請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88246
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛宇甯 | zh_TW |
dc.contributor.advisor | Louis Ge | en |
dc.contributor.author | 梁維 | zh_TW |
dc.contributor.author | Wei Liang | en |
dc.date.accessioned | 2023-08-09T16:11:34Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-09 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-24 | - |
dc.identifier.citation | Bao, Y. and Li, H. (2021). Machine learning paradigm for structural health monitoring.Structural Health Monitoring - An International Journal, 20(4, SI):1353–1372.
Butterfield, R. (1979). A natural compression law for soils. Geotechnique, 29(4):469–480. Cami, B., Javankhoshdel, S., Phoon, K. K., and Ching, J. (2020). Scale of fluctuation for spatially varying soils: Estimation methods and values. Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(4). Casagrande, A. (1936). The determination of the preconsolidation load and its practical significance. Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, pages 60–64. Çelik, S. and Tan, Ö. (2005). Determination of preconsolidation pressure with artificial neural network. Civil Engineering and Environmental Systems, 22(4):217–231. Cheng, Y. M., Lansivaara, T., and Wei, W. B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34(3):137–150. Ching, J. and Phoon, K.-K. (2013). Effect of element sizes in random field finite element simulations of soil shear strength. Computers & Structures, 126(SI):120–134. Ching, J. and Phoon, K. K. (2019). Impact of autocorrelation function model on the probability of failure. Journal of Engineering Mechanics, 145(1). Cho, S. E. (2009). Probabilistic stability analyses of slopes using the ann-based response surface. Computers and Geotechnics, 36(5):787–797. Chok, Y. H., Jaksa, M. B., Kaggwa, W. S., Griffiths, D. V., and Fenton, G. A. (2016). Neural network prediction of the reliability of heterogeneous cohesive slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 40(11):1556–1569. DeGroot, D. J. and Baecher, G. B. (1993). Estimating autocovariance of in-situ soil properties. Journal of Geotechnical Engineering, 119(1):147–166. Feng, D.-C., Liu, Z.-T., Wang, X.-D., Jiang, Z.-M., and Liang, S.-X. (2020). Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm. Advanced Engineering Informatics, 45. Fenton, G. and Vanmarcke, E. (1990). Simulation of random fields via local average subdivision. Journal of Engineering Mechanics, 116(8):1733–1749. Gao, B., Wang, R., Lin, C., Guo, X., Liu, B., and Zhang, W. (2021). Tbm penetration rate prediction based on the long short-term memory neural network. Underground Space, 6(6):718–731. Gao, W., Raftari, M., Rashid, A. S. A., Mu’azu, M. A., and Jusoh, W. A. W. (2020). A predictive model based on an optimized ANN combined with ICA for predicting the stability of slopes. Engineering with Computers, 36(1):325–344. Habumugisha, J. M., Chen, N., Rahman, M., Islam, M. M., Ahmad, H., Elbeltagi, A., Sharma, G., Liza, S. N., and Dewan, A. (2022). Landslide susceptibility mapping with deep learning algorithms. Sustainability, 14(3). Haldar, S. and Babu, G. L. S. (2008). Effect of soil spatial variability on the response of laterally loaded pile in undrained clay. Computers and Geotechnics, 35(4):537–547. He, K., Zhang, X., Ren, S., and Sum, J. (2016). Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hsiao, C., Chen, A. Y., Ge, L., and Yeh, F. (2022). Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method. Acta Geotechnica, 17:5801–5811. Huang, J., Fenton, G., Griffiths, D. V., Li, D., and Zhou, C. (2017a). On the efficient estimation of small failure probability in slopes. Landslides, 14(2):491–498. Huang, X. C., Zhou, X. P., Ma, W., Niu, Y. W., and Wang, Y. T. (2017b). Two-dimensional stability assessment of rock slopes based on random field. International Journal of Geomechanics, 17(7). Indolia, S., Goswami, A. K., Mishra, S., and Asopa, P. (2018). Conceptual understanding of convolutional neural network: A deep learning approach. Procedia Computer Science, 132:679–688. Jha, S. K. and Ching, J. (2013). Simulating spatial averages of stationary random field using the fourier series method. Journal of Engineering Mechanics, 139(5):594–605. Jiang, S.-H. and Huang, J.-S. (2016). Efficient slope reliability analysis at low-probability levels in spatially variable soils. Computers and Geotechnics, 75:18–27. Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., and Mansor, S. (2018). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (svm), logistic regression (lr) and artificial neural networks (ann). Geomatics Natural Hazards & Risk, 9(1):49–69. Kaunda, R. B., Chase, R. B., Kehew, A. E., Kaugars, K., and Selegean, J. P. (2010). Neural network modeling applications in active slope stability problems. Environmental Earth Sciences, 60(7):1545–1558. Kubo, S., Yamane, T., and Chun, P.-j. (2022). Study on accuracy improvement of slope failure region detection using Mask R-CNN with augmentation method. Sensors, 22(17). Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. Li, D.-Q., Zheng, D., Cao, Z.-J., Tang, X.-S., and Phoon, K.-K. (2016). Response surface methods for slope reliability analysis: Review and comparison. Engineering Geology, 203:3–14. Lin, H., Li, L., Meng, K., Li, C., Xu, L., Liu, Z., and Lu, S. (2022). Slope reliability analysis using bayesian optimized convolutional neuralbnetworks. Engineering Computations, 39(8):3012–3037. Liu, L.-L., Cheng, Y.-M., and Zhang, S.-H. (2017). Conditional random field reliability analysis of a cohesion-frictional slope. Computers and Geotechnics, 82:173–186. Liu, S. Y., Shao, L. T., and Li, H. J. (2015). Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, 63:291–298. Liu, Y., Zhang, W., Zhang, L., Zhu, Z., Hu, J., and Wei, H. (2018). Probabilistic stability analyses of undrained slopes by 3d random fields and finite element methods. Geoscience Frontiers, 9(6):1657–1664. Ma, Z., Mei, G., Prezioso, E., Zhang, Z., and Xu, N. (2021). A deep learning approach using graph convolutional networks for slope deformation prediction based on time-series displacement data. Neural Computing & Applications, 33(21):14441–14457. Meyerhof, G. G. (1965). Shallow foundations. Journal of the Soil Mechanics and Foundations Division, 91(2):21–31. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A. S. A., and Pradhan, B. (2019). Modification of landslide susceptibility mapping using optimized pso-ann technique. Engineering with Computers, 35(3):967–984. Ngo, P. T. T., Panahi, M., Khosravi, K., Ghorbanzadeh, O., Kariminejad, N., Cerda, A., and Lee, S. (2021). Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of iran. Geoscience Frontiers, 12(2):505–519. Phoon, K., Huang, H., and Quek, S. (2005). Simulation of strongly non-gaussian processes using karhunen-loeve expansion. Probabilistic Engineering Mechanics, 20(2):188–198. Phoon, K.-K. and Kulhawy, F.