Wang, X., Ying, B., Zhao, J., Qi, H., Zhang, L., 2022. RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. iScience 25, 104043. Linares-Fernández, S., Lacroix, C., Exposito, J.Y., Verrier, B., 2020. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med 26, 311-323. Linares-Fernández, S., Moreno, J., Lambert, E., Mercier-Gouy, P., Vachez, L., Verrier, B., Exposito, J.Y., 2021. Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. Mol Ther Nucleic Acids 26, 945-956. Lineburg, K.E., Grant, E.J., Swaminathan, S., Chatzileontiadou, D.S.M., Szeto, C., Sloane, H., Panikkar, A., Raju, J., Crooks, P., Rehan, S., Nguyen, A.T., Lekieffre, L., Neller, M.A., Tong, Z.W.M., Jayasinghe, D., Chew, K.Y., Lobos, C.A., Halim, H., Burrows, J.M., Riboldi-Tunnicliffe, A., Chen, W., D'Orsogna, L., Khanna, R., Short, K.R., Smith, C., Gras, S., 2021. CD8(+) T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 54, 1055-1065.e1055. Liu, Y., Soh, W.T., Kishikawa, J.I., Hirose, M., Nakayama, E.E., Li, S., Sasai, M., Suzuki, T., Tada, A., Arakawa, A., Matsuoka, S., Akamatsu, K., Matsuda, M., Ono, C., Torii, S., Kishida, K., Jin, H., Nakai, W., Arase, N., Nakagawa, A., Matsumoto, M., Nakazaki, Y., Shindo, Y., Kohyama, M., Tomii, K., Ohmura, K., Ohshima, S., Okamoto, T., Yamamoto, M., Nakagami, H., Matsuura, Y., Nakagawa, A., Kato, T., Okada, M., Standley, D.M., Shioda, T., Arase, H., 2021. An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell 184, 3452-3466.e3418. Liu, Z., Xu, W., Xia, S., Gu, C., Wang, X., Wang, Q., Zhou, J., Wu, Y., Cai, X., Qu, D., Ying, T., Xie, Y., Lu, L., Yuan, Z., Jiang, S., 2020. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther 5, 282. Liu, Z., Zhou, J., Xu, W., Deng, W., Wang, Y., Wang, M., Wang, Q., Hsieh, M., Dong, J., Wang, X., Huang, W., Xing, L., He, M., Tao, C., Xie, Y., Zhang, Y., Wang, Y., Zhao, J., Yuan, Z., Qin, C., Jiang, S., Lu, L., 2022. A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res 32, 269-287. Lo, K.M., Sudo, Y., Chen, J., Li, Y., Lan, Y., Kong, S.M., Chen, L., An, Q., Gillies, S.D., 1998. High level expression and secretion of Fc-X fusion proteins in mammalian cells. Protein Eng 11, 495-500. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W.J., Wang, D., Xu, W., Holmes, E.C., Gao, G.F., Wu, G., Chen, W., Shi, W., Tan, W., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565-574. Malik, A., 2016. Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli. 3 Biotech 6, 44. Mandel, T.E., Phipps, R.P., Abbot, A., Tew, J.G., 1980. The follicular dendritic cell: long term antigen retention during immunity. Immunol Rev 53, 29-59. Marlin, R., Godot, V., Cardinaud, S., Galhaut, M., Coleon, S., Zurawski, S., Dereuddre-Bosquet, N., Cavarelli, M., Gallouët, A.S., Maisonnasse, P., Dupaty, L., Fenwick, C., Naninck, T., Lemaitre, J., Gomez-Pacheco, M., Kahlaoui, N., Contreras, V., Relouzat, F., Fang, R.H.T., Wang, Z., Ellis, J., 3rd, Chapon, C., Centlivre, M., Wiedemann, A., Lacabaratz, C., Surenaud, M., Szurgot, I., Liljeström, P., Planas, D., Bruel, T., Schwartz, O., Werf, S.V., Pantaleo, G., Prague, M., Thiébaut, R., Zurawski, G., Lévy, Y., Grand, R.L., 2021. Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques. Nat Commun 12, 5215. Martin, F., Ménétret, J.F., Simonetti, A., Myasnikov, A.G., Vicens, Q., Prongidi-Fix, L., Natchiar, S.K., Klaholz, B.P., Eriani, G., 2016. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation. Nat Commun 7, 12622. Martinez-Riano, A., Wang, S., Boeing, S., Minoughan, S., Casal, A., Spillane, K.M., Ludewig, B., Tolar, P., 2022. Long-term retention of antigens in germinal centres is controlled by the spatial organisation of the follicular dendritic cell network. bioRxiv, 2022.2009.2006.506650. Mascola, J.R., 2015. HIV. The modern era of HIV-1 vaccine development. Science 349, 139-140. Mayr, C., 2017. Regulation by 3'-Untranslated Regions. Annu Rev Genet 51, 171-194. Mellman, I., 2013. Dendritic Cells: Master Regulators of the Immune Response. Cancer Immunology Research 1, 145-149. Moyo, N., Vogel, A.B., Buus, S., Erbar, S., Wee, E.G., Sahin, U., Hanke, T., 2019. Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. Mol Ther Methods Clin Dev 12, 32-46. Muralidharan, A., Russell, M., Larocque, L., Gravel, C., Li, C., Chen, W., Cyr, T., Lavoie, J.R., Farnsworth, A., Rosu-Myles, M., Wang, L., Li, X., 2018. Targeting CD40 enhances antibody- and CD8-mediated protection against respiratory syncytial virus infection. Sci Rep 8, 16648. Nachbagauer, R., Liu, W.C., Choi, A., Wohlbold, T.J., Atlas, T., Rajendran, M., Solórzano, A., Berlanda-Scorza, F., García-Sastre, A., Palese, P., Albrecht, R.A., Krammer, F., 2017. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines 2, 26. Nance, K.D., Meier, J.L., 2021. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent Sci 7, 748-756. Nimmerjahn, F., Ravetch, J.V., 2008. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8, 34-47. Oran, A.E., Isenman, D.E., 1999. Identification of residues within the 727-767 segment of human complement component C3 important for its interaction with factor H and with complement receptor 1 (CR1, CD35). J Biol Chem 274, 5120-5130. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J., White, P., 2021. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun 12, 6777. Pardi, N., Hogan, M.J., Pelc, R.S., Muramatsu, H., Andersen, H., DeMaso, C.R., Dowd, K.A., Sutherland, L.L., Scearce, R.M., Parks, R., Wagner, W., Granados, A., Greenhouse, J., Walker, M., Willis, E., Yu, J.S., McGee, C.E., Sempowski, G.D., Mui, B.L., Tam, Y.K., Huang, Y.J., Vanlandingham, D., Holmes, V.M., Balachandran, H., Sahu, S., Lifton, M., Higgs, S., Hensley, S.E., Madden, T.D., Hope, M.J., Karikó, K., Santra, S., Graham, B.S., Lewis, M.G., Pierson, T.C., Haynes, B.F., Weissman, D., 2017. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248-251. Pardi, N., Hogan, M.J., Porter, F.W., Weissman, D., 2018a. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery 17, 261-279. Pardi, N., Parkhouse, K., Kirkpatrick, E., McMahon, M., Zost, S.J., Mui, B.L., Tam, Y.K., Karikó, K., Barbosa, C.J., Madden, T.D., Hope, M.J., Krammer, F., Hensley, S.E., Weissman, D., 2018b. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun 9, 3361. Pastor, Y., Ghazzaui, N., Hammoudi, A., Centlivre, M., Cardinaud, S., Levy, Y., 2022. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front Immunol 13, 949779. Patel, P.N., Dickey, T.H., Hopp, C.S., Diouf, A., Tang, W.K., Long, C.A., Miura, K., Crompton, P.D., Tolia, N.H., 2022. Neutralizing and interfering human antibodies define the structural and mechanistic basis for antigenic diversion. Nat Commun 13, 5888. Patente, T.A., Pinho, M.P., Oliveira, A.A., Evangelista, G.C.M., Bergami-Santos, P.C., Barbuto, J.A.M., 2018. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 9, 3176. Phan, T.G., Green, J.A., Gray, E.E., Xu, Y., Cyster, J.G., 2009. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nature Immunology 10, 786-793. Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., Silacci-Fregni, C., Pinto, D., Rosen, L.E., Bowen, J.E., Acton, O.J., Jaconi, S., Guarino, B., Minola, A., Zatta, F., Sprugasci, N., Bassi, J., Peter, A., De Marco, A., Nix, J.C., Mele, F., Jovic, S., Rodriguez, B.F., Gupta, S.V., Jin, F., Piumatti, G., Lo Presti, G., Pellanda, A.F., Biggiogero, M., Tarkowski, M., Pizzuto, M.S., Cameroni, E., Havenar-Daughton, C., Smithey, M., Hong, D., Lepori, V., Albanese, E., Ceschi, A., Bernasconi, E., Elzi, L., Ferrari, P., Garzoni, C., Riva, A., Snell, G., Sallusto, F., Fink, K., Virgin, H.W., Lanzavecchia, A., Corti, D., Veesler, D., 2020. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 183, 1024-1042.e1021. Pincetic, A., Bournazos, S., DiLillo, D.J., Maamary, J., Wang, T.T., Dahan, R., Fiebiger, B.M., Ravetch, J.V., 2014. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15, 707-716. Pollard, A.J., Bijker, E.M., 2021. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83-100. Pollard, C., Rejman, J., De Haes, W., Verrier, B., Van Gulck, E., Naessens, T., De Smedt, S., Bogaert, P., Grooten, J., Vanham, G., De Koker, S., 2013. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 21, 251-259. Reinagel, M.L., Gezen, M., Ferguson, P.J., Kuhn, S., Martin, E.N., Taylor, R.P., 1997. The primate erythrocyte complement receptor (CR1) as a privileged site: binding of immunoglobulin G to erythrocyte CR1 does not target erythrocytes for phagocytosis. Blood 89, 1068-1077. Richards, D.M., Sefrin, J.P., Gieffers, C., Hill, O., Merz, C., 2020. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 16, 377-387. Robbiani, D.F., Gaebler, C., Muecksch, F., Lorenzi, J.C.C., Wang, Z., Cho, A., Agudelo, M., Barnes, C.O., Gazumyan, A., Finkin, S., Hägglöf, T., Oliveira, T.Y., Viant, C., Hurley, A., Hoffmann, H.H., Millard, K.G., Kost, R.G., Cipolla, M., Gordon, K., Bianchini, F., Chen, S.T., Ramos, V., Patel, R., Dizon, J., Shimeliovich, I., Mendoza, P., Hartweger, H., Nogueira, L., Pack, M., Horowitz, J., Schmidt, F., Weisblum, Y., Michailidis, E., Ashbrook, A.W., Waltari, E., Pak, J.E., Huey-Tubman, K.E., Koranda, N., Hoffman, P.R., West, A.P., Jr., Rice, C.M., Hatziioannou, T., Bjorkman, P.J., Bieniasz, P.D., Caskey, M., Nussenzweig, M.C., 2020. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437-442. Roozendaal, R., Carroll, M.C., 2007. Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev 219, 157-166. Roozendaal, R., Mempel, T.R., Pitcher, L.A., Gonzalez, S.F., Verschoor, A., Mebius, R.E., von Andrian, U.H., Carroll, M.C., 2009. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264-276. Ruane, D., Do, Y., Brane, L., Garg, A., Bozzacco, L., Kraus, T., Caskey, M., Salazar, A., Trumpheller, C., Mehandru, S., 2016. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract. Mucosal Immunol 9, 1340-1352. Ruffin, N., Gea-Mallorquí, E., 2022. Dynamics of antigen retention by follicular dendritic cells. Nature Reviews Immunology 22, 715-715. Sahin, U., Karikó, K., Türeci, Ö., 2014. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13, 759-780. Scheaffer, S.M., Lee, D., Whitener, B., Ying, B., Wu, K., Liang, C.-Y., Jani, H., Martin, P., Amato, N.J., Avena, L.E., Berrueta, D.M., Schmidt, S.D., O’Dell, S., Nasir, A., Chuang, G.-Y., Stewart-Jones, G., Koup, R.A., Doria-Rose, N.A., Carfi, A., Elbashir, S.M., Thackray, L.B., Edwards, D.K., Diamond, M.S., 2023. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nature Medicine 29, 247-257. Schmidt, R.E., Gessner, J.E., 2005. Fc receptors and their interaction with complement in autoimmunity. Immunol Lett 100, 56-67. Schoenmaker, L., Witzigmann, D., Kulkarni, J.A., Verbeke, R., Kersten, G., Jiskoot, W., Crommelin, D.J.A., 2021. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm 601, 120586. Segura, E., 2016. Cross-Presentation Assay for Human Dendritic Cells. Methods Mol Biol 1423, 189-198. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., Li, F., 2020. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 117, 11727-11734. Sörman, A., Zhang, L., Ding, Z., Heyman, B., 2014. How antibodies use complement to regulate antibody responses. Mol Immunol 61, 79-88. Steinman, R.M., Banchereau, J., 2007. Taking dendritic cells into medicine. Nature 449, 419-426. Stoute, J.A., 2011. Complement receptor 1 and malaria. Cell Microbiol 13, 1441-1450. Subtelny, A.O., Eichhorn, S.W., Chen, G.R., Sive, H., Bartel, D.P., 2014. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71. Sun, S., Cai, Y., Song, T.Z., Pu, Y., Cheng, L., Xu, H., Sun, J., Meng, C., Lin, Y., Huang, H., Zhao, F., Zhang, S., Gao, Y., Han, J.B., Feng, X.L., Yu, D.D., Zhu, Y., Gao, P., Tang, H., Zhao, J., Zhang, Z., Yang, J., Hu, Z., Fu, Y.X., Zheng, Y.T., Peng, H., 2021a. Interferon-armed RBD dimer enhances the immunogenicity of RBD for sterilizing immunity against SARS-CoV-2. Cell Res 31, 1011-1023. Sun, S., He, L., Zhao, Z., Gu, H., Fang, X., Wang, T., Yang, X., Chen, S., Deng, Y., Li, J., Zhao, J., Li, L., Li, X., He, P., Li, G., Li, H., Zhao, Y., Gao, C., Lang, X., Wang, X., Fei, G., Li, Y., Geng, S., Gao, Y., Wei, W., Hu, Z., Han, G., Sun, Y., 2021b. Recombinant vaccine containing an RBD-Fc fusion induced protection against SARS-CoV-2 in nonhuman primates and mice. Cell Mol Immunol 18, 1070-1073. Tamming, L.A., Duque, D., Tran, A., Zhang, W., Pfeifle, A., Laryea, E., Wu, J., Raman, S.N.T., Gravel, C., Russell, M.S., Hashem, A.M., Alsulaiman, R.M., Alhabbab, R.Y., Gao, J., Safronetz, D., Cao, J., Wang, L., Chen, W., Johnston, M.J.W., Sauve, S., Rosu-Myles, M., Li, X., 2021. DNA Based Vaccine Expressing SARS-CoV-2 Spike-CD40L Fusion Protein Confers Protection Against Challenge in a Syrian Hamster Model. Front Immunol 12, 785349. Tang, P., Hasan, M.R., Chemaitelly, H., Yassine, H.M., Benslimane, F.M., Al Khatib, H.A., AlMukdad, S., Coyle, P., Ayoub, H.H., Al Kanaani, Z., Al Kuwari, E., Jeremijenko, A., Kaleeckal, A.H., Latif, A.N., Shaik, R.M., Abdul Rahim, H.F., Nasrallah, G.K., Al Kuwari, M.G., Al Romaihi, H.E., Butt, A.A., Al-Thani, M.H., Al Khal, A., Bertollini, R., Abu-Raddad, L.J., 2021. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nature Medicine 27, 2136-2143. Tartof, S.Y., Slezak, J.M., Puzniak, L., Hong, V., Frankland, T.B., Ackerson, B.K., Takhar, H., Ogun, O.A., Simmons, S., Zamparo, J.M., Jodar, L., McLaughlin, J.M., 2022. BNT162b2 vaccine effectiveness against SARS-CoV-2 omicron BA.4 and BA.5. Lancet Infect Dis 22, 1663-1665. Taylor, R.P., Ferguson, P.J., Martin, E.N., Cooke, J., Greene, K.L., Grinspun, K., Guttman, M., Kuhn, S., 1997. Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CR1 mAbs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model. Clin Immunol Immunopathol 82, 49-59. Teijaro, J.R., Farber, D.L., 2021. COVID-19 vaccines: modes of immune activation and future challenges. Nature Reviews Immunology 21, 195-197. Tew, J.G., Mandel, T.E., 1979. Prolonged antigen half-life in the lymphoid follicles of specifically immunized mice. Immunology 37, 69-76. To, K.K.W., Cho, W.C.S., 2021. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 16, 1307-1317. Tregoning, J.S., Flight, K.E., Higham, S.L., Wang, Z., Pierce, B.F., 2021. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol 21, 626-636. Trepotec, Z., Geiger, J., Plank, C., Aneja, M.K., Rudolph, C., 2019. Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life. Rna 25, 507-518. Uthaipibull, C., Aufiero, B., Syed, S.E., Hansen, B., Guevara Patiño, J.A., Angov, E., Ling, I.T., Fegeding, K., Morgan, W.D., Ockenhouse, C., Birdsall, B., Feeney, J., Lyon, J.A., Holder, A.A., 2001. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J Mol Biol 307, 1381-1394. Vaidyanathan, S., Azizian, K.T., Haque, A., Henderson, J.M., Hendel, A., Shore, S., Antony, J.S., Hogrefe, R.I., Kormann, M.S.D., Porteus, M.H., McCaffrey, A.P., 2018. Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification. Mol Ther Nucleic Acids 12, 530-542. Verbeke, R., Lentacker, I., De Smedt, C., S., Dewitte, H., 2019. Three decades of messenger RNA vaccine development. Nano Today 28. Victora, G.D., Mesin, L., 2014. Clonal and cellular dynamics in germinal centers. Current Opinion in Immunology 28, 90-96. Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., Veesler, D., 2020. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292.e286. Walsh, E.E., Frenck, R.W., Falsey, A.R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan, M.J., Bailey, R., Swanson, K.A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P.-Y., Türeci, Ö., Tompkins, K.R., Lyke, K.E., Raabe, V., Dormitzer, P.R., Jansen, K.U., Şahin, U., Gruber, W.C., 2020. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine 383, 2439-2450. Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., Peng, Z., 2020. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama 323, 1061-1069. Wang, J., Alvin Chew, B.L., Lai, Y., Dong, H., Xu, L., Balamkundu, S., Cai, W.M., Cui, L., Liu, C.F., Fu, X.Y., Lin, Z., Shi, P.Y., Lu, T.K., Luo, D., Jaffrey, S.R., Dedon, P.C., 2019. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 47, e130. Wang, X., Cho, B., Suzuki, K., Xu, Y., Green, J.A., An, J., Cyster, J.G., 2011. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 208, 2497-2510. WHO, 2023. Coronavirus Disease (COVID-19) Dashboard. Wieland, A., Ahmed, R., 2019. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 423, 119-150. Winokur, P., Gayed, J., Fitz-Patrick, D., Thomas, S.J., Diya, O., Lockhart, S., Xu, X., Zhang, Y., Bangad, V., Schwartz, H.I., Denham, D., Cardona, J.F., Usdan, L., Ginis, J., Mensa, F.J., Zou, J., Xie, X., Shi, P.-Y., Lu, C., Buitrago, S., Scully, I.L., Cooper, D., Koury, K., Jansen, K.U., Türeci, Ö., Şahin, U., Swanson, K.A., Gruber, W.C., Kitchin, N., 2023. Bivalent Omicron BA.1–Adapted BNT162b2 Booster in Adults Older than 55 Years. New England Journal of Medicine 388, 214-227. Wu, K., Choi, A., Koch, M., Ma, L., Hill, A., Nunna, N., Huang, W., Oestreicher, J., Colpitts, T., Bennett, H., Legault, H., Paila, Y., Nestorova, B., Ding, B., Pajon, R., Miller, J.M., Leav, B., Carfi, A., McPhee, R., Edwards, D.K., 2021. Preliminary Analysis of Safety and Immunogenicity of a SARS-CoV-2 Variant Vaccine Booster. medRxiv, 2021.2005.2005.21256716. Wu, Y., El Shikh, M.E., El Sayed, R.M., Best, A.M., Szakal, A.K., Tew, J.G., 2009. IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int Immunol 21, 745-756. Wu, Z., McGoogan, J.M., 2020. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama 323, 1239-1242. Xia, S., Duan, K., Zhang, Y., Zhao, D., Zhang, H., Xie, Z., Li, X., Peng, C., Zhang, Y., Zhang, W., Yang, Y., Chen, W., Gao, X., You, W., Wang, X., Wang, Z., Shi, Z., Wang, Y., Yang, X., Zhang, L., Huang, L., Wang, Q., Lu, J., Yang, Y., Guo, J., Zhou, W., Wan, X., Wu, C., Wang, W., Huang, S., Du, J., Meng, Z., Pan, A., Yuan, Z., Shen, S., Guo, W., Yang, X., 2020. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. Jama 324, 951-960. Xia, X., 2021. Detailed Dissection and Critical Evaluation of the Pfizer/BioNTech and Moderna mRNA Vaccines. Vaccines (Basel) 9. Xiang, K., Bartel, D.P., 2021. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Elife 10. Yadav, T., Srivastava, N., Mishra, G., Dhama, K., Kumar, S., Puri, B., Saxena, S.K., 2020. Recombinant vaccines for COVID-19. Hum Vaccin Immunother 16, 2905-2912. Yang, Y., Ma, X., Huo, Y.X., 2019. [Application of codon optimization strategy in heterologous protein expression]. Sheng Wu Gong Cheng Xue Bao 35, 2227-2237. Yang, Y., Xu, F., 2022. Evolving understanding of antibody-dependent enhancement (ADE) of SARS-CoV-2. Front Immunol 13, 1008285. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C., Zhang, J., Weng, T., Zhang, Z., Wu, Z., Cheng, L., Shi, D., Lu, X., Lei, J., Crispin, M., Shi, Y., Li, L., Li, S., 2020. Molecular Architecture of the SARS-CoV-2 Virus. Cell 183, 730-738.e713. Yin, W., Gorvel, L., Zurawski, S., Li, D., Ni, L., Duluc, D., Upchurch, K., Kim, J., Gu, C., Ouedraogo, R., Wang, Z., Xue, Y., Joo, H., Gorvel, J.P., Zurawski, G., Oh, S., 2016. Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells. EBioMedicine 5, 46-58. Zarghampoor, F., Azarpira, N., Khatami, S.R., Behzad-Behbahani, A., Foroughmand, A.M., 2019. Improved translation efficiency of therapeutic mRNA. Gene 707, 231-238. Zhu, G., Zhu, C., Zhu, Y., Sun, F., 2020. Minireview of progress in the structural study of SARS-CoV-2 proteins. Curr Res Microb Sci 1, 53-61. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88265 | - |