-H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4):612–624. Phoon, K. K., Kulhawy, F. H., and Grigoriu, M. D. (1995). Reliability-based design of foundations for transmission line structures. Technical Report TR-105000, Electric Power Research Institute, Palo Alto, CA. Ray, A., Kumar, V., Kumar, A., Rai, R., Khandelwal, M., and Singh, T. N. (2020). Stability prediction of himalayan residual soil slope using artificial neural network. Natural Hazards, 103(3):3523–3540. Ruan, S., Liu, D., Gu, Q., and Jing, Y. (2022). An intelligent detection method for open-pit slope fracture based on the improved mask r-cnn. Journal of Mining Science, 58(3):503–518. Rukhaiyar, S., Alam, M. N., and Samadhiya, N. K. (2018). A pso-ann hybrid model for predicting factor of safety of slope. International Journal of Geotechnical Engineering, 12(6):556–566. Safa, M., Sari, P. A., Shariati, M., Suhatril, M., Trung, N. T., Wakil, K., and Khorami, M. (2020). Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Physica A-Statistical Mechanics and its Applications, 550. Schmertmann, J. H., Hartman, J. P., and Brown, P. B. (1978). Improved strain influence factor diagrams. Journal of the Geotechnical Engineering Division, 104(8):1131–1135. Schultze, E. and Sherif, G. (1973). Prediction of settlements from evaluated settlement observations for sand. 8th International Conference on Soil Mechanics and Foundation Engineering, 1(3):225–230. Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2002). Predicting settlement of shallow foundations using neural networks. Journal of Geotechnical and Geoenvironmental Enginnering, 128(9):758–793. Shu, S. X. and Gong, W. H. (2016). An artificial neural network-based response surface method for reliability analyses of c-phi slopes with spatially variable soil. China Ocean Engineering, 30(1):113–122. Spry, M. J., Kulhawy, F. H., and Grigoriu, M. D. (1988). Reliability-based foundation design for transmission line structures: Geotechnical site characterization strategy. Technical Report EL-5507, Electric Power Research Institute, Palo Alto, CA. Suchomel, R. and Masin, D. (2010). Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-phi soil. Computers and Geotechnics, 37(1-2):132–140. Tabarroki, M., Ahmad, F., Banaki, R., Jha, S. K., and Ching, J. (2013). Determining the factors of safety of spatially variable slopes modeled by random fields. Journal of Geotechnical and Geoenvironmental Engineering, 139(12):2082–2095. Tavenas, F., Rosiers, J. P. D., Leroueil, S., Rochelle, P. L., and Roy, M. (1979). The use of strain energy as a yeild and creep criterion for lightly over consolidated clays. Geotechnique, 29:285–303. Ullo, S. L., Mohan, A., Sebastianelli, A., Ahamed, S. E., Kumar, B., Dwivedi, R., and Sinha, G. (2021). A new mask r-cnn-based method for improved landslide detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14:3799–3810. Vanmarcke, E. H. (1977). Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division, 103(11):1227–1246. Vanmarcke, E. H. (1983). Random fields: Analysis and synthesis. M.I.T Press, Cambridge, Massachusetts. Wang, M.-Y., Liu, Y., Ding, Y.-N., and Yi, B.-L. (2020). Probabilistic stability analyses of multi-stage soil slopes by bivariate random fields and finite element methods. Computers and Geotechnics, 122. Wang, Y., Zhang, D., Liu, Y., Dai, B., and Lee, L. H. (2019). Enhancing transportation systems via deep learning: A survey. Transportation Research Part C - Emerging Technologies, 99:144–163. Wang, Z.-Z. and Goh, S. H. (2021). Novel approach to efficient slope reliability analysis in spatially variable soils. Engineering Geology, 281. Wei, W. B., Cheng, Y. M., and Li, L. (2009). Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Computers and Geotechnics, 36(1-2):70–80. Wei, X., Zhang, L., Yang, H.-Q., Zhang, L., and Yao, Y.-P. (2021). Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. Geoscience Frontiers, 12(1):453–467. Xu, J.-J., Zhang, H., Tang, C.-S., Cheng, Q., Liu, B., and Shi, B. (2022). Automatic soil desiccation crack recognition using deep learning. Geotecnique, 72(4):337–349. Zhang, N., Shen, S. L., Zhou, A., and Jin, Y. F. (2021a). Application of LSTM approach for modelling stress-strain behaviour of soil. Applied Soft Computing, 100. Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y., and Ding, X. (2021b). Application of deep learning algorithms in geotechnical engineering: a short critical review. Artificial Intelligence Review, 54(8):5633–5673. Zhou, X. P., Zhu, B. Z., and Wong, L. N. Y. (2019). A stability analysis of landslides based on random fields - part i: Toe circle slope. Bulletin of Engineering Geology and the Environment, 78(1):103–115. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88246 | - |
dc.description.abstract | 土壤隨機場理論為一種得以描述土壤空間變異性之方法,因此逐漸獲得關注且發展日益趨於成熟,於邊坡可靠度穩定性分析中,隨機場有限元素分析方法亦得以有效地分析邊坡穩定性;然而,作為一個常搭配蒙地卡羅分析方法使用之工具,其費時且可能需消耗大量運算資源。使用隨機有限元素分析方法決定邊坡破壞機率時,人工智慧是個強大且有潛力於減少大量分析次數之工具;隨著科技與電腦運算效能的發展,機器學習與深度學習方法已愈具效率且熱門。卷積神經網路(convolutional neural network, CNN)為人工智慧領域下的一個類別並得以應用於大地工程問題之預測上,其優良之影像辨識能力是其一大優點,並已被發現其可以一系列之隨機場邊坡作為輸入資料,以強度折減法進行之隨機有限元素分析結果如安全係數或邊坡破壞面作為輸出標籤作模型訓練,並預測邊坡穩定性;然而,不同卷積神經網路模型於預測未知資料集之表現差異與泛化能力仍尚未被測試和檢驗。
因此,本研究使用不同卷積神經網路模型作坡角30◦與坡角50◦隨機場邊坡圖片之訓練和學習,以評估含安全係數與邊坡破壞面兩部分之邊坡穩定性。第一部分為安全係數預測任務,傳統的淺層卷積神經網路會被使用於預測坡角40◦隨機場邊坡之邊坡穩定性;與殘差神經網路(residual neural network, ResNet)結合之卷積神經網路亦被訓練且作預測結果改善能力、預測表現、以及泛化能力之比較;此外,卷積神經網路模型之泛化能力將透過多種變異係數與關聯性長度之組合進行評估。第二部分則使用另一個卷積神經網路對邊坡破壞面進行預測。 研究結果顯示,當訓練資料與測試資料兩資料集具有相同之隨機場來源時,卷積神經網路模型對安全係數與邊坡破壞面兩結果皆具備優秀的預測能力。然而當隨機場來源不同時,在預測安全係數任務中殘差神經網路相較傳統淺層卷積神經網路表現為佳;在預測邊坡破壞面任務中,卷積神經網路則只能對出現於訓練資料中之已知坡角之同坡角邊坡作預測,其尚無法預測未知坡角之邊坡破壞面。因此,卷積神經網路模型應用於未知坡角邊坡破壞面預測之能力仍有待更多研究佐證。 | zh_TW |
dc.description.abstract | The random field theory of soil has gained attention and become a well-developed approach for characterizing soil spatial variability. The random finite element method, employed in slope reliability analysis, effectively evaluates slope failure probability. However, this method commonly incorporates Monte Carlo analysis, which may have drawbacks due to its time-consuming process and the computational resources required.
Artificial intelligence is a powerful tool that can potentially eliminate the need for performing numerous random finite element analyses to determine slope failure probabilities. Machine learning and deep learning are becoming increasingly popular and more efficient as technology advances and computer calculations. Convolutional neural networks (CNNs) are a class of artificial intelligence that can be used to assess geotechnical engineering predictions. Among the advantages of CNN models is its ability to analyze visual imagery. It has been found that a CNN model can be trained to predict slope stability using a series of random fields of slopes as input data and random finite element results, including the factor of safety or slip surface predictions, from strength reduction analyses as output labels. However, the performance differences and generalization abilities of the CNNs in predicting unknown