| dc.description.abstract | 目前的SARS-CoV-2疫苗若單獨使用棘蛋白受體結合區作為疫苗抗原,便無法誘發良好的免疫反應,過去的研究指出,使用免疫細胞標靶策略即可提升疫苗的免疫原性與產出強大的免疫反應,但如何選擇合適的標靶配體至今仍是未解之謎,因此,我們使用了mRNA的技術來探索多種不同配體的效能,以促進疫苗之發展。在此研究中,我們進行了三種配體的比較,包含補體成分C3b(mC3)、分化群40配體(mCD40L)以及免疫球蛋白G1之結晶區域片段(mFc),並將它們分別結合上SARS-CoV-2 Omicron變異株(B.1.1.529)的棘蛋白受體結合區,接著生產可以轉譯出這些抗原蛋白的mRNA,優化它們並將其包進脂質奈米顆粒中製成疫苗,我們將mRNA轉染至HEK293T細胞株之後,具有完整抗原性的抗原能夠有效地被表達,在免疫染色實驗中也呈現了三種配體(mC3、mCD40L、mFc)能夠分別標定並結合各自的受體(CR1、CD40、Fc𝛄R),展現出強而有力的免疫細胞標靶特性。在小鼠(C57BL/6)實驗中測試了不同的疫苗劑量,由每劑1 微克至每劑40 微克,每隻小鼠共接種三劑,使用肌肉注射方式施打疫苗,我們所生產的疫苗可保存至少三個月且不會在小鼠體內引起不良副作用,尤其,我們的三種標靶樹突細胞mRNA疫苗能夠有效誘發強力的抗體反應,並且這三種疫苗皆達到相當的抗體效價,此外,三種疫苗也展現了各自的獨特性,有利於我們更了解不同標靶配體所引起的免疫反應,並作為未來疫苗發展的應用依據。此篇研究作為第一個探討不同標靶配體的差異的先驅,首先嘗試使用了mRNA技術作為免疫細胞標靶疫苗的疫苗型式,研究中三種標靶配體皆展現了高效的標靶能力,期待在未來,此研究能夠被廣泛應用,並有效地改善抗原傳遞效率、增進疫苗免疫原性與促進體液免疫反應。 | zh_TW |
| dc.description.abstract | Current SARS-CoV-2 vaccines using receptor binding domain (RBD) alone induce weak immune responses. Studies have shown that immune cell-targeting strategies can improve vaccine immunogenicity and generate potent immunity. However, what to select as an appropriate targeting ligand is still a secret. Hence, we applied mRNA technology to explore targeting ligands, including mC3, mCD40L, and mFc, shedding light on the enhancement of vaccines. Ligands were fused to the RBD of SARS-CoV-2 Omicron variant (B.1.1.529). The mRNAs were optimized for promoting expression, produced with high quality, and encapsulated in lipid nanoparticles (LNPs) for effective delivery. HEK293T cell line, transfected by each mRNA, efficiently expressed the vaccine antigens with correct antigenicity. Immunofluorescence staining revealed that the three targeting ligands, mC3, mCD40L, and mFc, were successfully co-expressed with the RBD and were able to target their receptors, CR1, CD40, and Fc𝛄 receptors, respectively, presenting highly correlated interaction and showing convincing targeting properties. In animal studies, C57BL/6 mice were vaccinated intramuscularly with different doses, from 1 µg to 40 µg, and each mouse underwent three doses of vaccination. The mRNA-LNP vaccines displayed great stability for lasting over three months and presented safety without causing adverse effects in mice. Notably, targeting mRNA vaccines elicited a promising elevation of antigen-specific antibody responses compared to the non-targeting vaccine. Furthermore, they achieved a similar antibody level, demonstrating their analogously robust targeting capabilities. Each vaccine has exhibited its own unique characterization and potential future application. This is the first study that uses mRNA vaccine to explore various targeting ligands and proves their promising targeting ability. These innovative vaccine candidates hold tremendous potential for improving antigen delivery, increasing vaccine immunogenicity, and enhancing humoral immunity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:16:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:16:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 序言 i