datasets have not yet been examined. Therefore, this study uses CNN models to evaluate slope stability predictions by learning from images of 30◦ and 50◦ random field slopes in two parts: the safety factor and failure slip surface. Firstly, for predicting the safety factors, a conventional shallow CNN model is employed to predict the slope stability of a 40◦ random field slope. The conventional CNN model and this model incorporating residual neural network (ResNet) are compared to see the improvement, performance, and generalization ability. Additionally, the generalization ability of the CNN models is evaluated under various combinations of the coefficient of variation and correlation length. Secondly, another CNN model is trained to predict failure slip surfaces. The results demonstrate that the CNN models exhibit excellent predictive capabilities for the safety factor and slope failure slip predictions when the training and testing data share the same random field source. However, when the random field sources differ, the ResNet model outperforms the conventional shallow CNN for safety factor prediction. Regarding predicting slope failure surfaces, the CNN model used in this study is currently limited to making predictions only for known slope angles included in the training data; it is not yet capable of predicting failure surfaces for slopes with unknown angles. As a result, the CNN model's ability to predict slope failure surfaces with unknown angles remains to be determined. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:11:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-09T16:11:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 邊坡分析方法 5 2.2 以土壤空間變異性建立隨機場 7 2.2.1 關聯性長度 8 2.2.2 自相關性函數 10 2.2.3 Whittle-Matérn 模型 11 2.2.4 機率分布 13 2.2.5 隨機場 14 2.2.6 應用 16 2.3 機器學習 18 2.3.1 常見深度學習方法於大地工程之應用 21 2.3.2 卷積神經網路 (Convolutional neural network, CNN) 29 2.3.2.1 應用 29 2.3.3 殘差網路 (Residual network, ResNet) 32 2.3.3.1 概念與原理 32 2.3.3.2 應用 33 2.3.3.3 小結 35 第三章 研究方法 37 3.1 概述 37 3.2 隨機場生成方法 38 3.2.1 參數律定 38 3.2.2 建立土壤關聯性 40 3.2.3 生成隨機場 42 3.3 有限元素軟體分析 44 3.3.1 邊坡設定 44 3.3.2 參數設定 44 3.3.3 分析方法與結果產出 46 3.3.4 自動化分析 47 3.3.5 安全係數、邊坡破壞面之訓練與測試資料準備 48 3.4 卷積神經網路 (CNN) 模型 48 3.4.1 概念與原理 49 3.4.2 訓練資料準備 54 3.4.3 超參數 (Hyperparameters) 55 3.4.4 模型架構 61 3.4.4.1 淺層卷積神經網路 61 3.4.4.2 殘差網路模型 63 3.4.5 模型訓練 64 3.4.6 超參數調整 65 第四章 CNN 模型參數調整與預測結果 69 4.1 安全係數預測 70 4.1.1 固定關聯性長度 70 4.1.1.1 案例一: 訓練資料為 COV=0.1 之隨機場邊坡 71 4.1.1.2 案例二: 訓練資料為 COV=0.1+0.2+0.3 之隨機場邊坡 83 4.1.1.3 案例三: 訓練資料為 COV=0.2 之隨機場邊坡 92 4.1.2 固定變異係數 99 4.1.2.1 案例四: 訓練資料為 (SOFh, SOFv) = (10, 0.5) 之隨機場邊坡 100 4.2 邊坡破壞面預測 107 4.2.1 資料處理 107 4.2.2 CNN 模型訓練 109 4.2.3 邊坡破壞面預測結果 112 第五章 結論與建議 117 5.1 結論 117 5.2 建議 120 參考文獻 123 附錄 A — 邊坡破壞面形式 131 | - |
dc.language.iso | zh_TW | - |
dc.title | 以卷積神經網路預測邊坡穩定性 | zh_TW |
dc.title | Slope Stability Prediction Using Convolutional Neural Network | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 葉馥瑄;黃郁惟;楊國鑫;鄭世豪 | zh_TW |
dc.contributor.oralexamcommittee | Fu-Hsuan Yeh;Yu-Wei Hwang;Kuo-Hsin Yang;Shih-Hao Cheng | en |
dc.subject.keyword | 隨機場,隨機有限元素,邊坡穩定性預測,卷積神經網路,殘差神經網路, | zh_TW |
dc.subject.keyword | random field,random finite element,slope stability prediction,convolutional neural network,residual neural network, | en |
dc.relation.page | 133 | - |
dc.identifier.doi | 10.6342/NTU202301805 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-24 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 14.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。