中文摘要 ii Abstract iii Contents v List of Figures viii List of Tables x Chapter 1. Introduction 1 1.1. Introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 1 1.2. Introduction of mRNA vaccines against infectious diseases 2 1.3. Design and delivery of mRNA vaccine 3 1.4. SARS-CoV-2 mRNA vaccine 5 1.4.1. Full-length spike mRNA vaccines 6 1.4.2. Spike receptor binding domain (RBD) mRNA vaccines 8 1.4.3. Challenges and future potential of SARS-CoV-2 mRNA vaccine development 9 1.5. Importance of dendritic cells (DCs) in immunity 10 1.6. DC receptors for the vaccine targeting 11 1.6.1. Fc𝛄 receptor (Fc𝛄R) and Fc𝛄R-targeting vaccines 12 1.6.2. CD40 receptor and CD40-targeting vaccines 13 1.7. Follicular dendritic cell (FDC) and complement receptor 1 (CR1) 15 1.8. The objective of this research 17 Chapter 2. Materials and methods 19 2.1. Ethics statement 19 2.2. Cell culture 19 2.3. Construction of plasmids 19 2.4. In vitro transcription (IVT) and mRNA purification 22 2.5. Denaturing single-stranded RNA (ssRNA) electrophoresis 23 2.6. Lipid nanoparticle (LNP) formulations 24 2.7. LNP observation via cryo-electron microscope (Cryo-EM) 24 2.8. Validation of mRNA-LNP quality 24 2.9. Cell transfection 25 2.10. SDS-PAGE and Western blot 26 2.11. Immunofluorescence assay (IFA) 27 2.11.1. Expression of RBD antigens 27 2.11.2. Binding test of immune cell receptors and targeting ligands 28 2.12. Mouse immunization studies 29 2.13. Enzyme-linked immunosorbent assay (ELISA) 30 2.14. Statistical analysis 31 Chapter 3. Results 32 3.1 Design of immune cell-targeting RBD antigens 32 3.2 Optimization of mRNA design 32 3.3 Production of mRNA antigens 34 3.4 Optimization of antigen expression 35 3.5 Characterization of mRNA-LNP 36 3.6 Detection for the expression of vaccine antigens 37 3.7 Assessment of interaction between immune cell receptors and targeting ligands 38 3.8 Analysis of RBD-specific humoral immune responses in mice 40 Chapter 4. Discussion 45 Chapter 5. Figures and tables 53 References 85 | - |
| dc.language.iso | en | - |
| dc.subject | mRNA疫苗 | zh_TW |
| dc.subject | Omicron變異株 | zh_TW |
| dc.subject | 棘蛋白受體結合區 | zh_TW |
| dc.subject | 新冠病毒 | zh_TW |
| dc.subject | 免疫細胞受體標靶策略 | zh_TW |
| dc.subject | spike RBD | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | mRNA vaccine | en |
| dc.subject | Omicron variant | en |
| dc.subject | immune cell receptor-targeting strategies | en |
| dc.title | 以免疫細胞受體為標靶提升 SARS-CoV-2 RBD mRNA 疫苗免疫原性之探討 | zh_TW |
| dc.title | Exploration of Immune Cell Receptor-Targeting Strategies for Enhancing SARS-CoV-2 RBD mRNA Vaccine Immunogenicity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡哲銘;黃立民 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Ming Hu;Li-Min Huang | en |
| dc.subject.keyword | mRNA疫苗,免疫細胞受體標靶策略,新冠病毒,Omicron變異株,棘蛋白受體結合區, | zh_TW |
| dc.subject.keyword | mRNA vaccine,immune cell receptor-targeting strategies,SARS-CoV-2,Omicron variant,spike RBD, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202301874 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-25 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| Appears in Collections: | 獸醫學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Access limited in NTU ip range | 15.06 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
